Skip to content
/ jtt Public

Code for "Just Train Twice: Improving Group Robustness without Training Group Information"

Notifications You must be signed in to change notification settings

anniesch/jtt

Repository files navigation

Just Train Twice: Improving Group Robustness without Training Group Information

This code implements the following paper:

Just Train Twice: Improving Group Robustness without Training Group Information

Environment

Create an environment with the following commands:

virtualenv venv -p python3
source venv/bin/activate
pip install -r requirements.txt

Downloading Datasets

  • Waterbirds: Download waterbirds from here and put it in jtt/cub.

    • In that directory, our code expects data/waterbird_complete95_forest2water2/ with metadata.csv inside.
  • CelebA: Download CelebA from here and put it in jtt/celebA.

    • In that directory, our code expects the following files/folders:
      • data/list_eval_partition.csv
      • data/list_attr_celeba.csv
      • data/img_align_celeba/
  • MultiNLI: Follow instructions here to download this dataset and put in jtt/multinli

    • In that directory, our code expects the following files/folders:
      • data/metadata.csv
      • glue_data/MNLI/cached_dev_bert-base-uncased_128_mnli
      • glue_data/MNLI/cached_dev_bert-base-uncased_128_mnli-mm
      • glue_data/MNLI/cached_train_bert-base-uncased_128_mnli
  • CivilComments: This dataset can be downloaded from here and put it in jtt/jigsaw. In that directory, our code expects a folder data with the downloaded dataset.

Running our Method

  • Train the initial ERM model:
    • python generate_downstream.py --exp_name $EXPERIMENT_NAME --dataset $DATASET --method ERM
      • Some useful optional args: --n_epochs $EPOCHS --lr $LR --weight_decay $WD. Other args, e.g. batch size, can be changed in generate_downstream.py.
      • Datasets: CUB, CelebA, MultiNLI, jigsaw
    • Bash execute the generated script for ERM inside results/dataset/$EXPERIMENT_NAME
  • Once ERM is done training, run python process_training.py --exp_name $EXPERIMENT_NAME --dataset $DATASET --folder_name $ERM_FOLDER_NAME --lr $LR --weight_decay $WD --deploy
  • Bash execute the generated scripts that have JTT in their name.

Monitoring Performance

  • Run python analysis.py --exp_name $PATH_TO_JTT_RUNS --dataset $DATASET
    • The $PATH_TO_JTT_RUNS will look like $EXPERIMENT_NAME+"/train_downstream_"+$ERM_FOLDER_NAME+"/final_epoch"+$FINAL_EPOCH
  • You can also track accuracies in train.csv, val.csv, and test.csv in the JTT directory or use wandb to monitor performance for all experiments (although this does not include subgroups of CivilComments-WILDS)

Running ERM, Joint DRO, or Group DRO

  • Run python generate_downstream.py --exp_name $EXPERIMENT_NAME --dataset $DATASET --method $METHOD - Some useful optional args: --n_epochs $EPOCHS --lr $LR --weight_decay $WD - Datasets: CUB, CelebA, MultiNLI, jigsaw
  • Bash execute the generated script for the method inside results/dataset/$EXPERIMENT_NAME

Adding other datasets

Add the following:

  • A dataset file (similar to cub_dataset.py)
  • Edit process_training.py to include the required args for your dataset and implement a way for getting the spurious features from the dataset.

Sample Commands for running JTT on Waterbirds

python generate_downstream.py --exp_name CUB_sample_exp --dataset CUB --n_epochs 300 --lr 1e-5 --weight_decay 1.0 --method ERM

bash results/CUB/CUB_sample_exp/ERM_upweight_0_epochs_300_lr_1e-05_weight_decay_1.0/job.sh

python process_training.py --exp_name CUB_sample_exp --dataset CUB --folder_name ERM_upweight_0_epochs_300_lr_1e-05_weight_decay_1.0 --lr 1e-05 --weight_decay 1.0 --final_epoch 60 --deploy

bash results/CUB/CUB_sample_exp/train_downstream_ERM_upweight_0_epochs_300_lr_1e-05_weight_decay_1.0/final_epoch50/JTT_upweight_100_epochs_300_lr_1e-05_weight_decay_1.0/job.sh

python analysis.py --exp_name CUB_sample_exp/train_downstream_ERM_upweight_0_epochs_300_lr_1e-05_weight_decay_1.0/final_epoch60/ --dataset CUB

Sample Commands for running JTT on CelebA

python generate_downstream.py --exp_name CelebA_sample_exp --dataset CelebA --n_epochs 50 --lr 1e-5 --weight_decay 0.1 --method ERM

bash results/CelebA/CelebA_sample_exp/ERM_upweight_0_epochs_50_lr_1e-05_weight_decay_0.1/job.sh

python process_training.py --exp_name CelebA_sample_exp --dataset CelebA --folder_name ERM_upweight_0_epochs_50_lr_1e-05_weight_decay_0.1 --lr 1e-05 --weight_decay 0.1 --final_epoch 1 --deploy

sbatch results/CelebA/CelebA_sample_exp/train_downstream_ERM_upweight_0_epochs_50_lr_1e-05_weight_decay_0.1/final_epoch1/JTT_upweight_50_epochs_50_lr_1e-05_weight_decay_0.1/job.sh

python analysis.py --exp_name CelebA_sample_exp/train_downstream_ERM_upweight_0_epochs_50_lr_1e-05_weight_decay_0.1/final_epoch1/ --dataset CelebA

Sample Commands for running JTT on MultiNLI

python generate_downstream.py --exp_name MultiNLI_sample_exp --dataset MultiNLI --n_epochs 5 --lr 2e-5 --weight_decay 0 --method ERM

bash results/MultiNLI/MultiNLI_sample_exp/ERM_upweight_0_epochs_5_lr_2e-05_weight_decay_0.0/job.sh

python process_training.py --exp_name MultiNLI_sample_exp --dataset MultiNLI --folder_name ERM_upweight_0_epochs_5_lr_2e-05_weight_decay_0.0 --lr 1e-05 --weight_decay 0.1 --final_epoch 2 --deploy

bash results/MultiNLI/MultiNLI_sample_exp/train_downstream_ERM_upweight_0_epochs_5_lr_2e-05_weight_decay_0.0/final_epoch2/JTT_upweight_4_epochs_5_lr_2e-05_weight_decay_0.1/job.sh

python analysis.py --exp_name MultiNLI_sample_exp/train_downstream_ERM_upweight_0_epochs_5_lr_2e-05_weight_decay_0.0/final_epoch2/ --dataset MultiNLI

Sample Commands for running JTT on CivilComments-WILDS

python generate_downstream.py --exp_name jigsaw_sample_exp --dataset jigsaw --n_epochs 3 --lr 2e-5 --weight_decay 0 --method ERM --batch_size 24

bash results/jigsaw/jigsaw_sample_exp/ERM_upweight_0_epochs_3_lr_2e-05_weight_decay_0.0/job.sh

python process_training.py --exp_name jigsaw_sample_exp --dataset jigsaw --folder_name ERM_upweight_0_epochs_3_lr_2e-05_weight_decay_0.0 --lr 1e-05 --weight_decay 0.01 --final_epoch 2 --batch_size 16 --deploy

bash results/jigsaw/jigsaw_sample_exp/train_downstream_ERM_upweight_0_epochs_3_lr_2e-05_weight_decay_0.0/final_epoch2/JTT_upweight_6_epochs_3_lr_1e-05_weight_decay_0.01/job.sh

python analysis.py --exp_name jigsaw_sample_exp/train_downstream_ERM_upweight_0_epochs_3_lr_2e-05_weight_decay_0.0/final_epoch2/ --dataset jigsaw

About

Code for "Just Train Twice: Improving Group Robustness without Training Group Information"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages