diff --git a/.codespellrc b/.codespellrc index 05fd0a0a9..8663b40fc 100644 --- a/.codespellrc +++ b/.codespellrc @@ -1,4 +1,4 @@ [codespell] skip = *.pyc,*.xml,*.txt,*.gif,*.png,*.jpg,*.js,*.html,*.doctree,*.ttf,*.woff,*.woff2,*.eot,*.mp4,*.inv,*.pickle,*.ipynb,flycheck*,./.git/*,./.hypothesis/*,*.yml,./doc/build/*,./doc/images/*,./dist/*,*~,.hypothesis*,./doc/source/examples/*,*cover,*.dat,*.mac quiet-level = 3 -ignore-words-list = pres,nax,tickness,struc,parm \ No newline at end of file +ignore-words-list = pres,nax,tickness,struc,parm,filname,equil,gage diff --git a/.gitignore b/.gitignore index 12b7f3fae..155f5b82c 100644 --- a/.gitignore +++ b/.gitignore @@ -157,3 +157,9 @@ cython_debug/ #.idea/ # End of https://www.toptal.com/developers/gitignore/api/python + +PyMAPDL_Dev +doc/source/technology_showcase_examples/*.ipynb +doc/source/technology_showcase_examples/*.py +doc/source/technology_showcase_examples/*.md5 +doc/source/technology_showcase_examples/*.pickle \ No newline at end of file diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index bef5e7558..bb75a4dc3 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -22,7 +22,7 @@ repos: - id: flake8 - repo: https://github.com/codespell-project/codespell - rev: v2.2.2 + rev: v2.2.4 hooks: - id: codespell diff --git a/doc/source/images/thumb/sphx_glr_tse-021-buckling_thumb.png b/doc/source/images/thumb/sphx_glr_tse-021-buckling_thumb.png new file mode 100644 index 000000000..ea4b28783 Binary files /dev/null and b/doc/source/images/thumb/sphx_glr_tse-021-buckling_thumb.png differ diff --git a/doc/source/index.rst b/doc/source/index.rst index 4f510d569..ee631ffc0 100644 --- a/doc/source/index.rst +++ b/doc/source/index.rst @@ -44,8 +44,8 @@ Verification Manual `_. They are complete and concrete case studies which necessitate more resources. .. include:: ./technology_showcase_examples/index.rst - :start-line: 9 - :end-line: 112 + :start-line: 11 + :end-line: 130 .. === TECHNOLOGY SHOWCASES === diff --git a/doc/source/technology_showcase_examples/images/thumb/sphx_glr_tse-021-buckling_thumb.png b/doc/source/technology_showcase_examples/images/thumb/sphx_glr_tse-021-buckling_thumb.png new file mode 100644 index 000000000..ea4b28783 Binary files /dev/null and b/doc/source/technology_showcase_examples/images/thumb/sphx_glr_tse-021-buckling_thumb.png differ diff --git a/doc/source/technology_showcase_examples/index.rst b/doc/source/technology_showcase_examples/index.rst index b46725852..4d5f32ddc 100644 --- a/doc/source/technology_showcase_examples/index.rst +++ b/doc/source/technology_showcase_examples/index.rst @@ -1,13 +1,13 @@ + .. _sphx_glr_technology_showcase_examples: +==================== Technology Showcases ==================== -The following examples initially come from the `APDL Technology Showcase Manual -`_. They initially were MAPDL files. They have been reproduced -in Python files using PyMAPDL with the ``ansys-mapdl-core`` library. - - +The following examples initially come from the `APDL Technology Showcase Manual `_. +They initially were MAPDL files. +They have been reproduced in Python files using PyMAPDL with the ``ansys-mapdl-core`` library. .. raw:: html @@ -69,6 +69,24 @@ in Python files using PyMAPDL with the ``ansys-mapdl-core`` library. +.. raw:: html + +
+ +.. only:: html + + .. image:: ./images/thumb/sphx_glr_tse-021-buckling_thumb.png + :alt: Buckling and post-buckling analysis + + :ref:`sphx_glr_ex_21-tecbuckling.rst` + +.. raw:: html + +
Buckling and post-buckling
+
+ + + .. raw:: html
@@ -110,16 +128,17 @@ in Python files using PyMAPDL with the ``ansys-mapdl-core`` library.
- .. toctree:: :hidden: techdemo-1/ex_01-tecbrakesqueal.rst techdemo-15/ex_15-teccalvalhyper.rst techdemo-20/ex_20-tecPCB.rst + techdemo-21/ex_21-tecbuckling.rst techdemo-25/ex_25-tecstent.rst techdemo-28/ex_28-tecfricstir.rst + .. only:: html .. rst-class:: sphx-glr-signature diff --git a/doc/source/technology_showcase_examples/techdemo-1/ex_01-tecbrakesqueal.rst b/doc/source/technology_showcase_examples/techdemo-1/ex_01-tecbrakesqueal.rst index 248634641..18834b825 100644 --- a/doc/source/technology_showcase_examples/techdemo-1/ex_01-tecbrakesqueal.rst +++ b/doc/source/technology_showcase_examples/techdemo-1/ex_01-tecbrakesqueal.rst @@ -3,7 +3,7 @@ .. _tech_demo_01: Brake Squeal Analysis ---------------------- +===================== This example analysis shows how to solve a brake-squeal problem. `1.6. Analysis and Solution Controls`_ are highlighted: linear non-prestressed diff --git a/doc/source/technology_showcase_examples/techdemo-21/ex_21-tecbuckling.rst b/doc/source/technology_showcase_examples/techdemo-21/ex_21-tecbuckling.rst new file mode 100644 index 000000000..64747a445 --- /dev/null +++ b/doc/source/technology_showcase_examples/techdemo-21/ex_21-tecbuckling.rst @@ -0,0 +1,1607 @@ +.. _sphx_glr_ex_21-tecbuckling.rst: + +.. _tech_demo_21: + + +Buckling and post-buckling analysis of a ring-stiffened cylinder using nonlinear stabilization +============================================================================================== + + +This examples shows how to use PyMAPDL to import an existing FE model and +to perform a7 nonlinear buckling and post-buckling analysis using nonlinear +stabilization. The problem uses a stiffened cylinder subjected to uniform +external pressure to show how to find the nonlinear buckling loads, achieve +convergence at the post-buckling stage, and interpret the results. + +This example is inspired from the model and analysis defined in Chapter 21 +of the Mechanical APDL Technology Showcase Manual. + + +Setting up model +---------------- + +The original FE model is given in the Ansys Mechanical APDL Technology +Showcase Manual. The .cdb contains a FE model of a ring-stiffened cylinder. + +A circular cylinder made of bare 2024-T3 aluminum alloy is stiffened inside +with five Z-section rings. Its ends are closed with thick aluminum bulkheads. +A riveted L section exists between the top plate and the top ring and the +bottom plate and bottom ring. +The cylinder is subjected to a differential external pressure. The pressure +causes a local buckling phenomenon characterized by buckling of the skin +between stiffening rings, leading eventually to collapse. + +The finite element model of the ring stiffened cylinder is meshed with +SHELL281 elements with an element size of 10 mm. The fine mesh is required +for buckling analysis, and a full 360-degree model is necessary because +the deformation is no longer axisymmetric after buckling occurs. + +All shell elements have uniform thickness. Five sections are created in the +model with no offsets, so the shell sections are offset to the midplane +by default. + +Starting MAPDL as a service and importing an external model +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: python + + + from ansys.mapdl.core import launch_mapdl + from ansys.mapdl.core.examples import download_tech_demo_data + + # define geometric parameters + bs = 95.3 # Ring spacing (mm) + ts = 1.034 # Skin thickness (mm) + tw = 0.843 # Ring thickness (mm) + r = 344 * ts # Radius of cylinder (mm) + L = 431.8 + 2 * (19 - 9.5) # Length of cylinder (mm) + pext = 0.24 # Differential external pressure (MPa) + + # start MAPDL as a service + mapdl = launch_mapdl(run_location="D:\PyAnsys\Examples\Buckling_PostBuckling_TD21") + print(mapdl) + + mapdl.filname("buckling") # change filename + # mapdl.nerr(nmerr=200, nmabt=10000, abort=-1, ifkey=0, num=0) + + # enter preprocessor + mapdl.prep7() + + # define material properties for 2024-T3 Alluminum alloy + EX = 73000 # Young's Modulus (MPA) + ET = 73 # Tangent modulus + mapdl.mp("ex", 1, EX) # Young's Modulus (MPA) + mapdl.mp("prxy", 1, 0.33) # Poisson's ratio + EP = EX * ET / (EX - ET) + mapdl.tb("biso", 1) + mapdl.tbdata(1, 268.9, EP) + # create material plot + mapdl.show("png") + mapdl.tbplot("biso", 1) + mapdl.show("close") + + # define shell elements and their sections + mapdl.et(1, 181) + # cylinder + mapdl.sectype(1, "shell") + mapdl.secdata(ts, 1) + # L + mapdl.sectype(2, "shell") + mapdl.secdata(ts + 1.64, 1) + # Z shaped ring stiffener + mapdl.sectype(3, "shell") + mapdl.secdata(tw, 1) + # Plate at z=0 with thickness=25 mm + mapdl.sectype(4, "shell") + mapdl.secdata(25, 1) + # Plate at z=L with thickness=25 mm + mapdl.sectype(5, "shell") + mapdl.secdata(25, 1) + + + # read model of stiffened cylinder + # download the cdb file + ring_mesh_file = download_tech_demo_data( + "td-21", "ring_stiffened_cylinder_mesh_file.cdb" + ) + + # read in cdb + mapdl.cdread("db", ring_mesh_file) + mapdl.allsel() + mapdl.eplot(background="w") + mapdl.cmsel("all") + +.. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_000.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_000.png + :class: sphx-glr-single-img + + +.. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_001.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_001.png + :class: sphx-glr-single-img + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Product: Ansys Mechanical Enterprise + MAPDL Version: 23.1 + ansys.mapdl Version: 0.65.dev0 + + + ALSO SELECT ALL COMPONENTS + + + + +Define static prestress analysis +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Displacement boundary conditions are defined to prevent the six rigid body +motions. A total of six displacements are therefore applied to three nodes +located on the top plate at 0, 90, and 270 degrees; the nodes are restricted +so that all rigid translations and rotations are not possible for the +cylinder. + +Loading consists of a uniformly distributed external differential +pressure: :math:`P_{ext} = 0.24 MPa` + +.. code-block:: python + + + print("Begin static prestress analysis") + + mapdl.csys(1) # activate cylindrical coordinate system + + # Define pressure on plate at z=0 + mapdl.nsel("s", "loc", "z", 0) + mapdl.esln("s", 1) + mapdl.sfe("all", 2, "pres", 1, pext) + mapdl.allsel() + + # Define pressure on the rim of plate at z=0 + mapdl.nsel("s", "loc", "z", 0) + mapdl.nsel("r", "loc", "x", r - ts / 2, 760 / 2) + mapdl.esln("s", 1) + mapdl.sfe("all", 1, "pres", 1, pext) + mapdl.allsel() + + # Define pressure on plate at z=L + mapdl.nsel("s", "loc", "z", L) + mapdl.esln("s", 1) + mapdl.sfe("all", 2, "pres", 1, pext) + mapdl.allsel() + + # Define pressure on the rim of plate at z=L + mapdl.nsel("s", "loc", "z", L) + mapdl.nsel("r", "loc", "x", r - ts / 2, 760 / 2) + mapdl.esln("s", 1) + mapdl.sfe("all", 1, "pres", 1, pext) + mapdl.allsel() + + # Define pressure on cylinder + mapdl.nsel("s", "loc", "x", r - ts / 2) + mapdl.esln("s", 1) + mapdl.sfe("all", 2, "pres", 1, pext) + mapdl.allsel() + + # Define displacement BSs to avoid rigid body motion + mapdl.csys(0) # activate cartesian coordinate system + mapdl.nsel("s", "loc", "x", r - ts / 2) + mapdl.nsel("r", "loc", "y", 0) + mapdl.nsel("r", "loc", "z", 0) + mapdl.d("all", "ux", 0) + mapdl.d("all", "uy", 0) + mapdl.d("all", "uz", 0) + mapdl.allsel() + # + mapdl.nsel("s", "loc", "x", 0) + mapdl.nsel("r", "loc", "y", r - ts / 2) + mapdl.nsel("r", "loc", "z", 0) + mapdl.d("all", "uz", 0) + mapdl.allsel() + # + mapdl.nsel("s", "loc", "x", 0) + mapdl.nsel("r", "loc", "y", -(r - ts / 2)) + mapdl.nsel("r", "loc", "z", 0) + mapdl.d("all", "uy", 0) + mapdl.d("all", "uz", 0) + mapdl.allsel() + # + + # Print DOF constraints + print(mapdl.dlist()) + + # Solve static prestress analysis + mapdl.slashsolu() + mapdl.pstres("on") + mapdl.antype("STATIC") + output = mapdl.solve() + print(output) + + # Plot total deformation + mapdl.post1() + mapdl.set("last") + mapdl.post_processing.plot_nodal_displacement("NORM", smooth_shading=True) + + print("End static prestress analysis") + + + +.. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_002.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_002.png + :class: sphx-glr-single-img + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Begin static prestress analysis + LIST CONSTRAINTS FOR SELECTED NODES 1 TO 85474 BY 1 + CURRENTLY SELECTED DOF SET= UX UY UZ ROTX ROTY ROTZ + *****MAPDL VERIFICATION RUN ONLY***** + DO NOT USE RESULTS FOR PRODUCTION + + NODE LABEL REAL IMAG + 1 UX 0.00000000 0.00000000 + 1 UY 0.00000000 0.00000000 + 1 UZ 0.00000000 0.00000000 + 2 UZ 0.00000000 0.00000000 + 902 UY 0.00000000 0.00000000 + 902 UZ 0.00000000 0.00000000 + ***** MAPDL SOLVE COMMAND ***** + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + There is no title defined for this analysis. + + *** WARNING *** CP = 0.000 TIME= 00:00:00 + Section ID set 2 (and possibly others), with only 1 layer and 3 + integration points, is associated with material plasticity. The + number of integration points will be changed to 5 for improved + accuracy. + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + The model data was checked and warning messages were found. + Please review output or errors file ( ) for these warning messages. + + *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS *** + ---GIVE SUGGESTIONS ONLY--- + + ELEMENT TYPE 1 IS SHELL281. IT IS ASSOCIATED WITH ELASTOPLASTIC + MATERIALS ONLY. KEYOPT(8)=2 IS SUGGESTED. + + + *****MAPDL VERIFICATION RUN ONLY***** + DO NOT USE RESULTS FOR PRODUCTION + + S O L U T I O N O P T I O N S + + PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D + DEGREES OF FREEDOM. . . . . . UX UY UZ ROTX ROTY ROTZ + ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE) + PRESTRESS EFFECTS CALCULATED. . . . . . . . . .YES + PLASTIC MATERIAL PROPERTIES INCLUDED. . . . . .YES + NEWTON-RAPHSON OPTION . . . . . . . . . . . . .PROGRAM CHOSEN + GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + Present time 0 is less than or equal to the previous time. Time will + default to 1. + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + This nonlinear analysis defaults to using the full Newton-Raphson + solution procedure. This can be modified using the NROPT command. + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + The conditions for direct assembly have been met. No .emat or .erot + files will be produced. + + *** WARNING *** CP = 0.000 TIME= 00:00:00 + The program chosen initial timestep/load-factor is arbitrary. It is + necessary for the user to supply a suitable initial + timestep/load-factor through the NSUB or DELTIM command for + convergence and overall efficiency. + + + + D I S T R I B U T E D D O M A I N D E C O M P O S E R + + ...Number of elements: 26796 + ...Number of nodes: 73662 + ...Decompose to 0 CPU domains + ...Element load balance ratio = 0.000 + + + L O A D S T E P O P T I O N S + + LOAD STEP NUMBER. . . . . . . . . . . . . . . . 1 + TIME AT END OF THE LOAD STEP. . . . . . . . . . 1.0000 + AUTOMATIC TIME STEPPING . . . . . . . . . . . . ON + INITIAL NUMBER OF SUBSTEPS . . . . . . . . . 1 + MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . . 1000 + MINIMUM NUMBER OF SUBSTEPS . . . . . . . . . 1 + START WITH TIME STEP FROM PREVIOUS SUBSTEP . YES + MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 + STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . NO + TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT) + CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS + COPY INTEGRATION POINT VALUES TO NODE . . . . .YES, FOR ELEMENTS WITH + ACTIVE MAT. NONLINEARITIES + PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT + DATABASE OUTPUT CONTROLS. . . . . . . . . . . .ALL DATA WRITTEN + FOR THE LAST SUBSTEP + + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + Predictor is ON by default for structural elements with rotational + degrees of freedom. Use the PRED,OFF command to turn the predictor + OFF if it adversely affects the convergence. + + + Range of element maximum matrix coefficients in global coordinates + Maximum = 489978589 at element 0. + Minimum = 165335.668 at element 0. + + *** ELEMENT MATRIX FORMULATION TIMES + TYPE NUMBER ENAME TOTAL CP AVE CP + + 1 26796 SHELL281 0.000 0.000000 + Time at end of element matrix formulation CP = 0. + + ALL CURRENT MAPDL DATA WRITTEN TO FILE NAME= + FOR POSSIBLE RESUME FROM THIS POINT + FORCE CONVERGENCE VALUE = 3478. CRITERION= 17.39 + MOMENT CONVERGENCE VALUE = 0.000 CRITERION= 15.96 + + DISTRIBUTED SPARSE MATRIX DIRECT SOLVER. + Number of equations = 441966, Maximum wavefront = 0 + Memory available (MB) = 0.0 , Memory required (MB) = 0.0 + + Distributed sparse solver maximum pivot= 0 at node 0 . + Distributed sparse solver minimum pivot= 0 at node 0 . + Distributed sparse solver minimum pivot in absolute value= 0 at node 0 + . + DISP CONVERGENCE VALUE = 2.213 CRITERION= 0.1106 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -2.213 + FORCE CONVERGENCE VALUE = 0.5808E-05 CRITERION= 17.39 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.2147E-05 CRITERION= 15.96 <<< CONVERGED + + *** WARNING *** CP = 0.000 TIME= 00:00:00 + A reference moment value times the tolerance is used by the + Newton-Raphson method for checking convergence. The calculated + reference MOMENT CONVERGENCE VALUE = 0 is less than a threshold. This + threshold is internally calculated. You can overwrite it by + specifying MINREF on the CNVTOL command. Check results carefully. + DISP CONVERGENCE VALUE = 0.7695E-09 CRITERION= 0.1106 <<< CONVERGED + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = 0.7695E-09 + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 + + *** ELEMENT RESULT CALCULATION TIMES + TYPE NUMBER ENAME TOTAL CP AVE CP + + 1 26796 SHELL281 0.000 0.000000 + + *** NODAL LOAD CALCULATION TIMES + TYPE NUMBER ENAME TOTAL CP AVE CP + + 1 26796 SHELL281 0.000 0.000000 + *** LOAD STEP 1 SUBSTEP 1 COMPLETED. CUM ITER = 2 + *** TIME = 1.00000 TIME INC = 1.00000 + End static prestress analysis + + + + +Run linear buckling analysis +---------------------------- + +This preliminary analysis predicts the theoretical buckling pressure of the +ideal linear elastic structure (perfect cylinder) and the buckled mode shapes +used in the next step to generate the imperfections. +It is also an efficient way to check the completeness and +correctness of modeling. +To run the linear buckling analysis, a static solution with prestress effects +must be obtained, followed by the eigenvalue buckling solution using the +Block Lanczos method and mode expansion. + +.. code-block:: python + + + print("Begin linear buckling analysis") + + # Define and solve linear buckling analysis + mapdl.slashsolu() + mapdl.outres("all", "all") + mapdl.antype("BUCKLE") + mapdl.bucopt("lanb", "10") + mapdl.mxpand(10) + output = mapdl.solve() + print(output) + + # Plot total deformation of first and 10th mode + mapdl.post1() + mapdl.set(1, 1) + mapdl.post_processing.plot_nodal_displacement("NORM", smooth_shading=True) + mapdl.set(1, 10) + mapdl.post_processing.plot_nodal_displacement("NORM", smooth_shading=True) + + print("End linear buckling analysis") + + + +.. rst-class:: sphx-glr-horizontal + + + * + + .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_003.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_003.png + :class: sphx-glr-multi-img + + * + + .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_004.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_004.png + :class: sphx-glr-multi-img + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Begin linear buckling analysis + ***** MAPDL SOLVE COMMAND ***** + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + There is no title defined for this analysis. + + *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS *** + ---GIVE SUGGESTIONS ONLY--- + + ELEMENT TYPE 1 IS SHELL281. IT IS ASSOCIATED WITH ELASTOPLASTIC + MATERIALS ONLY. KEYOPT(8)=2 IS SUGGESTED. + + + *****MAPDL VERIFICATION RUN ONLY***** + DO NOT USE RESULTS FOR PRODUCTION + + S O L U T I O N O P T I O N S + + PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D + DEGREES OF FREEDOM. . . . . . UX UY UZ ROTX ROTY ROTZ + ANALYSIS TYPE . . . . . . . . . . . . . . . . .BUCKLING + EXTRACTION METHOD. . . . . . . . . . . . . .BLOCK LANCZOS + PRESTRESS EFFECTS INCLUDED IF AVAILABLE . . . .YES + GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + The conditions for direct assembly have been met. No .emat or .erot + files will be produced. + + L O A D S T E P O P T I O N S + + LOAD STEP NUMBER. . . . . . . . . . . . . . . . 1 + PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT + DATABASE OUTPUT CONTROLS + ITEM FREQUENCY COMPONENT + ALL ALL + + + BLOCK LANCZOS CALCULATION OF UP TO 10 EIGENVECTORS. + NUMBER OF EQUATIONS = 441966 + MAXIMUM WAVEFRONT = 0 + MAXIMUM MODES STORED = 10 + MINIMUM EIGENVALUE = -0.10000E+31 + MAXIMUM EIGENVALUE = 0.10000E+31 + CENTER EIGENVALUE = 0.00000E+00 + + *****MAPDL VERIFICATION RUN ONLY***** + DO NOT USE RESULTS FOR PRODUCTION + + ***** EIGENVALUES (LOAD MULTIPLIERS FOR BUCKLING) ***** + *** FROM BLOCK LANCZOS ITERATION *** + + SHAPE NUMBER LOAD MULTIPLIER + + 1 0.62493510 + 2 0.62493510 + 3 0.62746216 + 4 0.62748425 + 5 0.63023610 + 6 0.63025918 + 7 0.63985985 + 8 0.63985995 + 9 0.64191573 + 10 0.64191576 + End linear buckling analysis + + +Generate imperfections +---------------------- + +If a structure is perfectly symmetric, nonsymmetric buckling does not occur +numerically, and a nonlinear buckling analysis fails because +nonsymmetric buckling responses cannot be triggered. In this problem, +the geometry, elements, and pressure are all axisymmetric. +It is not possible, therefore, to simulate nonaxisymmetric buckling with +the initial model. To overcome this problem, small geometric imperfections +(similar to those caused by manufacturing a real structure) must be +introduced to trigger the buckling responses. +Because the radius of the cylinder is 355.69 mm and the maximum +displacement of a mode shape is 1 mm, a factor of 0.1 is applied when +updating the geometry with mode shapes. The factor assumes the manufacturing +tolerance of the radius to be on the order of 0.1. + +.. code-block:: python + + + print("Begin adding imperfections") + + mapdl.finish() + mapdl.prep7() + for i in range(1, 11): + mapdl.upgeom(0.1, 1, i, "buckling", "rst") # Add imperfections as a tenth of each + # mode shape + mapdl.finish() + + print("Finish adding imperfections") + + + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Begin adding imperfections + Finish adding imperfections + + + + +Run nonlinear static analysis on geometry with imperfections +------------------------------------------------------------ + +The nonlinear buckling analysis is a static analysis performed after adding +imperfections with large deflection active (NLGEOM,ON), extended to a point +where the stiffened cylinder can reach its limit load. +To perform the analysis, the load must be allowed to increase using very +small time increments so that the expected critical buckling load can +be predicted accurately. +Note - as this is a buckling analysis, divergence is expected. + + +.. code-block:: python + + + print("Begin nonlinear static analysis on imperfect geometry") + + mapdl.slashsolu() + mapdl.antype("STATIC") + mapdl.nlgeom("on") + mapdl.pred("on") + mapdl.time(1) + mapdl.nsubst(100, 10000, 10) + mapdl.rescontrol("define", "all", 1) + mapdl.outres("all", "all") + mapdl.ncnv(2) # Do not terminate the program execution if the solution diverges + mapdl.allow_ignore = True # in order for PyMAPDL to not raise an error + output = mapdl.solve() + print(output) + mapdl.finish() + + print("End nonlinear static analysis on imperfect geometry") + + + + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Begin nonlinear static analysis on imperfect geometry + ***** MAPDL SOLVE COMMAND ***** + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + There is no title defined for this analysis. + + *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS *** + ---GIVE SUGGESTIONS ONLY--- + + ELEMENT TYPE 1 IS SHELL281. IT IS ASSOCIATED WITH ELASTOPLASTIC + MATERIALS ONLY. KEYOPT(8)=2 IS SUGGESTED. + + + *****MAPDL VERIFICATION RUN ONLY***** + DO NOT USE RESULTS FOR PRODUCTION + + S O L U T I O N O P T I O N S + + PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D + DEGREES OF FREEDOM. . . . . . UX UY UZ ROTX ROTY ROTZ + ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE) + NONLINEAR GEOMETRIC EFFECTS . . . . . . . . . .ON + PLASTIC MATERIAL PROPERTIES INCLUDED. . . . . .YES + NEWTON-RAPHSON OPTION . . . . . . . . . . . . .PROGRAM CHOSEN + GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + This nonlinear analysis defaults to using the full Newton-Raphson + solution procedure. This can be modified using the NROPT command. + + *** NOTE *** CP = 0.000 TIME= 00:00:00 + The conditions for direct assembly have been met. No .emat or .erot + files will be produced. + + + + D I S T R I B U T E D D O M A I N D E C O M P O S E R + + ...Number of elements: 26796 + ...Number of nodes: 73662 + ...Decompose to 0 CPU domains + ...Element load balance ratio = 0.000 + + + L O A D S T E P O P T I O N S + + LOAD STEP NUMBER. . . . . . . . . . . . . . . . 1 + TIME AT END OF THE LOAD STEP. . . . . . . . . . 1.0000 + AUTOMATIC TIME STEPPING . . . . . . . . . . . . ON + INITIAL NUMBER OF SUBSTEPS . . . . . . . . . 100 + MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . . 10000 + MINIMUM NUMBER OF SUBSTEPS . . . . . . . . . 10 + MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 + STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . NO + STRESS-STIFFENING . . . . . . . . . . . . . . . ON + PREDICTOR USAGE . . . . . . . . . . . . . . . .ON (AFTER FIRST SUBSTEP) + TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (REMAIN) + CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS + COPY INTEGRATION POINT VALUES TO NODE . . . . .YES, FOR ELEMENTS WITH + ACTIVE MAT. NONLINEARITIES + PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT + DATABASE OUTPUT CONTROLS + ITEM FREQUENCY COMPONENT + ALL ALL + + + + Range of element maximum matrix coefficients in global coordinates + Maximum = 489978592 at element 0. + Minimum = 165328.012 at element 0. + + *** ELEMENT MATRIX FORMULATION TIMES + TYPE NUMBER ENAME TOTAL CP AVE CP + + 1 26796 SHELL281 0.000 0.000000 + Time at end of element matrix formulation CP = 0. + + ALL CURRENT MAPDL DATA WRITTEN TO FILE NAME= + FOR POSSIBLE RESUME FROM THIS POINT + FORCE CONVERGENCE VALUE = 34.78 CRITERION= 0.1739 + MOMENT CONVERGENCE VALUE = 0.1824E-05 CRITERION= 0.1596 + + DISTRIBUTED SPARSE MATRIX DIRECT SOLVER. + Number of equations = 441966, Maximum wavefront = 0 + Memory available (MB) = 0.0 , Memory required (MB) = 0.0 + + Distributed sparse solver maximum pivot= 0 at node 0 . + Distributed sparse solver minimum pivot= 0 at node 0 . + Distributed sparse solver minimum pivot in absolute value= 0 at node 0 + . + DISP CONVERGENCE VALUE = 0.2221E-01 CRITERION= 0.1110E-02 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2221E-01 + FORCE CONVERGENCE VALUE = 1.654 CRITERION= 0.1739 + MOMENT CONVERGENCE VALUE = 0.2307 CRITERION= 0.1596 + DISP CONVERGENCE VALUE = 0.2244E-03 CRITERION= 0.1111E-02 <<< CONVERGED + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2244E-03 + FORCE CONVERGENCE VALUE = 0.2717E-03 CRITERION= 0.1739 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.1623E-03 CRITERION= 0.1596 <<< CONVERGED + + *** WARNING *** CP = 0.000 TIME= 00:00:00 + A reference moment value times the tolerance is used by the + Newton-Raphson method for checking convergence. The calculated + reference MOMENT CONVERGENCE VALUE = 0 is less than a threshold. This + threshold is internally calculated. You can overwrite it by + specifying MINREF on the CNVTOL command. Check results carefully. + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 + + *** ELEMENT RESULT CALCULATION TIMES + TYPE NUMBER ENAME TOTAL CP AVE CP + + 1 26796 SHELL281 0.000 0.000000 + + *** NODAL LOAD CALCULATION TIMES + TYPE NUMBER ENAME TOTAL CP AVE CP + + 1 26796 SHELL281 0.000 0.000000 + *** LOAD STEP 1 SUBSTEP 1 COMPLETED. CUM ITER = 2 + *** TIME = 0.100000E-01 TIME INC = 0.100000E-01 + *** AUTO STEP TIME: NEXT TIME INC = 0.10000E-01 UNCHANGED + + FORCE CONVERGENCE VALUE = 3.342 CRITERION= 0.3478 + MOMENT CONVERGENCE VALUE = 0.4703 CRITERION= 0.3191 + DISP CONVERGENCE VALUE = 0.4679E-03 CRITERION= 0.1111E-02 <<< CONVERGED + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.4679E-03 + FORCE CONVERGENCE VALUE = 0.1163E-02 CRITERION= 0.3478 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.2879E-03 CRITERION= 0.3191 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 + *** LOAD STEP 1 SUBSTEP 2 COMPLETED. CUM ITER = 3 + *** TIME = 0.200000E-01 TIME INC = 0.100000E-01 + *** AUTO TIME STEP: NEXT TIME INC = 0.15000E-01 INCREASED (FACTOR = 1.5000) + + FORCE CONVERGENCE VALUE = 6.409 CRITERION= 0.6086 + MOMENT CONVERGENCE VALUE = 0.9124 CRITERION= 0.5585 + DISP CONVERGENCE VALUE = 0.9445E-03 CRITERION= 0.1667E-02 <<< CONVERGED + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.9445E-03 + FORCE CONVERGENCE VALUE = 0.4674E-02 CRITERION= 0.6086 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.6922E-03 CRITERION= 0.5585 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 + *** LOAD STEP 1 SUBSTEP 3 COMPLETED. CUM ITER = 4 + *** TIME = 0.350000E-01 TIME INC = 0.150000E-01 + *** AUTO TIME STEP: NEXT TIME INC = 0.22500E-01 INCREASED (FACTOR = 1.5000) + + FORCE CONVERGENCE VALUE = 14.89 CRITERION= 0.9998 + MOMENT CONVERGENCE VALUE = 2.142 CRITERION= 0.9175 + DISP CONVERGENCE VALUE = 0.2356E-02 CRITERION= 0.2502E-02 <<< CONVERGED + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2356E-02 + FORCE CONVERGENCE VALUE = 0.2851E-01 CRITERION= 0.9998 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.3006E-02 CRITERION= 0.9175 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 + *** LOAD STEP 1 SUBSTEP 4 COMPLETED. CUM ITER = 5 + *** TIME = 0.575000E-01 TIME INC = 0.225000E-01 + *** AUTO TIME STEP: NEXT TIME INC = 0.33750E-01 INCREASED (FACTOR = 1.5000) + + FORCE CONVERGENCE VALUE = 35.48 CRITERION= 1.587 + MOMENT CONVERGENCE VALUE = 5.147 CRITERION= 1.456 + DISP CONVERGENCE VALUE = 0.6229E-02 CRITERION= 0.3757E-02 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6229E-02 + FORCE CONVERGENCE VALUE = 0.1940 CRITERION= 1.587 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.1811E-01 CRITERION= 1.456 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.2802E-04 CRITERION= 0.3757E-02 <<< CONVERGED + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = -0.2802E-04 + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 + *** LOAD STEP 1 SUBSTEP 5 COMPLETED. CUM ITER = 7 + *** TIME = 0.912500E-01 TIME INC = 0.337500E-01 + *** AUTO TIME STEP: NEXT TIME INC = 0.50625E-01 INCREASED (FACTOR = 1.5000) + + FORCE CONVERGENCE VALUE = 88.92 CRITERION= 2.467 + MOMENT CONVERGENCE VALUE = 12.81 CRITERION= 2.264 + DISP CONVERGENCE VALUE = 0.1802E-01 CRITERION= 0.5646E-02 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1802E-01 + FORCE CONVERGENCE VALUE = 1.576 CRITERION= 2.467 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.1360 CRITERION= 2.264 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.2509E-03 CRITERION= 0.5646E-02 <<< CONVERGED + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = -0.2509E-03 + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 + *** LOAD STEP 1 SUBSTEP 6 COMPLETED. CUM ITER = 9 + *** TIME = 0.141875 TIME INC = 0.506250E-01 + *** AUTO TIME STEP: NEXT TIME INC = 0.75938E-01 INCREASED (FACTOR = 1.5000) + + FORCE CONVERGENCE VALUE = 252.2 CRITERION= 3.787 + MOMENT CONVERGENCE VALUE = 33.74 CRITERION= 3.475 + DISP CONVERGENCE VALUE = 0.6000E-01 CRITERION= 0.1142E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6000E-01 + FORCE CONVERGENCE VALUE = 17.33 CRITERION= 3.787 + MOMENT CONVERGENCE VALUE = 1.320 CRITERION= 3.475 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.2965E-02 CRITERION= 0.1157E-01 <<< CONVERGED + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2965E-02 + FORCE CONVERGENCE VALUE = 0.3051E-01 CRITERION= 3.787 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.9014E-02 CRITERION= 3.475 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 + *** LOAD STEP 1 SUBSTEP 7 COMPLETED. CUM ITER = 11 + *** TIME = 0.217813 TIME INC = 0.759375E-01 + *** AUTO TIME STEP: NEXT TIME INC = 0.10000 INCREASED (FACTOR = 1.3169) + + FORCE CONVERGENCE VALUE = 781.3 CRITERION= 5.525 + MOMENT CONVERGENCE VALUE = 79.26 CRITERION= 5.071 + DISP CONVERGENCE VALUE = 0.1687 CRITERION= 0.2356E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1687 + FORCE CONVERGENCE VALUE = 177.9 CRITERION= 5.526 + MOMENT CONVERGENCE VALUE = 11.17 CRITERION= 5.071 + DISP CONVERGENCE VALUE = 0.2494E-01 CRITERION= 0.2481E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2494E-01 + FORCE CONVERGENCE VALUE = 3.277 CRITERION= 5.526 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.3322 CRITERION= 5.071 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.8120E-03 CRITERION= 0.2484E-01 <<< CONVERGED + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = -0.8120E-03 + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 3 + *** LOAD STEP 1 SUBSTEP 8 COMPLETED. CUM ITER = 14 + *** TIME = 0.317813 TIME INC = 0.100000 + *** AUTO STEP TIME: NEXT TIME INC = 0.10000 UNCHANGED + + FORCE CONVERGENCE VALUE = 2522. CRITERION= 7.264 + MOMENT CONVERGENCE VALUE = 157.6 CRITERION= 6.666 + DISP CONVERGENCE VALUE = 0.3201 CRITERION= 0.3187E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3201 + FORCE CONVERGENCE VALUE = 802.8 CRITERION= 7.265 + MOMENT CONVERGENCE VALUE = 48.60 CRITERION= 6.667 + DISP CONVERGENCE VALUE = 0.1286 CRITERION= 0.3533E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1286 + FORCE CONVERGENCE VALUE = 71.58 CRITERION= 7.265 + MOMENT CONVERGENCE VALUE = 5.723 CRITERION= 6.667 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.4113E-01 CRITERION= 0.3557E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4113E-01 + FORCE CONVERGENCE VALUE = 4.570 CRITERION= 7.265 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.3269 CRITERION= 6.667 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1397E-02 CRITERION= 0.3557E-01 <<< CONVERGED + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = 0.1397E-02 + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 4 + *** LOAD STEP 1 SUBSTEP 9 COMPLETED. CUM ITER = 18 + *** TIME = 0.417813 TIME INC = 0.100000 + *** AUTO STEP TIME: NEXT TIME INC = 0.10000 UNCHANGED + + FORCE CONVERGENCE VALUE = 9178. CRITERION= 9.006 + MOMENT CONVERGENCE VALUE = 777.1 CRITERION= 8.264 + DISP CONVERGENCE VALUE = 0.8389 CRITERION= 0.6052E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.8389 + FORCE CONVERGENCE VALUE = 3620. CRITERION= 9.008 + MOMENT CONVERGENCE VALUE = 267.5 CRITERION= 8.266 + DISP CONVERGENCE VALUE = 0.6188 CRITERION= 0.7166E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6188 + FORCE CONVERGENCE VALUE = 1032. CRITERION= 9.010 + MOMENT CONVERGENCE VALUE = 89.59 CRITERION= 8.268 + DISP CONVERGENCE VALUE = 1.023 CRITERION= 0.9582E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -1.023 + FORCE CONVERGENCE VALUE = 3337. CRITERION= 9.011 + MOMENT CONVERGENCE VALUE = 313.5 CRITERION= 8.269 + DISP CONVERGENCE VALUE = 0.1755 CRITERION= 0.9586E-01 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1755 + FORCE CONVERGENCE VALUE = 142.2 CRITERION= 9.011 + MOMENT CONVERGENCE VALUE = 44.23 CRITERION= 8.270 + DISP CONVERGENCE VALUE = 0.3050 CRITERION= 0.9623E-01 + EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3050 + FORCE CONVERGENCE VALUE = 246.8 CRITERION= 9.012 + MOMENT CONVERGENCE VALUE = 18.13 CRITERION= 8.270 + DISP CONVERGENCE VALUE = 0.2704 CRITERION= 0.9628E-01 + EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2704 + FORCE CONVERGENCE VALUE = 243.5 CRITERION= 9.012 + MOMENT CONVERGENCE VALUE = 17.49 CRITERION= 8.270 + DISP CONVERGENCE VALUE = 0.9261 CRITERION= 0.9628E-01 + EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.9261 + FORCE CONVERGENCE VALUE = 2146. CRITERION= 10.59 + MOMENT CONVERGENCE VALUE = 238.1 CRITERION= 9.720 + >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 8 + *** LOAD STEP 1 SUBSTEP 10 NOT COMPLETED. CUM ITER = 26 + *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.45000E-01 + + FORCE CONVERGENCE VALUE = 2995. CRITERION= 8.048 + MOMENT CONVERGENCE VALUE = 194.5 CRITERION= 7.386 + DISP CONVERGENCE VALUE = 0.3766 CRITERION= 0.3557E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3766 + FORCE CONVERGENCE VALUE = 496.4 CRITERION= 8.049 + MOMENT CONVERGENCE VALUE = 33.11 CRITERION= 7.386 + DISP CONVERGENCE VALUE = 0.1569 CRITERION= 0.3743E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1569 + FORCE CONVERGENCE VALUE = 105.3 CRITERION= 8.050 + MOMENT CONVERGENCE VALUE = 7.260 CRITERION= 7.387 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.6500E-01 CRITERION= 0.3929E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6500E-01 + FORCE CONVERGENCE VALUE = 16.99 CRITERION= 8.050 + MOMENT CONVERGENCE VALUE = 1.221 CRITERION= 7.387 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1541E-01 CRITERION= 0.3939E-01 <<< CONVERGED + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1541E-01 + FORCE CONVERGENCE VALUE = 0.8279 CRITERION= 8.050 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.1052 CRITERION= 7.387 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 4 + *** LOAD STEP 1 SUBSTEP 10 COMPLETED. CUM ITER = 29 + *** TIME = 0.462813 TIME INC = 0.450000E-01 + *** AUTO STEP TIME: NEXT TIME INC = 0.45000E-01 UNCHANGED + + FORCE CONVERGENCE VALUE = 5962. CRITERION= 8.835 + MOMENT CONVERGENCE VALUE = 543.9 CRITERION= 8.107 + DISP CONVERGENCE VALUE = 0.6835 CRITERION= 0.5040E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6835 + FORCE CONVERGENCE VALUE = 1134. CRITERION= 8.835 + MOMENT CONVERGENCE VALUE = 90.52 CRITERION= 8.108 + DISP CONVERGENCE VALUE = 0.5647 CRITERION= 0.6684E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.5647 + FORCE CONVERGENCE VALUE = 1111. CRITERION= 8.836 + MOMENT CONVERGENCE VALUE = 74.43 CRITERION= 8.109 + DISP CONVERGENCE VALUE = 0.1671 CRITERION= 0.7284E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1671 + FORCE CONVERGENCE VALUE = 105.0 CRITERION= 8.836 + MOMENT CONVERGENCE VALUE = 9.946 CRITERION= 8.109 + DISP CONVERGENCE VALUE = 0.7323E-01 CRITERION= 0.7417E-01 <<< CONVERGED + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.7323E-01 + FORCE CONVERGENCE VALUE = 22.34 CRITERION= 8.836 + MOMENT CONVERGENCE VALUE = 1.546 CRITERION= 8.109 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.4771E-02 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4771E-02 + FORCE CONVERGENCE VALUE = 0.1063 CRITERION= 8.836 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.1221 CRITERION= 8.109 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 5 + *** LOAD STEP 1 SUBSTEP 11 COMPLETED. CUM ITER = 34 + *** TIME = 0.507812 TIME INC = 0.450000E-01 + *** AUTO TIME STEP: NEXT TIME INC = 0.67500E-01 INCREASED (FACTOR = 1.5000) + + FORCE CONVERGENCE VALUE = 0.3334E+05 CRITERION= 10.02 + MOMENT CONVERGENCE VALUE = 7795. CRITERION= 9.195 + DISP CONVERGENCE VALUE = 1.683 CRITERION= 0.8513E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 1.683 + FORCE CONVERGENCE VALUE = 0.3672E+05 CRITERION= 10.02 + MOMENT CONVERGENCE VALUE = 0.1468E+05 CRITERION= 9.198 + DISP CONVERGENCE VALUE = 7.150 CRITERION= 0.2864 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 7.150 + FORCE CONVERGENCE VALUE = 0.1337E+06 CRITERION= 10.09 + MOMENT CONVERGENCE VALUE = 0.6255E+06 CRITERION= 9.261 + DISP CONVERGENCE VALUE = 380.7 CRITERION= 18.90 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -380.7 + FORCE CONVERGENCE VALUE = 0.4605E+07 CRITERION= 84.79 + MOMENT CONVERGENCE VALUE = 0.2265E+08 CRITERION= 77.81 + DISP CONVERGENCE VALUE = 0.1374E+05 CRITERION= 703.1 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1374E+05 + + *** ERROR *** CP = 0.000 TIME= 00:00:00 + Element 17426 has excessive thickness change. + + *** ERROR *** CP = 0.000 TIME= 00:00:00 + Element 2517 has excessive thickness change. + *** LOAD STEP 1 SUBSTEP 12 NOT COMPLETED. CUM ITER = 39 + *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.23625E-01 + + FORCE CONVERGENCE VALUE = 7739. CRITERION= 9.250 + MOMENT CONVERGENCE VALUE = 1071. CRITERION= 8.489 + DISP CONVERGENCE VALUE = 0.3148 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3148 + FORCE CONVERGENCE VALUE = 521.2 CRITERION= 9.250 + MOMENT CONVERGENCE VALUE = 168.1 CRITERION= 8.489 + DISP CONVERGENCE VALUE = 3.185 CRITERION= 0.1758 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 3.185 + FORCE CONVERGENCE VALUE = 0.1925E+05 CRITERION= 9.252 + MOMENT CONVERGENCE VALUE = 6530. CRITERION= 8.490 + DISP CONVERGENCE VALUE = 2.477 CRITERION= 0.1758 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 2.477 + FORCE CONVERGENCE VALUE = 0.2903E+05 CRITERION= 9.255 + MOMENT CONVERGENCE VALUE = 0.3408E+05 CRITERION= 8.493 + DISP CONVERGENCE VALUE = 9.697 CRITERION= 0.5765 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 9.697 + FORCE CONVERGENCE VALUE = 0.5777E+06 CRITERION= 9.488 + MOMENT CONVERGENCE VALUE = 0.2332E+07 CRITERION= 8.707 + >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 5 + *** LOAD STEP 1 SUBSTEP 12 NOT COMPLETED. CUM ITER = 43 + *** BEGIN BISECTION NUMBER 2 NEW TIME INCREMENT= 0.10631E-01 + + FORCE CONVERGENCE VALUE = 2830. CRITERION= 9.023 + MOMENT CONVERGENCE VALUE = 316.6 CRITERION= 8.280 + DISP CONVERGENCE VALUE = 0.1987 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1987 + FORCE CONVERGENCE VALUE = 150.4 CRITERION= 9.023 + MOMENT CONVERGENCE VALUE = 40.22 CRITERION= 8.280 + DISP CONVERGENCE VALUE = 0.2897 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2897 + FORCE CONVERGENCE VALUE = 259.6 CRITERION= 9.023 + MOMENT CONVERGENCE VALUE = 18.92 CRITERION= 8.280 + DISP CONVERGENCE VALUE = 0.4809 CRITERION= 0.7422E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4809 + FORCE CONVERGENCE VALUE = 690.2 CRITERION= 9.023 + MOMENT CONVERGENCE VALUE = 46.30 CRITERION= 8.280 + DISP CONVERGENCE VALUE = 1.755 CRITERION= 0.1271 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 1.755 + FORCE CONVERGENCE VALUE = 6684. CRITERION= 9.024 + MOMENT CONVERGENCE VALUE = 973.2 CRITERION= 8.281 + >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 5 + *** LOAD STEP 1 SUBSTEP 12 NOT COMPLETED. CUM ITER = 47 + *** BEGIN BISECTION NUMBER 3 NEW TIME INCREMENT= 0.47841E-02 + + FORCE CONVERGENCE VALUE = 1140. CRITERION= 8.920 + MOMENT CONVERGENCE VALUE = 114.9 CRITERION= 8.186 + DISP CONVERGENCE VALUE = 0.1121 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1121 + FORCE CONVERGENCE VALUE = 42.68 CRITERION= 8.920 + MOMENT CONVERGENCE VALUE = 8.289 CRITERION= 8.186 + DISP CONVERGENCE VALUE = 0.7531E-01 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.7531E-01 + FORCE CONVERGENCE VALUE = 16.17 CRITERION= 8.920 + MOMENT CONVERGENCE VALUE = 1.451 CRITERION= 8.186 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1739E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1739E-01 + FORCE CONVERGENCE VALUE = 1.085 CRITERION= 8.920 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.2552 CRITERION= 8.186 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 3 + *** LOAD STEP 1 SUBSTEP 12 COMPLETED. CUM ITER = 49 + *** TIME = 0.512597 TIME INC = 0.478406E-02 + *** AUTO STEP TIME: NEXT TIME INC = 0.47841E-02 UNCHANGED + + FORCE CONVERGENCE VALUE = 437.0 CRITERION= 9.004 + MOMENT CONVERGENCE VALUE = 32.47 CRITERION= 8.263 + DISP CONVERGENCE VALUE = 0.1258 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1258 + FORCE CONVERGENCE VALUE = 56.91 CRITERION= 9.004 + MOMENT CONVERGENCE VALUE = 5.574 CRITERION= 8.263 <<< CONVERGED + DISP CONVERGENCE VALUE = 1.113 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -1.113 + FORCE CONVERGENCE VALUE = 4126. CRITERION= 9.004 + MOMENT CONVERGENCE VALUE = 575.1 CRITERION= 8.263 + DISP CONVERGENCE VALUE = 0.3482 CRITERION= 0.7422E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3482 + FORCE CONVERGENCE VALUE = 202.8 CRITERION= 9.004 + MOMENT CONVERGENCE VALUE = 90.86 CRITERION= 8.262 + DISP CONVERGENCE VALUE = 0.3248 CRITERION= 0.7422E-01 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.3248 + FORCE CONVERGENCE VALUE = 703.1 CRITERION= 9.004 + MOMENT CONVERGENCE VALUE = 63.27 CRITERION= 8.262 + DISP CONVERGENCE VALUE = 0.1437 CRITERION= 0.7422E-01 + EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1437 + FORCE CONVERGENCE VALUE = 67.13 CRITERION= 9.004 + MOMENT CONVERGENCE VALUE = 12.22 CRITERION= 8.263 + DISP CONVERGENCE VALUE = 0.2515 CRITERION= 0.7422E-01 + EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2515 + FORCE CONVERGENCE VALUE = 225.4 CRITERION= 9.004 + MOMENT CONVERGENCE VALUE = 17.31 CRITERION= 8.263 + DISP CONVERGENCE VALUE = 0.1216 CRITERION= 0.7422E-01 + EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1216 + FORCE CONVERGENCE VALUE = 57.19 CRITERION= 10.58 + MOMENT CONVERGENCE VALUE = 5.638 CRITERION= 9.712 <<< CONVERGED + DISP CONVERGENCE VALUE = 1.048 CRITERION= 0.7422E-01 + EQUIL ITER 8 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 1.048 + FORCE CONVERGENCE VALUE = 4350. CRITERION= 10.80 + MOMENT CONVERGENCE VALUE = 481.8 CRITERION= 9.911 + >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 9 + *** LOAD STEP 1 SUBSTEP 13 NOT COMPLETED. CUM ITER = 58 + *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.21528E-02 + + FORCE CONVERGENCE VALUE = 143.3 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 9.974 CRITERION= 8.220 + DISP CONVERGENCE VALUE = 0.4821E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4821E-01 + FORCE CONVERGENCE VALUE = 10.86 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 1.356 CRITERION= 8.220 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.7755E-01 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.7755E-01 + FORCE CONVERGENCE VALUE = 22.42 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 1.937 CRITERION= 8.221 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.5666E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.5666E-01 + FORCE CONVERGENCE VALUE = 13.12 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 1.281 CRITERION= 8.221 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1207 CRITERION= 0.7422E-01 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1207 + FORCE CONVERGENCE VALUE = 55.45 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 4.396 CRITERION= 8.221 <<< CONVERGED + >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 5 + *** LOAD STEP 1 SUBSTEP 13 NOT COMPLETED. CUM ITER = 62 + *** BEGIN BISECTION NUMBER 2 NEW TIME INCREMENT= 0.96877E-03 + + FORCE CONVERGENCE VALUE = 54.02 CRITERION= 8.937 + MOMENT CONVERGENCE VALUE = 3.686 CRITERION= 8.201 + DISP CONVERGENCE VALUE = 0.2413E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2413E-01 + FORCE CONVERGENCE VALUE = 2.383 CRITERION= 8.937 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.4496 CRITERION= 8.201 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 + *** LOAD STEP 1 SUBSTEP 13 COMPLETED. CUM ITER = 62 + *** TIME = 0.513565 TIME INC = 0.968773E-03 + *** AUTO STEP TIME: NEXT TIME INC = 0.96877E-03 UNCHANGED + + FORCE CONVERGENCE VALUE = 39.63 CRITERION= 8.954 + MOMENT CONVERGENCE VALUE = 2.841 CRITERION= 8.217 + DISP CONVERGENCE VALUE = 0.3882E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3882E-01 + FORCE CONVERGENCE VALUE = 6.308 CRITERION= 8.954 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.7885 CRITERION= 8.217 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 + *** LOAD STEP 1 SUBSTEP 14 COMPLETED. CUM ITER = 63 + *** TIME = 0.514534 TIME INC = 0.968773E-03 + *** AUTO TIME STEP: NEXT TIME INC = 0.14532E-02 INCREASED (FACTOR = 1.5000) + + FORCE CONVERGENCE VALUE = 177.7 CRITERION= 8.980 + MOMENT CONVERGENCE VALUE = 13.17 CRITERION= 8.240 + DISP CONVERGENCE VALUE = 0.3462 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3462 + FORCE CONVERGENCE VALUE = 348.9 CRITERION= 8.980 + MOMENT CONVERGENCE VALUE = 22.75 CRITERION= 8.241 + DISP CONVERGENCE VALUE = 1.482 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -1.482 + FORCE CONVERGENCE VALUE = 5235. CRITERION= 8.980 + MOMENT CONVERGENCE VALUE = 761.6 CRITERION= 8.240 + DISP CONVERGENCE VALUE = 0.3994 CRITERION= 0.7422E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3994 + FORCE CONVERGENCE VALUE = 250.6 CRITERION= 8.979 + MOMENT CONVERGENCE VALUE = 109.2 CRITERION= 8.240 + DISP CONVERGENCE VALUE = 0.2678 CRITERION= 0.7422E-01 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2678 + FORCE CONVERGENCE VALUE = 374.0 CRITERION= 8.979 + MOMENT CONVERGENCE VALUE = 40.17 CRITERION= 8.240 + DISP CONVERGENCE VALUE = 0.1573 CRITERION= 0.7422E-01 + EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1573 + FORCE CONVERGENCE VALUE = 85.54 CRITERION= 8.980 + MOMENT CONVERGENCE VALUE = 11.95 CRITERION= 8.240 + DISP CONVERGENCE VALUE = 0.1360 CRITERION= 0.7422E-01 + EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1360 + FORCE CONVERGENCE VALUE = 86.90 CRITERION= 8.980 + MOMENT CONVERGENCE VALUE = 7.445 CRITERION= 8.240 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1102 CRITERION= 0.7422E-01 + EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1102 + FORCE CONVERGENCE VALUE = 53.46 CRITERION= 10.55 + MOMENT CONVERGENCE VALUE = 4.531 CRITERION= 9.686 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.2589 CRITERION= 0.7422E-01 + EQUIL ITER 8 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2589 + FORCE CONVERGENCE VALUE = 268.2 CRITERION= 10.77 + MOMENT CONVERGENCE VALUE = 19.45 CRITERION= 9.884 + >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 9 + *** LOAD STEP 1 SUBSTEP 15 NOT COMPLETED. CUM ITER = 72 + *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.65392E-03 + + FORCE CONVERGENCE VALUE = 58.54 CRITERION= 8.966 + MOMENT CONVERGENCE VALUE = 4.289 CRITERION= 8.228 + DISP CONVERGENCE VALUE = 0.1294 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1294 + FORCE CONVERGENCE VALUE = 61.77 CRITERION= 8.966 + MOMENT CONVERGENCE VALUE = 4.735 CRITERION= 8.228 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.2145 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2145 + FORCE CONVERGENCE VALUE = 143.2 CRITERION= 8.966 + MOMENT CONVERGENCE VALUE = 10.70 CRITERION= 8.228 + DISP CONVERGENCE VALUE = 0.6552E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6552E-01 + FORCE CONVERGENCE VALUE = 10.25 CRITERION= 8.966 + MOMENT CONVERGENCE VALUE = 1.454 CRITERION= 8.228 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.2108 CRITERION= 0.7422E-01 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2108 + FORCE CONVERGENCE VALUE = 196.7 CRITERION= 8.966 + MOMENT CONVERGENCE VALUE = 14.50 CRITERION= 8.228 + >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 5 + *** LOAD STEP 1 SUBSTEP 15 NOT COMPLETED. CUM ITER = 76 + *** BEGIN BISECTION NUMBER 2 NEW TIME INCREMENT= 0.29426E-03 + + FORCE CONVERGENCE VALUE = 24.66 CRITERION= 8.959 + MOMENT CONVERGENCE VALUE = 1.900 CRITERION= 8.222 + DISP CONVERGENCE VALUE = 0.6161E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6161E-01 + FORCE CONVERGENCE VALUE = 16.81 CRITERION= 8.959 + MOMENT CONVERGENCE VALUE = 1.550 CRITERION= 8.222 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.3000 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.3000 + FORCE CONVERGENCE VALUE = 345.4 CRITERION= 8.959 + MOMENT CONVERGENCE VALUE = 28.45 CRITERION= 8.222 + DISP CONVERGENCE VALUE = 0.9271E-01 CRITERION= 0.7422E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.9271E-01 + FORCE CONVERGENCE VALUE = 21.13 CRITERION= 8.959 + MOMENT CONVERGENCE VALUE = 3.953 CRITERION= 8.222 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1182 CRITERION= 0.7422E-01 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1182 + FORCE CONVERGENCE VALUE = 53.95 CRITERION= 8.959 + MOMENT CONVERGENCE VALUE = 4.324 CRITERION= 8.222 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.5180E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.5180E-01 + FORCE CONVERGENCE VALUE = 10.69 CRITERION= 8.959 + MOMENT CONVERGENCE VALUE = 1.181 CRITERION= 8.222 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.7971E-01 CRITERION= 0.7422E-01 + EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.7971E-01 + FORCE CONVERGENCE VALUE = 27.32 CRITERION= 8.959 + MOMENT CONVERGENCE VALUE = 2.305 CRITERION= 8.222 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.2621 CRITERION= 0.7422E-01 + EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2621 + FORCE CONVERGENCE VALUE = 255.6 CRITERION= 10.53 + MOMENT CONVERGENCE VALUE = 20.50 CRITERION= 9.664 + >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 8 + *** LOAD STEP 1 SUBSTEP 15 NOT COMPLETED. CUM ITER = 83 + *** BEGIN BISECTION NUMBER 3 NEW TIME INCREMENT= 0.10000E-03 + + FORCE CONVERGENCE VALUE = 11.54 CRITERION= 8.956 + MOMENT CONVERGENCE VALUE = 1.060 CRITERION= 8.219 + DISP CONVERGENCE VALUE = 0.4012E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4012E-01 + FORCE CONVERGENCE VALUE = 6.714 CRITERION= 8.956 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.7801 CRITERION= 8.219 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 + *** LOAD STEP 1 SUBSTEP 15 COMPLETED. CUM ITER = 83 + *** TIME = 0.514634 TIME INC = 0.100000E-03 + *** AUTO STEP TIME: NEXT TIME INC = 0.10000E-03 UNCHANGED + + FORCE CONVERGENCE VALUE = 28.39 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 2.158 CRITERION= 8.220 + DISP CONVERGENCE VALUE = 0.5154 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.5154 + FORCE CONVERGENCE VALUE = 996.2 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 93.89 CRITERION= 8.220 + DISP CONVERGENCE VALUE = 0.1513 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1513 + FORCE CONVERGENCE VALUE = 46.69 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 14.29 CRITERION= 8.220 + DISP CONVERGENCE VALUE = 0.1749 CRITERION= 0.7422E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1749 + FORCE CONVERGENCE VALUE = 129.2 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 10.61 CRITERION= 8.220 + DISP CONVERGENCE VALUE = 0.6899E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6899E-01 + FORCE CONVERGENCE VALUE = 19.35 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 2.207 CRITERION= 8.220 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.8524E-01 CRITERION= 0.7422E-01 + EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.8524E-01 + FORCE CONVERGENCE VALUE = 27.44 CRITERION= 8.958 + MOMENT CONVERGENCE VALUE = 2.327 CRITERION= 8.220 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.4444E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4444E-01 + FORCE CONVERGENCE VALUE = 8.756 CRITERION= 8.958 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.9666 CRITERION= 8.220 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 6 + *** LOAD STEP 1 SUBSTEP 16 COMPLETED. CUM ITER = 89 + *** TIME = 0.514734 TIME INC = 0.100000E-03 + *** AUTO STEP TIME: NEXT TIME INC = 0.10000E-03 UNCHANGED + + FORCE CONVERGENCE VALUE = 10.90 CRITERION= 8.960 + MOMENT CONVERGENCE VALUE = 1.171 CRITERION= 8.222 + DISP CONVERGENCE VALUE = 0.1377 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1377 + FORCE CONVERGENCE VALUE = 82.42 CRITERION= 8.960 + MOMENT CONVERGENCE VALUE = 6.212 CRITERION= 8.222 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.2067 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2067 + FORCE CONVERGENCE VALUE = 135.0 CRITERION= 8.960 + MOMENT CONVERGENCE VALUE = 10.00 CRITERION= 8.222 + DISP CONVERGENCE VALUE = 0.4928E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4928E-01 + FORCE CONVERGENCE VALUE = 5.373 CRITERION= 8.960 <<< CONVERGED + MOMENT CONVERGENCE VALUE = 0.8629 CRITERION= 8.222 <<< CONVERGED + >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 3 + *** LOAD STEP 1 SUBSTEP 17 COMPLETED. CUM ITER = 92 + *** TIME = 0.514834 TIME INC = 0.100000E-03 + *** AUTO TIME STEP: NEXT TIME INC = 0.15000E-03 INCREASED (FACTOR = 1.5000) + + FORCE CONVERGENCE VALUE = 13.64 CRITERION= 8.962 + MOMENT CONVERGENCE VALUE = 2.192 CRITERION= 8.224 + DISP CONVERGENCE VALUE = 0.1057 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1057 + FORCE CONVERGENCE VALUE = 46.42 CRITERION= 8.962 + MOMENT CONVERGENCE VALUE = 3.675 CRITERION= 8.224 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.9430 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.9430 + FORCE CONVERGENCE VALUE = 3204. CRITERION= 8.962 + MOMENT CONVERGENCE VALUE = 398.8 CRITERION= 8.224 + DISP CONVERGENCE VALUE = 0.2859 CRITERION= 0.7422E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2859 + FORCE CONVERGENCE VALUE = 146.8 CRITERION= 8.962 + MOMENT CONVERGENCE VALUE = 61.78 CRITERION= 8.224 + DISP CONVERGENCE VALUE = 0.2422 CRITERION= 0.7422E-01 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2422 + FORCE CONVERGENCE VALUE = 455.6 CRITERION= 8.962 + MOMENT CONVERGENCE VALUE = 40.41 CRITERION= 8.224 + DISP CONVERGENCE VALUE = 0.1148 CRITERION= 0.7422E-01 + EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1148 + FORCE CONVERGENCE VALUE = 49.29 CRITERION= 8.962 + MOMENT CONVERGENCE VALUE = 7.475 CRITERION= 8.224 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1648 CRITERION= 0.7422E-01 + EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1648 + FORCE CONVERGENCE VALUE = 96.52 CRITERION= 8.962 + MOMENT CONVERGENCE VALUE = 7.504 CRITERION= 8.224 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.6973E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6973E-01 + FORCE CONVERGENCE VALUE = 21.02 CRITERION= 10.53 + MOMENT CONVERGENCE VALUE = 2.113 CRITERION= 9.667 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.9208E-01 CRITERION= 0.7422E-01 + EQUIL ITER 8 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.9208E-01 + FORCE CONVERGENCE VALUE = 32.98 CRITERION= 10.75 + MOMENT CONVERGENCE VALUE = 2.723 CRITERION= 9.864 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1312 CRITERION= 0.7422E-01 + EQUIL ITER 9 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1312 + FORCE CONVERGENCE VALUE = 67.80 CRITERION= 10.97 + MOMENT CONVERGENCE VALUE = 5.182 CRITERION= 10.07 <<< CONVERGED + >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 10 + *** LOAD STEP 1 SUBSTEP 18 NOT COMPLETED. CUM ITER = 102 + *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.10000E-03 + + FORCE CONVERGENCE VALUE = 10.10 CRITERION= 8.961 + MOMENT CONVERGENCE VALUE = 1.683 CRITERION= 8.223 + DISP CONVERGENCE VALUE = 0.1036 CRITERION= 0.7422E-01 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1036 + FORCE CONVERGENCE VALUE = 44.92 CRITERION= 8.961 + MOMENT CONVERGENCE VALUE = 3.556 CRITERION= 8.224 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.3994 CRITERION= 0.7422E-01 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.3994 + FORCE CONVERGENCE VALUE = 577.0 CRITERION= 8.961 + MOMENT CONVERGENCE VALUE = 49.52 CRITERION= 8.223 + DISP CONVERGENCE VALUE = 0.1151 CRITERION= 0.7422E-01 + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1151 + FORCE CONVERGENCE VALUE = 28.35 CRITERION= 8.961 + MOMENT CONVERGENCE VALUE = 6.978 CRITERION= 8.223 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1348 CRITERION= 0.7422E-01 + EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1348 + FORCE CONVERGENCE VALUE = 74.52 CRITERION= 8.961 + MOMENT CONVERGENCE VALUE = 6.026 CRITERION= 8.223 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.6109E-01 CRITERION= 0.7422E-01 <<< CONVERGED + EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6109E-01 + FORCE CONVERGENCE VALUE = 14.38 CRITERION= 8.961 + MOMENT CONVERGENCE VALUE = 1.547 CRITERION= 8.223 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.8651E-01 CRITERION= 0.7422E-01 + EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.8651E-01 + FORCE CONVERGENCE VALUE = 31.28 CRITERION= 8.961 + MOMENT CONVERGENCE VALUE = 2.604 CRITERION= 8.223 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.9241 CRITERION= 0.7422E-01 + EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.9241 + FORCE CONVERGENCE VALUE = 3187. CRITERION= 10.53 + MOMENT CONVERGENCE VALUE = 317.2 CRITERION= 9.666 + DISP CONVERGENCE VALUE = 0.3616 CRITERION= 0.7422E-01 + EQUIL ITER 8 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3616 + FORCE CONVERGENCE VALUE = 279.6 CRITERION= 10.75 + MOMENT CONVERGENCE VALUE = 45.13 CRITERION= 9.864 + DISP CONVERGENCE VALUE = 1.388 CRITERION= 0.1293 + EQUIL ITER 9 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 1.388 + FORCE CONVERGENCE VALUE = 6388. CRITERION= 10.97 + MOMENT CONVERGENCE VALUE = 901.9 CRITERION= 10.07 + DISP CONVERGENCE VALUE = 0.2434 CRITERION= 0.1293 + EQUIL ITER 10 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2434 + FORCE CONVERGENCE VALUE = 397.3 CRITERION= 11.19 + MOMENT CONVERGENCE VALUE = 150.2 CRITERION= 10.27 + DISP CONVERGENCE VALUE = 0.8643 CRITERION= 0.1293 + EQUIL ITER 11 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.8643 + FORCE CONVERGENCE VALUE = 1849. CRITERION= 11.42 + MOMENT CONVERGENCE VALUE = 175.5 CRITERION= 10.48 + DISP CONVERGENCE VALUE = 0.1396 CRITERION= 0.1293 + EQUIL ITER 12 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1396 + FORCE CONVERGENCE VALUE = 84.71 CRITERION= 11.66 + MOMENT CONVERGENCE VALUE = 32.81 CRITERION= 10.70 + DISP CONVERGENCE VALUE = 0.2072 CRITERION= 0.1293 + EQUIL ITER 13 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2072 + FORCE CONVERGENCE VALUE = 103.4 CRITERION= 11.89 + MOMENT CONVERGENCE VALUE = 8.223 CRITERION= 10.91 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.1151 CRITERION= 0.1293 <<< CONVERGED + EQUIL ITER 14 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1151 + FORCE CONVERGENCE VALUE = 29.64 CRITERION= 12.14 + MOMENT CONVERGENCE VALUE = 2.837 CRITERION= 11.14 <<< CONVERGED + DISP CONVERGENCE VALUE = 0.7430E-01 CRITERION= 0.1293 <<< CONVERGED + EQUIL ITER 15 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.7430E-01 + FORCE CONVERGENCE VALUE = 12.61 CRITERION= 12.38 + MOMENT CONVERGENCE VALUE = 1.019 CRITERION= 11.36 <<< CONVERGED + + *** WARNING *** CP = 0.000 TIME= 00:00:00 + Solution not converged at time 0.514934108 (load step 1 substep 18). + Run continued at user request. + *** LOAD STEP 1 SUBSTEP 18 COMPLETED. CUM ITER = 116 + *** TIME = 0.514934 TIME INC = 0.100000E-03 + *** MAX PLASTIC STRAIN STEP = 0.1223E-04 CRITERION = 0.1500 + *** AUTO STEP TIME: NEXT TIME INC = 0.10000E-03 UNCHANGED + + FORCE CONVERGENCE VALUE = 0.1381E+06 CRITERION= 8.966 + MOMENT CONVERGENCE VALUE = 0.2126E+07 CRITERION= 8.228 + DISP CONVERGENCE VALUE = 38.66 CRITERION= 1.929 + EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -38.66 + FORCE CONVERGENCE VALUE = 0.1716E+07 CRITERION= 10.01 + MOMENT CONVERGENCE VALUE = 0.1078E+08 CRITERION= 9.188 + DISP CONVERGENCE VALUE = 4183. CRITERION= 209.2 + EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 4183. + FORCE CONVERGENCE VALUE = 0.1094E+08 CRITERION= 8790. + MOMENT CONVERGENCE VALUE = 0.6503E+08 CRITERION= 8067. + DISP CONVERGENCE VALUE = 0.1526E+06 CRITERION= 7739. + EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1934E+06 + + *** ERROR *** CP = 0.000 TIME= 00:00:00 + Element 19905 has excessive thickness change. + + *** ERROR *** CP = 0.000 TIME= 00:00:00 + Element 3389 has excessive thickness change. + + *** ERROR *** CP = 0.000 TIME= 00:00:00 + Element 0 (type = 1, SHELL281) (and maybe other elements) has become + highly distorted. Excessive distortion of elements is usually a + symptom indicating the need for corrective action elsewhere. Try + incrementing the load more slowly (increase the number of substeps or + decrease the time step size). You may need to improve your mesh to + obtain elements with better aspect ratios. Also consider the behavior + of materials, contact pairs, and/or constraint equations. Please rule + out other root causes of this failure before attempting rezoning or + nonlinear adaptive solutions. If this message appears in the first + iteration of first substep, be sure to perform element shape checking. + + *** WARNING *** CP = 0.000 TIME= 00:00:00 + The unconverged solution (identified as time 1 substep 999999) is + output for analysis debug purposes. Results should not be used for + any other purpose. + + + + + R E S T A R T I N F O R M A T I O N + + REASON FOR TERMINATION. . . . . . . . . .ERROR IN ELEMENT FORMULATION + FILES NEEDED FOR RESTARTING . . . . . . . buckling0.Rnnn + buckling.ldhi + buckling.rdb + TIME OF LAST SOLUTION . . . . . . . . . . 0.51493 + TIME AT START OF THE LOAD STEP . . . . 0.0000 + TIME AT END OF THE LOAD STEP . . . . . 1.0000 + + ALL CURRENT MAPDL DATA WRITTEN TO FILE NAME= + FOR POSSIBLE RESUME FROM THIS POINT + + + + + + ***** ROUTINE COMPLETED ***** CP = 0.000 + End nonlinear static analysis on imperfect geometry + + + +Post-buckling analysis +---------------------- + +An unconverged solution of the nonlinear static analysis could mean that +buckling has occurred. In this example, the change in time (or load) +increment, and displacement value, occurs between substeps 10 and 11, +which corresponds to TIME = 0.51781 and TIME = 0.53806 and to a pressure +between 0.124 MPa and 0.129 MPa. It is therefore very likely that buckling +occurred at this time; to be sure, the analysis is continued. The goal is to +verify the assessment made at this stage by obtaining the load-displacement +behavior over a larger range. Because the post-buckling state is unstable, +special techniques are necessary to compensate - in this case, nonlinear +stabilization is used. + + +.. code-block:: python + + print('Begin post-buckling analysis') + + mapdl.slashsolu() # Restart analysis with stabilization + mapdl.antype("static", "restart", 1, 10) + mapdl.nsubst(100, 50000, 10) + mapdl.rescontrol("define", "last") + mapdl.stabilize("constant", "energy", 0.000145) # Use energy option + output = mapdl.solve() + mapdl.finish() + + print('End of post-buckling analysis run') + + + +Postprocess buckling analysis in POST1 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: python + + + print('Begin POST1 postprocessing of post-buckling analysis') + mapdl.post1() + mapdl.set("last") + mapdl.post_processing.plot_nodal_displacement("NORM", smooth_shading=True) + mapdl.post_processing.plot_nodal_eqv_stress() + mapdl.finish() + print('End POST1 postprocessing of post-buckling analysis') + + +.. rst-class:: sphx-glr-horizontal + + + * + + .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_005.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_005.png + :class: sphx-glr-multi-img + + * + + .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_006.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_006.png + :class: sphx-glr-multi-img + + + +Postprocess buckling analysis in POST26 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: python + + + print('Begin POST26 postprocessing of post-buckling analysis') + mapdl.post26() + + + mapdl.numvar(100) # allow storage for 100 variables + mapdl.enersol(13, "sene") # store stiffness energy + mapdl.enersol(14, "sten") # store artificial stabilization energy + + # time history plot of stiffness and stabilization energies + mapdl.show("png") + mapdl.plvar(13, 14) + mapdl.show("close") + + # pressure versus axial shortening for some nodes under the upper ring + mapdl.nsol(2, 67319, "U", "Z", "UZ1") + mapdl.prod( + ir=3, ia=2, ib="", ic="", name="strain1", facta="", factb="", factc=-1 / 431.8 + ) + mapdl.prod(ir=12, ia=1, ib="", ic="", name="Load", facta="", factb="", factc=0.24) + mapdl.xvar(3) + mapdl.show("png") + mapdl.xrange(0.01) + mapdl.yrange(0.24) + mapdl.axlab("X", "Axial Shortening") + mapdl.axlab("Y", "Applied Pressure ") + mapdl.plvar(12) + mapdl.show("close") + mapdl.xvar(3) + mapdl.show("png") + mapdl.xrange(0.002) + mapdl.yrange(1) + mapdl.axlab("X", "Axial Shortening") + mapdl.axlab("Y", "Time") + mapdl.plvar(1) + mapdl.show("png") + mapdl.show("close") + + # pressure versus radial displacement for the node with max. deformation + mapdl.nsol(6, 65269, "U", "Y", "UY_1") + mapdl.prod(ir=7, ia=6, ib=6, ic="", name="UY2_1") + mapdl.nsol(8, 65269, "U", "X", "UX_1") + mapdl.prod(ir=9, ia=8, ib=8, ic="", name="UX2_1") + mapdl.add(10, 7, 9, "sum") + mapdl.sqrt(ir=11, ia=10, name="Urad") + mapdl.xvar(11) + mapdl.show("png") + mapdl.xrange(4) + mapdl.yrange(0.24) + mapdl.axlab("X", "Radial Displacement") + mapdl.axlab("Y", "Applied Pressure") + mapdl.plvar(12) + mapdl.show("png") + mapdl.show("close") + mapdl.finish() + + print('End POST26 postprocessing of post-buckling analysis') + + +.. rst-class:: sphx-glr-horizontal + + + * + + .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_007.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_007.png + :class: sphx-glr-multi-img + + * + + .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_008.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_008.png + :class: sphx-glr-multi-img + * + + .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_009.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_009.png + :class: sphx-glr-multi-img + + * + + .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_010.png + :alt: 21 example technology showcase buckling + :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_010.png + :class: sphx-glr-multi-img + + + + + + + +Exit MAPDL +---------- + +Exit MAPDL instance. + + +.. code-block:: python + + + mapdl.exit() + print("Exited MAPDL") + + +.. rst-class:: sphx-glr-script-out + + .. code-block:: none + + Exited MAPDL diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_000.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_000.png new file mode 100644 index 000000000..38baf9019 Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_000.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_001.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_001.png new file mode 100644 index 000000000..c202f9dbc Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_001.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_002.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_002.png new file mode 100644 index 000000000..11d11b031 Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_002.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_003.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_003.png new file mode 100644 index 000000000..ea4b28783 Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_003.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_004.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_004.png new file mode 100644 index 000000000..c15671eea Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_004.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_005.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_005.png new file mode 100644 index 000000000..97aeede6d Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_005.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_006.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_006.png new file mode 100644 index 000000000..9b072d9cc Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_006.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_007.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_007.png new file mode 100644 index 000000000..ecf9ef501 Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_007.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_008.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_008.png new file mode 100644 index 000000000..c1ca18684 Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_008.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_009.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_009.png new file mode 100644 index 000000000..32caa0ea8 Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_009.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_010.png b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_010.png new file mode 100644 index 000000000..662c59dc4 Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_010.png differ diff --git a/doc/source/technology_showcase_examples/techdemo-28/ex_28-tecfricstir.rst b/doc/source/technology_showcase_examples/techdemo-28/ex_28-tecfricstir.rst index a04155e92..d44acf5b0 100644 --- a/doc/source/technology_showcase_examples/techdemo-28/ex_28-tecfricstir.rst +++ b/doc/source/technology_showcase_examples/techdemo-28/ex_28-tecfricstir.rst @@ -153,7 +153,7 @@ cylindrical shape tool, as shown in the following figure: # ***** Problem parameters ******** l = 76.2e-03 # Length of each plate,m w = 31.75e-03 # Width of each plate,m - t = 3.18e-03 # Tickness of each plate,m + t = 3.18e-03 # Thickness of each plate,m r1 = 7.62e-03 # Shoulder radius of tool,m h = 15.24e-03 # Height of tool, m l1 = r1 # Starting location of tool on weldline @@ -257,7 +257,7 @@ The height of the tool is equal to the shoulder diameter. Both the workpiece # ***** Problem parameters ******** l = 76.2e-03 # Length of each plate,m w = 31.75e-03 # Width of each plate,m - t = 3.18e-03 # Tickness of each plate,m + t = 3.18e-03 # Thickness of each plate,m r1 = 7.62e-03 # Shoulder radius of tool,m h = 15.24e-03 # Height of tool, m l1 = r1 # Starting location of tool on weldline diff --git a/doc/styles/Vocab/ANSYS/accept.txt b/doc/styles/Vocab/ANSYS/accept.txt index 0efc8e713..8494b2c43 100644 --- a/doc/styles/Vocab/ANSYS/accept.txt +++ b/doc/styles/Vocab/ANSYS/accept.txt @@ -2,6 +2,7 @@ Allgaier ansys Ansys ANSYS +axisymmetric centerline Chao Conshohocken @@ -31,15 +32,20 @@ Lanczos Mahoney MAPDL Matplotlib +midplane midside Mises Mishra MPa multipoint +nonaxisymmetric nonlinearities +nonsymmetric Ozel Poisson +pmaroneh postprocess +Postprocess Prasanna Prestressed prestressed diff --git a/examples/tech-demos/21-example-technology-showcase-buckling.py b/examples/tech-demos/21-example-technology-showcase-buckling.py new file mode 100644 index 000000000..337426f73 --- /dev/null +++ b/examples/tech-demos/21-example-technology-showcase-buckling.py @@ -0,0 +1,414 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Sep 2 14:24:13 2022 + +@author: pmaroneh +""" + +""".. _ref_buckling_postbuckling_ring_stiffened_cylinder: + +Buckling and post-buckling analysis of a ring-stiffened +cylinder using nonlinear stabilization +====================================================== + +This examples shows how to use PyMAPDL to import an existing FE model and to +perform a nonlinear buckling and postbuckling analysis using nonlinear +stabilization. The problem uses a stiffened cylinder subjected to uniform +external pressure to show how to find the nonlinear buckling loads, +achieve convergence at the post-buckling stage, and interpret the results. + +This example is inspired from the model and analysis defined in Chapter 21 of +the Mechanical APDL Technology Showcase Manual. + +""" + +############################################################################### +# Setting up model +# ---------------- +# +# The original FE model is given in the Ansys Mechanical APDL Technology +# Showcase Manual. The .cdb contains a FE model of a ring-stiffened cylinder. +# +# A circular cylinder made of bare 2024-T3 aluminum alloy is stiffened inside +# with five Z-section rings. Its ends are closed with thick aluminum bulkheads. +# A riveted L section exists between the top plate and the top ring and the +# bottom plate and bottom ring. +# The cylinder is subjected to a differential external pressure. The pressure +# causes a local buckling phenomenon characterized by buckling of the skin +# between stiffening rings, leading eventually to collapse. +# +# The finite element model of the ring stiffened cylinder is meshed with +# SHELL281 elements with an element size of 10 mm. The fine mesh is required +# for buckling analysis, and a full 360-degree model is necessary because +# the deformation is no longer axisymmetric after buckling occurs. +# +# All shell elements have uniform thickness. Five sections are created in the +# model with no offsets, so the shell sections are offset to the midplane +# by default. +# +# Starting MAPDL as a service and importing an external model +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# + +from ansys.mapdl.core import launch_mapdl +from ansys.mapdl.core.examples import download_tech_demo_data + +# define geometric parameters +bs = 95.3 # Ring spacing (mm) +ts = 1.034 # Skin thickness (mm) +tw = 0.843 # Ring thickness (mm) +r = 344 * ts # Radius of cylinder (mm) +L = 431.8 + 2 * (19 - 9.5) # Length of cylinder (mm) +pext = 0.24 # Differential external pressure (MPa) + +# start MAPDL as a service +mapdl = launch_mapdl(run_location="D:\PyAnsys\Examples\Buckling_PostBuckling_TD21") +print(mapdl) + +mapdl.filname("buckling") # change filename +# mapdl.nerr(nmerr=200, nmabt=10000, abort=-1, ifkey=0, num=0) + +# enter preprocessor +mapdl.prep7() + +# define material properties for 2024-T3 Alluminum alloy +EX = 73000 # Young's Modulus (MPA) +ET = 73 # Tangent modulus +mapdl.mp("ex", 1, EX) # Young's Modulus (MPA) +mapdl.mp("prxy", 1, 0.33) # Poisson's ratio +EP = EX * ET / (EX - ET) +mapdl.tb("biso", 1) +mapdl.tbdata(1, 268.9, EP) +# create material plot +mapdl.show("png") +mapdl.tbplot("biso", 1) +mapdl.show("close") + +# define shell elements and their sections +mapdl.et(1, 181) +# cylinder +mapdl.sectype(1, "shell") +mapdl.secdata(ts, 1) +# L +mapdl.sectype(2, "shell") +mapdl.secdata(ts + 1.64, 1) +# Z shaped ring stiffener +mapdl.sectype(3, "shell") +mapdl.secdata(tw, 1) +# Plate at z=0 with thickness=25 mm +mapdl.sectype(4, "shell") +mapdl.secdata(25, 1) +# Plate at z=L with thickness=25 mm +mapdl.sectype(5, "shell") +mapdl.secdata(25, 1) + + +# read model of stiffened cylinder +# download the cdb file +ring_mesh_file = download_tech_demo_data( + "td-21", "ring_stiffened_cylinder_mesh_file.cdb" +) + +# read in cdb +mapdl.cdread("db", ring_mesh_file) +mapdl.allsel() +mapdl.eplot(background="w", savefig="eplot.png") +mapdl.cmsel("all") + +############################################################################### +# Define static prestress analysis +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# Displacement boundary conditions are defined to prevent the six rigid body +# motions. A total of six displacements are therefore applied to three nodes +# located on the top plate at 0, 90, and 270 degrees; the nodes are restricted +# so that all rigid translations and rotations are not possible for the +# cylinder. +# +# Loading consists of a uniformly distributed external differential +# pressure: :math:`P_{ext} = 0.24 MPa` + +print("Begin static prestress analysis") + +mapdl.csys(1) # activate cylindrical coordinate system + +# Define pressure on plate at z=0 +mapdl.nsel("s", "loc", "z", 0) +mapdl.esln("s", 1) +mapdl.sfe("all", 2, "pres", 1, pext) +mapdl.allsel() + +# Define pressure on the rim of plate at z=0 +mapdl.nsel("s", "loc", "z", 0) +mapdl.nsel("r", "loc", "x", r - ts / 2, 760 / 2) +mapdl.esln("s", 1) +mapdl.sfe("all", 1, "pres", 1, pext) +mapdl.allsel() + +# Define pressure on plate at z=L +mapdl.nsel("s", "loc", "z", L) +mapdl.esln("s", 1) +mapdl.sfe("all", 2, "pres", 1, pext) +mapdl.allsel() + +# Define pressure on the rim of plate at z=L +mapdl.nsel("s", "loc", "z", L) +mapdl.nsel("r", "loc", "x", r - ts / 2, 760 / 2) +mapdl.esln("s", 1) +mapdl.sfe("all", 1, "pres", 1, pext) +mapdl.allsel() + +# Define pressure on cylinder +mapdl.nsel("s", "loc", "x", r - ts / 2) +mapdl.esln("s", 1) +mapdl.sfe("all", 2, "pres", 1, pext) +mapdl.allsel() + +# Define displacement BSs to avoid rigid body motion +mapdl.csys(0) # activate cartesian coordinate system +mapdl.nsel("s", "loc", "x", r - ts / 2) +mapdl.nsel("r", "loc", "y", 0) +mapdl.nsel("r", "loc", "z", 0) +mapdl.d("all", "ux", 0) +mapdl.d("all", "uy", 0) +mapdl.d("all", "uz", 0) +mapdl.allsel() +# +mapdl.nsel("s", "loc", "x", 0) +mapdl.nsel("r", "loc", "y", r - ts / 2) +mapdl.nsel("r", "loc", "z", 0) +mapdl.d("all", "uz", 0) +mapdl.allsel() +# +mapdl.nsel("s", "loc", "x", 0) +mapdl.nsel("r", "loc", "y", -(r - ts / 2)) +mapdl.nsel("r", "loc", "z", 0) +mapdl.d("all", "uy", 0) +mapdl.d("all", "uz", 0) +mapdl.allsel() +# + +# Print DOF constraints +print(mapdl.dlist()) + +# Solve static prestress analysis +mapdl.slashsolu() +mapdl.pstres("on") +mapdl.antype("STATIC") +output = mapdl.solve() +print(output) + +# Plot total deformation +mapdl.post1() +mapdl.set("last") +mapdl.post_processing.plot_nodal_displacement( + "NORM", smooth_shading=True, savefig="nodal_disp_static_prestress.png" +) + +print("End static prestress analysis") +#%% +############################################################################### +# Run linear buckling analysis +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# This preliminary analysis predicts the theoretical buckling pressure of the +# ideal linear elastic structure (perfect cylinder) and the buckled mode shapes +# used in the next step to generate the imperfections. +# It is also an efficient way to check the completeness and +# correctness of modeling. +# To run the linear buckling analysis, a static solution with prestress effects +# must be obtained, followed by the eigenvalue buckling solution using the +# Block Lanczos method and mode expansion. + +print("Begin linear buckling analysis") + +# Define and solve linear buckling analysis +mapdl.slashsolu() +mapdl.outres("all", "all") +mapdl.antype("BUCKLE") +mapdl.bucopt("lanb", "10") +mapdl.mxpand(10) +output = mapdl.solve() +print(output) + +# Plot total deformation of first and 10th mode +mapdl.post1() +mapdl.set(1, 1) +mapdl.post_processing.plot_nodal_displacement( + "NORM", smooth_shading=True, savefig="nodal_disp_linear_buckling_mode1.png" +) +mapdl.set(1, 10) +mapdl.post_processing.plot_nodal_displacement( + "NORM", smooth_shading=True, savefig="nodal_disp_linear_buckling_mode10.png" +) + +print("End linear buckling analysis") +#%% +############################################################################### +# Generate imperfections +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# If a structure is perfectly symmetric, nonsymmetric buckling does not occur +# numerically, and a nonlinear buckling analysis fails because +# nonsymmetric buckling responses cannot be triggered. In this problem, +# the geometry, elements, and pressure are all axisymmetric. +# It is not possible, therefore, to simulate nonaxisymmetric buckling with +# the initial model. To overcome this problem, small geometric imperfections +# (similar to those caused by manufacturing a real structure) must be +# introduced to trigger the buckling responses. +# Because the radius of the cylinder is 355.69 mm and the maximum +# displacement of a mode shape is 1 mm, a factor of 0.1 is applied when +# updating the geometry with mode shapes. The factor assumes the manufacturing +# tolerance of the radius to be on the order of 0.1. + +print("Begin adding imperfections") + +mapdl.finish() +mapdl.prep7() +for i in range(1, 11): + mapdl.upgeom(0.1, 1, i, "buckling", "rst") # Add imperfections as a tenth of each + # mode shape +mapdl.finish() + +print("Finish adding imperfections") +#%% +############################################################################### +# Run nonlinear static analysis on geometry with imperfections +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# The nonlinear buckling analysis is a static analysis performed after adding +# imperfections with large deflection active (NLGEOM,ON), extended to a point +# where the stiffened cylinder can reach its limit load. +# To perform the analysis, the load must be allowed to increase using very +# small time increments so that the expected critical buckling load can +# be predicted accurately. +# Note - as this is a buckling analysis, divergence is expected. + +print("Begin nonlinear static analysis on imperfect geometry") + +mapdl.slashsolu() +mapdl.antype("STATIC") +mapdl.nlgeom("on") +mapdl.pred("on") +mapdl.time(1) +mapdl.nsubst(100, 10000, 10) +mapdl.rescontrol("define", "all", 1) +mapdl.outres("all", "all") +mapdl.ncnv(2) # Do not terminate the program execution if the solution diverges +mapdl.allow_ignore = True # in order for PyMAPDL to not raise an error +output = mapdl.solve() +print(output) +mapdl.finish() + +print("End nonlinear static analysis on imperfect geometry") + +#%% +############################################################################### +# Post-buckling analysis +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# An unconverged solution of the nonlinear static analysis could mean that +# buckling has occurred. In this example, the change in time (or load) +# increment, and displacement value, occurs between substeps 10 and 11, +# which corresponds to TIME = 0.51781 and TIME = 0.53806 and to a pressure +# between 0.124 MPa and 0.129 MPa. It is therefore very likely that buckling +# occurred at this time; to be sure, the analysis is continued. The goal is to +# verify the assessment made at this stage by obtaining the load-displacement +# behavior over a larger range. Because the post-buckling state is unstable, +# special techniques are necessary to compensate - in this case, nonlinear +# stabilization is used. + +print("Begin post-buckling analysis") + +mapdl.slashsolu() # Restart analysis with stabilization +mapdl.antype("static", "restart", 1, 10) +mapdl.nsubst(100, 50000, 10) +mapdl.rescontrol("define", "last") +mapdl.stabilize("constant", "energy", 0.000145) # Use energy option +output = mapdl.solve() +print(output) +mapdl.finish() + +print("End of post-buckling analysis run") + +#%% +############################################################################### +# Postprocess buckling analysis in POST1 +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# + +print("Begin POST1 postprocessing of post-buckling analysis") +mapdl.post1() +mapdl.set("last") +mapdl.post_processing.plot_nodal_displacement( + "NORM", smooth_shading=True, savefig="nodal_disp_post_buckling.png" +) +mapdl.post_processing.plot_nodal_eqv_stress(savefig="nodal_stress_post_buckling.png") +mapdl.finish() +print("End POST1 postprocessing of post-buckling analysis") +#%% +############################################################################### +# Postprocess buckling analysis in POST26 +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# + +print("Begin POST26 postprocessing of post-buckling analysis") +mapdl.post26() + + +mapdl.numvar(100) # allow storage for 100 variables +mapdl.enersol(13, "sene") # store stiffness energy +mapdl.enersol(14, "sten") # store artificial stabilization energy + +mapdl.axlab("X", "Radial Displacement") +mapdl.axlab("Y", "Applied Pressure") +mapdl.plvar(12) +# # time history plot of stiffness and stabilization energies +mapdl.show("png") +mapdl.plvar(13, 14) +mapdl.show("close") + +# pressure versus axial shortening for some nodes under the upper ring +mapdl.nsol(2, 67319, "U", "Z", "UZ1") +mapdl.prod( + ir=3, ia=2, ib="", ic="", name="strain1", facta="", factb="", factc=-1 / 431.8 +) +mapdl.prod(ir=12, ia=1, ib="", ic="", name="Load", facta="", factb="", factc=0.24) +mapdl.xvar(3) +mapdl.show("png") +mapdl.xrange(0.01) +mapdl.yrange(0.24) +mapdl.axlab("X", "Axial Shortening") +mapdl.axlab("Y", "Applied Pressure ") +mapdl.plvar(12) +mapdl.show("close") +mapdl.xvar(3) +mapdl.show("png") +mapdl.xrange(0.002) +mapdl.yrange(1) +mapdl.axlab("X", "Axial Shortening") +mapdl.axlab("Y", "Time") +mapdl.plvar(1) +mapdl.show("png") +mapdl.show("close") + +# pressure versus radial displacement for the node with max. deformation +mapdl.nsol(6, 65269, "U", "Y", "UY_1") +mapdl.prod(ir=7, ia=6, ib=6, ic="", name="UY2_1") +mapdl.nsol(8, 65269, "U", "X", "UX_1") +mapdl.prod(ir=9, ia=8, ib=8, ic="", name="UX2_1") +mapdl.add(10, 7, 9, "sum") +mapdl.sqrt(ir=11, ia=10, name="Urad") +mapdl.xvar(11) +mapdl.show("png") +mapdl.xrange(4) +mapdl.yrange(0.24) +mapdl.show("png") +mapdl.show("close") +mapdl.finish() + +print("End POST26 postprocessing of post-buckling analysis") + +#%% +############################################################################### +# Exit MAPDL +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# Exit MAPDL instance + +mapdl.exit() +print("Exited MAPDL") diff --git a/examples/verif-manual/README.txt b/examples/verif-manual/readme.rst similarity index 100% rename from examples/verif-manual/README.txt rename to examples/verif-manual/readme.rst