diff --git a/doc/source/conf.py b/doc/source/conf.py
index 4124e342c..aebd73987 100644
--- a/doc/source/conf.py
+++ b/doc/source/conf.py
@@ -86,6 +86,9 @@
numpydoc_show_class_members = False
numpydoc_xref_param_type = True
+# Image referencing
+numfig = True
+
# Consider enabling numpydoc validation. See:
# https://numpydoc.readthedocs.io/en/latest/validation.html#
numpydoc_validate = True
diff --git a/doc/source/technology_showcase_examples/images/thumb/sphx_glr_tse-015-calvalhyper_thumb.gif b/doc/source/technology_showcase_examples/images/thumb/sphx_glr_tse-015-calvalhyper_thumb.gif
new file mode 100755
index 000000000..440197a22
Binary files /dev/null and b/doc/source/technology_showcase_examples/images/thumb/sphx_glr_tse-015-calvalhyper_thumb.gif differ
diff --git a/doc/source/technology_showcase_examples/index.rst b/doc/source/technology_showcase_examples/index.rst
index f872dfe84..8aa12e177 100644
--- a/doc/source/technology_showcase_examples/index.rst
+++ b/doc/source/technology_showcase_examples/index.rst
@@ -69,11 +69,36 @@ this project.
+
+.. ##########
+
+
+.. raw:: html
+
+
+
+.. only:: html
+
+ .. image:: images/thumb/sphx_glr_tse-015-calvalhyper_thumb.gif
+ :alt: Calibrating and Validating a Hyperelastic Constitutive Model
+
+.. raw:: html
+
+
Calibrating and Validating a Hyperelastic Constitutive Model
+
+
+.. raw:: html
+
+
+
+.. #########
+
.. toctree::
:hidden:
:includehidden:
techdemo-1/ex_0-tecbrakesqueal
+ techdemo-15/ex-15-teccalvalhyper
techdemo-20/ex_20-tecPCB
techdemo-28/ex_28-tecfricstir
diff --git a/doc/source/technology_showcase_examples/techdemo-15/ex-15-teccalvalhyper.rst b/doc/source/technology_showcase_examples/techdemo-15/ex-15-teccalvalhyper.rst
new file mode 100755
index 000000000..55ced5f9f
--- /dev/null
+++ b/doc/source/technology_showcase_examples/techdemo-15/ex-15-teccalvalhyper.rst
@@ -0,0 +1,442 @@
+Technology Showcase Example 15: Calibrating and Validating a Hyperelastic Constitutive Model
+----------------------------------------------------------------------------------------------
+
+This example problem demonstrates the hyperelastic curve-fitting capabilities used to select constitutive model
+parameters to fit experimental data. Several issues that influence the accuracy of the curve fit are discussed.
+Validation of the resulting constitutive model is demonstrated by comparison with a
+tension-torsion experiment.
+
+The following topics are available:
+
+* `15.1. Introduction`_
+* `15.2. Problem Description`_
+* `15.3. Material Properties`_
+* `15.4. Analysis and Solution Controls`_
+* `15.5. Results and Discussion`_
+* `15.6. Recommendations`_
+* `15.7. References`_
+* `15.8. Input Files`_
+
+You can also perform this example analysis entirely in the Ansys
+Mechanical Application. For more information, see
+*Calibrating and Validating a Hyperelastic Constitutive Model in the Workbench Technology Showcase: Example Problems*.
+
+15.1. Introduction
+------------------
+
+Several hyperelastic constitutive models can be used to model the large deformation
+behavior of elastic materials; however, it is sometimes difficult to select parameters
+to adequately match the behavior of the material. The curve-fitting process fits the hyperelastic
+constitutive model parameters to a set of experimental data using a least-squares
+minimization.
+
+Curve-fitting is relatively simple, but certain conditions can affect the accuracy of
+the resulting constitutive model. The constitutive model should therefore be compared
+with experimental data to ensure that it adequately reproduces the material behavior
+over the actual range of deformation.
+
+15.2. Problem Description
+-------------------------
+
+A constitutive model is needed that matches the behavior of a vulcanized natural
+rubber material up to 100 percent engineering strain in a variety of deformation modes.
+
+In this problem, the experimental data are obtained from a simulation of a
+hyperelastic test suite (uniaxial, biaxial, and planar tension tests) using common
+experimental test specimens. Using this data, parameters for a constitutive model are
+determined using hyperelastic fitting capabilities that focus on use of the three-,
+five-, and nine-parameter Mooney-Rivlin hyperelastic models.
+
+After demonstrating the fitting procedure and selecting a suitable constitutive model,
+a tension-torsion experiment is simulated and compared to the experimental data to
+validate the predictions for the model.
+
+15.3. Material Properties
+-------------------------
+
+Material properties for the calibration and validation experiments follow:
+
+* `15.3.1. Calibration Experiments`_
+* `15.3.2. Validation Experiment`_
+
+15.3.1. Calibration Experiments
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Experimental data was obtained via a simulation of a hyperelastic test suite with
+an Ogden hyperelastic material. The test suite specimens are shown here, with the
+dark areas indicating locations of the clamps:
+
+.. figure:: graphics/gtec_calvalhyper_fig1.gif
+ :align: center
+ :alt: Hyperelastic Test Suite: Test Specimens
+ :figclass: align-center
+
+ **Figure 15.1: Hyperelastic Test Suite: Test Specimens**
+
+The engineering-stress vs. engineering-strain results are as follows:
+
+.. figure:: graphics/gtec_calvalhyper_fig2.gif
+ :align: center
+ :alt: Hyperelastic Test Suite: Experimental Data
+ :figclass: align-center
+ :name: figure_experimental_data
+
+ **Figure 15.2: Hyperelastic Test Suite: Experimental Data**
+
+The uniaxial specimen is similar to ASTM D412-C (ASTM Standard D412, 2006).
+
+The crosshead is displaced by 396 mm, giving a measured engineering strain in the
+gage section of 662 percent and a calculated engineering stress of 58.1 MPa.
+
+The equibiaxial specimen is disc-shaped, with 16 equally spaced tabs about the
+circumference. The tabs are stretched 127.3 mm, resulting in a measured engineering
+strain in the gage section of 336 percent and a calculated engineering stress of
+22.1 MPa.
+
+For the planar specimen, the crosshead is displaced by 191.6 mm, giving a
+calculated engineering strain of 639 percent and a calculated engineering stress of
+54.7 MPa.
+
+15.3.2. Validation Experiment
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+A simulated tension-torsion experiment was performed on a thin strip. The specimen
+is similar to that specified in ASTM D1043 (ASTM Standard D1043, 2006) and is shown
+here:
+
+.. figure:: graphics/gtec_calvalhyper_fig3.gif
+ :align: center
+ :alt: Tension-Torsion Test Specimen
+ :figclass: align-center
+
+ **Figure 15.3: Tension-Torsion Test Specimen**
+
+The experiment consists of clamping each end of the specimen into the test
+apparatus, then stretching the specimen by 50 percent of its original gage length
+and twisting one end of the specimen for four complete revolutions. Following is the
+resulting moment-vs.-rotation data:
+
+.. figure:: graphics/gtec_calvalhyper_fig4.gif
+ :align: center
+ :alt: Tension-Torsion Experimental Data
+ :figclass: align-center
+
+ **Figure 15.4: Tension-Torsion Experimental Data**
+
+15.4. Analysis and Solution Controls
+------------------------------------
+
+Analysis and solution-control information for calibration and validation
+follow:
+
+* `15.4.1. Calibrating Parameters`_
+* `15.4.2. Validating Parameters`_
+
+15.4.1. Calibrating Parameters
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Material parameter calibration occurs using the curve-fitting
+tool.
+
+**Example 15.1: Fitting a Hyperelastic Constitutive Model to a Set of Uniaxial Stress-Strain
+Data**
+
+The command input shown here is for illustration only. While curve-fitting is
+possible via command input, Ansys, Inc. recommends using the graphical user
+interface (GUI) to perform the curve-fitting, or at least visually validating
+the results using the GUI to ensure a sound fit.
+
+.. code:: python3
+
+ mapdl.prep7()
+ mapdl.tbft("fadd",1,"hyper","mooney",3)
+ mapdl.tbft("eadd",1,"unia","uniax".l)OG
+ mapdl.tbft("solve",1,"hyper","mooney",3)
+ mapdl.tbft("fset",1,"hyper","mooney",3)
+
+
+
+The ``TBFT,FADD`` command initializes the curve-fitting procedure
+for a hyperelastic, three-parameter, Mooney-Rivlin model assigned to
+material identification number 1.
+
+``TBFT,EADD`` reads the uniaxial experimental data in the
+``uniax.log`` file as the fitting data for material number 1.
+The experimental data in the file is a set of engineering-strain vs.
+engineering-stress input:
+
+
+.. code:: output
+
+ 0.819139E-01 0.82788577E+00
+ 0.166709E+00 0.15437247E+01
+ 0.253960E+00 0.21686152E+01
+ 0.343267E+00 0.27201819E+01
+ 0.434257E+00 0.32129833E+01
+ 0.526586E+00 0.36589498E+01
+ 0.619941E+00 0.40677999E+01
+ 0.714042E+00 0.44474142E+01
+ 0.808640E+00 0.48041608E+01
+ 0.903519E+00 0.51431720E+01
+ 0.998495E+00 0.54685772E+01
+ 0.109341E+01 0.57836943E+01
+
+
+``TBFT,SOLVE`` determines the three constitutive parameters for the
+Mooney-Rivlin model, minimizing the difference between the model and the
+experimental data.
+
+``TBFT,FSET`` assigns the fitted constitutive parameters to
+material number 1.
+
+For this problem, the fitted parameters for the three-parameter Mooney-Rivlin
+model are:
+
++-----------------------------------+
+| :math:`C_{10} = 1.338856` |
++-----------------------------------+
+| :math:`C_{11} = - 1.648364 x10-2` |
++-----------------------------------+
+
+
+15.4.2. Validating Parameters
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Following is a mesh developed to simulate the torsion experiment to validate the
+fitted constitutive model parameters obtained in `15.4.1. Calibrating Parameters`_:
+
+.. figure:: graphics/gtec_calvalhyper_fig5.gif
+ :align: center
+ :alt: Tension-Torsion Test Specimen Mesh
+ :figclass: align-center
+
+ **Figure 15.5: Tension-Torsion Test Specimen Mesh**
+
+The mesh consists of 1,332 SOLID186 elements using the
+default formulation (a mixed-displacement pressure formulation with reduced
+integration).
+
+The attachment of the test specimen
+to the test apparatus is simulated by boundary conditions applied to the specimen in
+the region of the clamps, as described here:
+
+* The back-left clamp region is fully restrained.
+* The back-right clamp region is attached to a rigid-contact surface and
+ fixed in place.
+* The front-left clamp region is attached to a rigid-contact surface and
+ displaced in the z direction to simulate a clamping displacement equal
+ to 25 percent of the specimen thickness. The same is true for the
+ front-right clamp region.
+ The stretching to 50 percent engineering strain is simulated by displacing the
+ rigid-contact surfaces attached to the right clamp regions while holding left clamp
+ regions fixed.
+
+The torsion of the specimen is simulated by holding the left clamp region in place
+and twisting the keypoints attached to the right contact surfaces about the
+longitudinal axis.
+
+15.5. Results and Discussion
+----------------------------
+
+Results for the calibration and validation operations are discussed below:
+
+* `15.5.1. Calibration Results`_
+* `15.5.2. Validation Results`_
+
+15.5.1. Calibration Results
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Using all of experimental data shown in :numref:`figure_experimental_data`
+to fit the three-, five-, and nine-parameter Mooney-Rivlin models results in the
+following parameters, fit to the entire range of experimental data:
+
++----------------+-------------------+------------------+------------------+
+| | Three-Parameter | Five-Parameter | Nine-Parameter |
++================+===================+==================+==================+
+| :math:`C_{10}` | 1.8785 | 1.4546 | 1.7095 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{01}` | -5.7759 x 10-2 | 7.6677 x 10-2 | 5.6365 x 10-2 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{20}` | --- | 1.3484 x 10-2 | -1.2088 x 10-2 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{11}` | 1.9589 x 10-3 | -4.4337 x 10-3 | 3.7099 x 10-5 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{02}` | --- | 2.3997 x 10-4 | -4.6858 x 10-4 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{30}` | --- | --- | 3.5202 x 10-4 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{21}` | --- | --- | 6.0562 x 10-6 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{12}` | --- | --- | 1.9666 x 10-5 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{03}` | --- | --- | -8.9997 x 10-7 |
++----------------+-------------------+------------------+------------------+
+| :math:`\nu` | 3.6415 | 3.0625 | 3.5318 |
++----------------+-------------------+------------------+------------------+
+
+The following figure is a comparison of the models to the experimental data:
+
+.. figure:: graphics/gtec_calvalhyper_fig6.gif
+ :align: center
+ :alt: Comparison of the Data and Fits Over the Entire Range of Data
+ :figclass: align-center
+
+ **Figure 15.6: Comparison of the Data and Fits Over the Entire Range of Data**
+
+Thus far, it is obvious that none of the models provide a suitable fit to the
+entire range of experimental data. The reason is that the least-squares fitting
+procedure is minimizing the error over the entire range of data; therefore, it can
+be detrimental to include data that is not representative of the *actual range of use*.
+
+If the experimental data range is limited to about 100 percent strain, however,
+the fitted parameters shown in the following table are obtained:
+
++----------------+-------------------+------------------+------------------+
+| | Three-Parameter | Five-Parameter | Nine-Parameter |
++================+===================+==================+==================+
+| :math:`C_{10}` | 1.6540 | 1.7874 | 1.8904 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{01}` | 1.2929 x 10-1 | 5.7229 x 10-2 | -3.6352 x 10-2 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{20}` | --- | -5.8765 x 10-2 | -2.3484 x 10-1 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{11}` | -1.2726 x 10-2 | 2.6843 x 10-2 | 2.6511 x 10-1 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{02}` | --- | -5.1127 x 10-3 | -6.8670 x 10-2 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{30}` | --- | --- | 5.1742 x 10-2 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{21}` | --- | --- | -8.3262 x 10-2 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{12}` | --- | --- | 3.6204 x 10-2 |
++----------------+-------------------+------------------+------------------+
+| :math:`C_{03}` | --- | --- | -4.3754 x 10-3 |
++----------------+-------------------+------------------+------------------+
+| :math:`\nu` | 3.5665 | 3.6892 | 3.7081 |
++----------------+-------------------+------------------+------------------+
+
+The following figure is a comparison of the models with the parameters fit to the
+modified experimental data:
+
+.. figure:: graphics/gtec_calvalhyper_fig7.gif
+ :align: center
+ :alt: Parameters Fit to Experimental Data to About 100 Percent Strain
+ :figclass: align-center
+
+ **Figure 15.7: Parameters Fit to Experimental Data to About 100 Percent Strain**
+
+For the equibiaxial and planar experiments, any of the three models might be
+acceptable; however, the comparison with the uniaxial data might indicate that
+*none* of the three models are acceptable.
+
+The behavior of the model outside the fitted range can significantly differ from
+the actual response of the material. For example, the model parameters fit to the
+experimental data to 100 percent strain have been used to simulate the hyperelastic
+test suite to strains of about 200 percent, as shown in the following comparisons:
+
+.. figure:: graphics/gtec_calvalhyper_fig8.gif
+ :align: center
+ :alt: Comparison of the Data and Fits Showing Predictions Outside the Range of Fitted Data
+ :figclass: align-center
+
+ **Figure 15.8: Comparison of the Data and Fits Showing Predictions Outside the Range of Fitted Data**
+
+Beyond 100 percent strain, it becomes apparent that some of the predictions
+quickly deteriorate. In all three comparisons, the nine-parameter model quickly
+loses accuracy, and it appears that the three- and nine-parameter Mooney-Rivlin
+models have lost stability for the biaxial deformation case.
+
+15.5.2. Validation Results
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The five-parameter Mooney-Rivlin model, fit to the experimental data up to 100
+percent strain, is selected as an adequate representation of the material response.
+The constitutive model is specified via the following input:
+
+.. code:: python3
+
+ C10 = 1.787381e+00
+ C01 = 5.722875e-02
+ C20 =-5.876502e-02
+ C11 = 2.684331e-02
+ C02 =-5.112790e-03
+ mapdl.tb("HYPER",1,"",5,"MOONEY")
+ mapdl.tbdata(1,C10,C01,C20,C11,C02)
+
+
+The following figure shows a contour plot of the strain energy density at the end
+of simulation. The plot offers a general idea of the overall deformation of the
+specimen.
+
+.. figure:: graphics/gtec_calvalhyper_fig9.gif
+ :align: center
+ :alt: Strain-Energy Density Contours of the Tension-Torsion Test
+ :figclass: align-center
+
+ **Figure 15.9: Strain-Energy Density Contours of the Tension-Torsion Test**
+
+With the exception of the clamp regions, the deformation shows a uniform pattern
+in the gage region along the axis of twisting. Perpendicular to the axis of twisting
+is a large strain-energy density near the outside edge of the specimen, decreasing
+toward the center.
+
+The following figure shows a comparison of the model with the experimental moment
+vs. theta data:
+
+.. figure:: graphics/gtec_calvalhyper_fig10.gif
+ :align: center
+ :alt: Comparison of Tension-Torsion Experiment to the Five-Parameter Mooney-Rivlin Model
+ :figclass: align-center
+
+ **Figure 15.10: Comparison of Tension-Torsion Experiment to the Five-Parameter Mooney-Rivlin Model**
+
+After a seemingly anomalous first data point, the error between the simulation and
+experiment is in the range of 2 to 4 percent. Throughout the entire simulation, the
+five-parameter Mooney-Rivlin model predicts a higher moment for an equivalent twist,
+which is not entirely expected by the error plots for the hyperelastic test suite
+comparisons; nevertheless, a maximum four percent error appears to be a reasonable
+margin of error for this simulation.
+
+15.6. Recommendations
+---------------------
+
+When performing a similar type of calibration and validation, consider the following
+recommendations:
+
+* Obtain test data from at least two (and preferably all three) of the
+ experiments in the hyperelastic test suite.
+* Ensure that the test data covers the range of deformation over which the
+ constitutive model will be used.
+* If the error between the experimental data and the constitutive model is too
+ great, try limiting the experimental data to the range of deformation over which
+ the constitutive model will be used.
+* Use the constitutive model within the range of fitted data only.
+* Use an independent experiment to validate that the constitutive model
+ adequately matches the material behavior.
+
+15.7. References
+----------------
+
+The following references were consulted when creating this example problem:
+
+1. ASTM International. (2006). (http://www.astm.org/Standards/D1043.htm).
+*Standard Test Method for Stiffness Properties of Plastics as a Function of Temperature by Means of a Torsion Test*.
+West Conshohocken.
+2. ASTM International. (2006). [ASTM Standard D412](http://www.astm.org/Standards/D412.htm).
+*Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension*.
+West Conshohocken.
+
+15.8. Input Files
+-----------------
+
+The following files were used in this problem:
+
+* **tension\_torsion.dat** -- Tension-torsion simulation input file.
+* **tension\_torsion.cdb** -- The common database file containing the model information for this problem
+ (called by **tension\_torsion.dat** ).
+
++-------------------------------------------------------------------------------------------------------------------------------------------+
+| `Download file set `_ |
++===========================================================================================================================================+
+| `Download all td-nn file sets in a single zip file. `_ |
++-------------------------------------------------------------------------------------------------------------------------------------------+
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig1.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig1.gif
new file mode 100755
index 000000000..cb4085868
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig1.gif differ
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig10.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig10.gif
new file mode 100755
index 000000000..a2434bfdb
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig10.gif differ
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig2.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig2.gif
new file mode 100755
index 000000000..9d27879a0
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig2.gif differ
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig3.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig3.gif
new file mode 100755
index 000000000..4eec05cb0
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig3.gif differ
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig4.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig4.gif
new file mode 100755
index 000000000..921481022
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig4.gif differ
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig5.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig5.gif
new file mode 100755
index 000000000..440197a22
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig5.gif differ
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig6.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig6.gif
new file mode 100755
index 000000000..26e824f95
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig6.gif differ
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig7.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig7.gif
new file mode 100755
index 000000000..27afc7639
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig7.gif differ
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig8.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig8.gif
new file mode 100755
index 000000000..63135b3ea
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig8.gif differ
diff --git a/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig9.gif b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig9.gif
new file mode 100755
index 000000000..33891dcf2
Binary files /dev/null and b/doc/source/technology_showcase_examples/techdemo-15/graphics/gtec_calvalhyper_fig9.gif differ