diff --git a/Code-Sleep-Python/object_detection.py b/Code-Sleep-Python/object_detection.py index 328a958..f270443 100644 --- a/Code-Sleep-Python/object_detection.py +++ b/Code-Sleep-Python/object_detection.py @@ -12,7 +12,7 @@ from PIL import Image import cv2 cap = cv2.VideoCapture(0) -sys.path.insert(0,'/anaconda3/lib/python3.6/site-packages/tensorflow/models/research/') +sys.path.insert(0, '/anaconda3/lib/python3.6/site-packages/tensorflow/models/research/') from utils import label_map_util from utils import visualization_utils as vis_util MODEL_NAME = 'ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03' @@ -27,47 +27,47 @@ opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) tar_file = tarfile.open(MODEL_FILE) for file in tar_file.getmembers(): - file_name = os.path.basename(file.name) - if 'frozen_inference_graph.pb' in file_name: - tar_file.extract(file, os.getcwd()) + file_name = os.path.basename(file.name) + if 'frozen_inference_graph.pb' in file_name: + tar_file.extract(file, os.getcwd()) detection_graph = tf.Graph() with detection_graph.as_default(): - od_graph_def = tf.GraphDef() - with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: - serialized_graph = fid.read() - od_graph_def.ParseFromString(serialized_graph) - tf.import_graph_def(od_graph_def, name='') + od_graph_def = tf.GraphDef() + with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: + serialized_graph = fid.read() + od_graph_def.ParseFromString(serialized_graph) + tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) with detection_graph.as_default(): - with tf.Session(graph=detection_graph) as sess: - while True: - ret, image_np = cap.read() - # Expand dimensions since the model expects images to have shape: [1, None, None, 3] - image_np_expanded = np.expand_dims(image_np, axis=0) - image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') - # Each box represents a part of the image where a particular object was detected. - boxes = detection_graph.get_tensor_by_name('detection_boxes:0') - # Each score represent how level of confidence for each of the objects. - # Score is shown on the result image, together with the class label. - scores = detection_graph.get_tensor_by_name('detection_scores:0') - classes = detection_graph.get_tensor_by_name('detection_classes:0') - num_detections = detection_graph.get_tensor_by_name('num_detections:0') - # Actual detection. - (boxes, scores, classes, num_detections) = sess.run( - [boxes, scores, classes, num_detections], - feed_dict={image_tensor: image_np_expanded}) - # Visualization of the results of a detection. - vis_util.visualize_boxes_and_labels_on_image_array( - image_np, - np.squeeze(boxes), - np.squeeze(classes).astype(np.int32), - np.squeeze(scores), - category_index, - use_normalized_coordinates=True, - line_thickness=8) - cv2.imshow('object detection', cv2.resize(image_np, (800,600))) - if cv2.waitKey(25) == ord('q'): - cv2.destroyAllWindows() - break \ No newline at end of file + with tf.Session(graph=detection_graph) as sess: + while True: + ret, image_np = cap.read() + # Expand dimensions since the model expects images to have shape: [1, None, None, 3] + image_np_expanded = np.expand_dims(image_np, axis=0) + image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') + # Each box represents a part of the image where a particular object was detected. + boxes = detection_graph.get_tensor_by_name('detection_boxes:0') + # Each score represent how level of confidence for each of the objects. + # Score is shown on the result image, together with the class label. + scores = detection_graph.get_tensor_by_name('detection_scores:0') + classes = detection_graph.get_tensor_by_name('detection_classes:0') + num_detections = detection_graph.get_tensor_by_name('num_detections:0') + # Actual detection. + (boxes, scores, classes, num_detections) = sess.run( + [boxes, scores, classes, num_detections], + feed_dict={image_tensor: image_np_expanded}) + # Visualization of the results of a detection. + vis_util.visualize_boxes_and_labels_on_image_array( + image_np, + np.squeeze(boxes), + np.squeeze(classes).astype(np.int32), + np.squeeze(scores), + category_index, + use_normalized_coordinates=True, + line_thickness=8) + cv2.imshow('object detection', cv2.resize(image_np, (800,600))) + if cv2.waitKey(25) == ord('q'): + cv2.destroyAllWindows() + break