
Description
We have identified a local privilege escalation vulnerability in Ant Media Server which allows any
unprivileged operating system user account to escalate privileges to the root user account on the system.
This vulnerability arises from Ant Media Server running with Java Management Extensions (JMX)
enabled and authentication disabled on localhost on port 5599/TCP. This vulnerability is nearly identical
to the local privilege escalation vulnerability CVE-2023-26269 identified in Apache James.

Any unprivileged operating system user can connect to the JMX service running on port 5599/TCP on
localhost and leverage the MLet Bean within JMX to load a remote MBean from an attacker-controlled
server. This allows an attacker to execute arbitrary code within the Java process run by Ant Media Server
and execute code within the context of the “antmedia” service account on the system.

Ant Media Server Versions Tested
We performed testing against Ant Media Server by leveraging the official Ant Media Server images made
available through the AWS marketplace. When testing the community edition version we leveraged
version 2.8.2.

Identifying the JMX Service Listening on Localhost
After configuring a local copy of Ant Media Server we then began performing enumeration of the
installed programs, running processes, and listening network ports. We observed that the antmedia service
was configured to start with JMX remoting enabled and authentication disabled (see Figure 1). However,
the service was only configured to listen for connections on localhost meaning that the service would
never be accessible remotely (see Figure 2).

Figure 1: We observed that the Ant Media Server application was configured to launch with Java
Management Extensions (JMX) for Remote Management configured with authentication disabled on
localhost.

https://nvd.nist.gov/vuln/detail/CVE-2023-26269
https://www.oracle.com/technical-resources/articles/javase/jmx.html
https://www.oracle.com/technical-resources/articles/javase/jmx.html


Figure 2: We observed that the JMX remote management service was configured to listen on localhost on
port 5599/TCP.

We performed fingerprinting and enumeration of the service running on port 5599/TCP using the
rmi-dumpregistry script from Nmap (see Figure Y). The JMX remote management service leverages the
Java remote method invocation protocol as a transport for remote procedure calls (see Figure 3).

Figure 3: We observed that the JMX remote management service leveraged Java Remote Method
Invocation (RMI) as a transport layer protocol for remote procedure calls.

https://en.wikipedia.org/wiki/Java_remote_method_invocation


After confirming the existence of the JMX remote management service running on port 5599/TCP we
then needed to confirm that authentication wasn’t required to access the service. To confirm this
hypothesis we leveraged the beanshooter utility to enumerate the installed MBeans within the JMX server.
We observed it was possible to authenticate to the JMX server without authentication (see Figure 4).

Figure 4: We then leverage the beanshooter utility to enumerate installed MBeans within the JMX MBean
server without any required authentication.

Escalating Privileges to the Root using JMX
We then leveraged the MLet MBean available through the JMX service to load a remote
attacker-controlled MBean named TonkaBean from an attacker-controlled server running on localhost on
port 1337/TCP (see Figure 5). This allowed us to execute arbitrary code within the context of the victim
Java process running as the “antmedia” user account. Hans-Martin Munch outlines why it is possible for

https://github.com/qtc-de/beanshooter


an attacker to load a MBean from a remote server into the JMX process when JMX is configured without
authentication in his article Attacking RMI Based JMX Services.

Figure 5: We leveraged the MLET MBean interface to load a remote attacker-controlled MBean object
called “TonkaBeam” which allowed for execution of arbitrary shell commands within the victim Java
process.

After loading the malicious MBean we then performed enumeration of the JMX service again to confirm
that our malicious TonkaBean MBean was loaded successfully (see Figure 6).

https://mogwailabs.de/en/blog/2019/04/attacking-rmi-based-jmx-services/


Figure 6: We verify that we successfully leveraged the MLet MBean to load our malicious TonkaBean
MBean into the victim Java process.

Next we connected to the TonkaBean MBean now loaded within the JMX process and leveraged it to run
arbitrary commands as the “antmedia” user account. We determined that the “antmedia” user was allowed
to run any script named enable_ssl.sh as root and we leveraged this capability to run the “id -a” command
to achieve root access on the system (see Figure 7).



Figure 7: We then leveraged the malicious TonkaBean MBean to execute arbitrary commands within the
context of the “antmedia” service account user.

Suggested CVSS Score

Figure 8: A suggested CVSS score for the local privilege escalation vulnerability.

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:H

