Skip to content
Find file
Fetching contributors…
Cannot retrieve contributors at this time
2407 lines (1985 sloc) 94.7 KB
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: CLIM-INTERNALS; -*-
;;; --------------------------------------------------------------------------------------
;;; Title: The CLIM Region Datatype
;;; Created: 1998-12-02 19:26
;;; Author: Gilbert Baumann <unk6@rz.uni-karlsruhe.de>
;;; License: LGPL (See file COPYING for details).
;;; $Id: regions.lisp,v 1.39 2009/06/03 20:33:16 ahefner Exp $
;;; --------------------------------------------------------------------------------------
;;; (c) copyright 1998,1999,2001 by Gilbert Baumann
;;; (c) copyright 2001 by Arnaud Rouanet (rouanet@emi.u-bordeaux.fr)
;;; This library is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Library General Public
;;; License as published by the Free Software Foundation; either
;;; version 2 of the License, or (at your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Library General Public License for more details.
;;;
;;; You should have received a copy of the GNU Library General Public
;;; License along with this library; if not, write to the
;;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;;; Boston, MA 02111-1307 USA.
;;;; Changes
;;; When Who What
;;; --------------------------------------------------------------------------------------
;;; 2002-06-27 GB REGION-INTERSECTS-REGION-P has an :around method on bounding
;;; rectangles.
;;; 2002-06-04 APD partially fixed (BOUNDING-RECTANGLE* STANDARD-ELLIPSE)
;;; 2001-07-16 GB added (REGION-CONTAINS-POSITION-P STANDARD-ELLIPSE ..)
;;; added (BOUNDING-RECTANGLE* STANDARD-ELLIPSE)
;;; added (REGION-INTERSECTION LINE STANDARD-ELLIPSE) and vice versa
;;; 2001-07-12 GB fixed bugs in
;;; (BOUNDING-RECTANGLE* STANDARD-REGION-UNION)
;;; (BOUNDING-RECTANGLE* STANDARD-REGION-INTERSECTION)
;;; 2001-07-09 GB maybe fixed a bug in MAP-OVER-SCHNITT-GERADE/POLYGON.
;;; 2001-03-09 AR fixed a bug in MAKE-ELLIPICAL-THING
;;; fixed STANDARD-ELLIPTICAL-ARC defclass
;;; 2001-03-06 AR fixed bug in (REGION-EQUAL STANDARD-RECTANGLE STANDARD-RECTANGLE)
;;; REGION is now a subclass of DESIGN.
;;; 2001-01-21 GB fixed bug in (TRANSFORM-REGION T RECTANGLE-SET)
;;; added some documentation
;;; GB = Gilbert Baumann <unk6@rz.uni-karlsruhe.de>
;;; AR = Arnaud Rouanet <rouanet@emi.u-bordeaux.fr>
;;; ---- TODO ----------------------------------------------------------------------------
;; - ellipses: The intersection of two ellipses is there, but
;; handling the start/end angle is not implemented.
;; - This code is anything else than well organized.
;; - provide better (faster) implementations for REGION-EQUAL,
;; REGION-CONTAINS-REGION-P, and REGION-INTERSECTS-REGION-P.
;; - Compute a union/intersection/difference of an union of polygon vs another
;; polygon or union of polygons directly via POLYGON-OP.
;; - STANDARD-REGION-UNION should either become a subclass
;; 'STANDARD-DISJUNCT-REGION-UNION' or a flag. Some set operations could take
;; advantage out the information, if the subregions of an union are disjunct.
;; - provide sensible PRINT-OBJECT methods.
;; - while you are are at it; provide a reasonable fast vertical scan routine.
;; polygons should make use of the sweep line algorithm.
;; - implement bounding rectangle cache for polygons and polylines
;; - make REGION-CONTAINS-POSITION-P for polygons faster by handling the special
;; case of the intersection of a horizontal line and the polygons
;; - MAKE-POLY{LINE,GON} should canonise its arguments; no edges of length 0 and
;; no co-linear vertexes. Maybe: canonise rectangles? Also a polygon of less
;; than three vertexes is to be considered empty aka +nowhere+.
(in-package :clim-internals)
(defclass nowhere-region (region nowhere-mixin) ())
(defclass everywhere-region (region everywhere-mixin) ())
;; coordinate is defined in coordinates.lisp
(defvar +everywhere+ (make-instance 'everywhere-region))
(defvar +nowhere+ (make-instance 'nowhere-region))
(defmethod bounding-rectangle* ((x nowhere-region))
(values 0 0 0 0))
;; 2.5.1.1 Region Predicates in CLIM
(defgeneric region-equal (region1 region2))
(defgeneric region-contains-region-p (region1 region2))
(defgeneric region-contains-position-p (region x y))
(defgeneric region-intersects-region-p (region1 region2))
;; 2.5.1.2 Composition of CLIM Regions
(defclass standard-region-union (region-set)
((regions :initarg :regions :reader standard-region-set-regions)))
(defclass standard-region-intersection (region-set)
((regions :initarg :regions :reader standard-region-set-regions)))
(defclass standard-region-difference (region-set)
((a :initarg :a :reader standard-region-difference-a)
(b :initarg :b :reader standard-region-difference-b)))
;; Protocol:
(defgeneric region-set-regions (region &key normalize))
(defgeneric map-over-region-set-regions (function region &key normalize))
(defgeneric region-union (region1 region2))
(defgeneric region-intersection (region1 region2))
(defgeneric region-difference (region1 region2))
;;; ---- 2.5.2 CLIM Point Objects --------------------------------------------------------
(defclass standard-point (point)
((x :type coordinate :initarg :x)
(y :type coordinate :initarg :y)))
(defun make-point (x y)
(make-instance 'standard-point :x (coerce x 'coordinate) :y (coerce y 'coordinate)))
(defmethod print-object ((self standard-point) sink)
(with-slots (x y) self
(format sink "#<~S ~S ~S>" 'standard-point x y)))
;; Point protocol: point-position
(defgeneric point-position (point))
(defmethod point-position ((self standard-point))
(with-slots (x y) self
(values x y)))
(defmethod point-x ((self point))
(nth-value 0 (point-position self)))
(defmethod point-y ((self point))
(nth-value 1 (point-position self)))
(defmethod transform-region (transformation (self standard-point))
(with-slots (x y) self
(multiple-value-bind (x* y*) (transform-position transformation x y)
(make-point x* y*))))
(defmethod region-contains-position-p ((self standard-point) px py)
(with-slots (x y) self
(and (coordinate= x px) (coordinate= y py))))
;;; ---- 2.5.3 Polygons and Polylines in CLIM --------------------------------------------
;; Protocol:
(defclass standard-polyline (polyline)
((points :initarg :points)
(closed :initarg :closed)))
(defclass standard-polygon (polygon)
((points :initarg :points)) )
;;; ---- 2.5.3.1 Constructors for CLIM Polygons and Polylines ---------------------------
(defun coord-seq->point-seq (sequence)
(let ((res nil))
(do-sequence ((x y) sequence)
(push (make-point x y) res))
(nreverse res)))
(defun make-polyline (point-seq &key closed)
(assert (every #'pointp point-seq))
(setq point-seq (coerce point-seq 'list))
(cond ((every (lambda (x) (region-equal x (car point-seq)))
(cdr point-seq))
+nowhere+)
(t
(make-instance 'standard-polyline :points point-seq :closed closed))))
(defun make-polyline* (coord-seq &key closed)
(make-polyline (coord-seq->point-seq coord-seq) :closed closed))
(defun make-polygon (point-seq)
(assert (every #'pointp point-seq))
(setq point-seq (coerce point-seq 'list))
(cond ((every (lambda (x) (region-equal x (car point-seq)))
(cdr point-seq))
+nowhere+)
(t
(make-instance 'standard-polygon :points point-seq))))
(defun make-polygon* (coord-seq)
(make-polygon (coord-seq->point-seq coord-seq)))
(defmethod polygon-points ((self standard-polygon))
(with-slots (points) self
points))
(defmethod map-over-polygon-coordinates (fun (self standard-polygon))
(with-slots (points) self
(mapc (lambda (p) (funcall fun (point-x p) (point-y p))) points)))
(defmethod map-over-polygon-segments (fun (self standard-polygon))
(with-slots (points) self
(do ((q points (cdr q)))
((null (cdr q))
(funcall fun (point-x (car q)) (point-y (car q)) (point-x (car points)) (point-y (car points))))
(funcall fun (point-x (car q)) (point-y (car q)) (point-x (cadr q)) (point-y (cadr q))))))
(defmethod polygon-points ((self standard-polyline))
(with-slots (points) self
points))
(defmethod map-over-polygon-coordinates (fun (self standard-polyline))
(with-slots (points) self
(mapc (lambda (p) (funcall fun (point-x p) (point-y p))) points)))
(defmethod map-over-polygon-segments (fun (self standard-polyline))
(with-slots (points closed) self
(do ((q points (cdr q)))
((null (cdr q))
(when closed
(funcall fun (point-x (car q)) (point-y (car q)) (point-x (car points)) (point-y (car points)))))
(funcall fun (point-x (car q)) (point-y (car q)) (point-x (cadr q)) (point-y (cadr q))))))
(defmethod polyline-closed ((self standard-polyline))
(with-slots (closed) self
closed))
(defmethod transform-region (transformation (self standard-polyline))
(with-slots (points closed) self
(make-polyline (mapcar (lambda (p)
(multiple-value-bind (x* y*) (transform-position transformation (point-x p) (point-y p))
(make-point x* y*)))
points)
:closed closed)))
(defmethod transform-region (transformation (self standard-polygon))
(with-slots (points) self
(make-polygon (mapcar (lambda (p)
(multiple-value-bind (x* y*) (transform-position transformation (point-x p) (point-y p))
(make-point x* y*)))
points))))
(defmethod region-contains-position-p ((self standard-polyline) x y)
(setf x (coerce x 'coordinate)
y (coerce y 'coordinate))
(block nil
(map-over-polygon-segments (lambda (x1 y1 x2 y2)
(when (line-contains-point-p* x1 y1 x2 y2 x y)
(return t)))
self)
nil))
(defun line-contains-point-p* (x1 y1 x2 y2 px py)
(and (or (<= x1 px x2) (>= x1 px x2))
(or (<= y1 py y2) (>= y1 py y2))
(coordinate= (* (- py y1) (- x2 x1))
(* (- px x1) (- y2 y1)))))
(defun line-contains-point-p** (x1 y1 x2 y2 px py)
(coordinate= (* (- py y1) (- x2 x1))
(* (- px x1) (- y2 y1))))
;;; ---- 2.5.4 Lines in CLIM -------------------------------------------------------------
;; Line protocol: line-start-point* line-end-point*
(defclass standard-line (line)
((x1 :type coordinate :initarg :x1)
(y1 :type coordinate :initarg :y1)
(x2 :type coordinate :initarg :x2)
(y2 :type coordinate :initarg :y2)))
(defun make-line (start-point end-point)
(make-line* (point-x start-point) (point-y start-point) (point-x end-point) (point-y end-point)))
(defun make-line* (start-x start-y end-x end-y)
(setf start-x (coerce start-x 'coordinate)
start-y (coerce start-y 'coordinate)
end-x (coerce end-x 'coordinate)
end-y (coerce end-y 'coordinate))
(if (and (coordinate= start-x end-x)
(coordinate= start-y end-y))
+nowhere+
(make-instance 'standard-line :x1 start-x :y1 start-y :x2 end-x :y2 end-y)))
(defmethod line-start-point* ((line standard-line))
(with-slots (x1 y1 x2 y2) line
(values x1 y1)))
(defmethod line-end-point* ((line standard-line))
(with-slots (x1 y1 x2 y2) line
(values x2 y2)))
(defmethod line-start-point ((line line))
(multiple-value-bind (x y) (line-start-point* line)
(make-point x y)))
(defmethod line-end-point ((line line))
(multiple-value-bind (x y) (line-end-point* line)
(make-point x y)))
;; polyline protocol for standard-line's:
(defmethod polygon-points ((line standard-line))
(with-slots (x1 y1 x2 y2) line
(list (make-point x1 y1) (make-point x2 y2))))
(defmethod map-over-polygon-coordinates (fun (line standard-line))
(with-slots (x1 y1 x2 y2) line
(funcall fun x1 y1)
(funcall fun x2 y2)))
(defmethod map-over-polygon-segments (fun (line standard-line))
(with-slots (x1 y1 x2 y2) line
(funcall fun x1 y1 x2 y2)))
(defmethod polyline-closed ((line standard-line))
nil)
(defmethod transform-region (transformation (line standard-line))
(with-slots (x1 y1 x2 y2) line
(multiple-value-bind (x1* y1*) (transform-position transformation x1 y1)
(multiple-value-bind (x2* y2*) (transform-position transformation x2 y2)
(make-line* x1* y1* x2* y2*)))))
(defmethod region-contains-position-p ((self standard-line) x y)
(multiple-value-bind (x1 y1) (line-start-point* self)
(multiple-value-bind (x2 y2) (line-end-point* self)
(line-contains-point-p* x1 y1 x2 y2 x y))))
(defmethod print-object ((self standard-line) sink)
(with-slots (x1 y1 x2 y2) self
(format sink "#<~S ~D ~D ~D ~D>" (type-of self) x1 y1 x2 y2)))
;;; ---- 2.5.5 Rectangles in CLIM --------------------------------------------------------
;; protocol:
;; rectangle-edges*
(defclass standard-rectangle (rectangle)
((coordinates :initform (make-array 4 :element-type 'coordinate))))
(defmethod initialize-instance :after ((obj standard-rectangle)
&key (x1 0.0d0) (y1 0.0d0)
(x2 0.0d0) (y2 0.0d0))
(let ((coords (slot-value obj 'coordinates)))
(setf (aref coords 0) x1)
(setf (aref coords 1) y1)
(setf (aref coords 2) x2)
(setf (aref coords 3) y2)))
(defmacro with-standard-rectangle ((x1 y1 x2 y2) rectangle &body body)
(with-gensyms (coords)
`(let ((,coords (slot-value ,rectangle 'coordinates)))
(declare (type (simple-array coordinate (4)) ,coords))
(let ((,x1 (aref ,coords 0))
(,y1 (aref ,coords 1))
(,x2 (aref ,coords 2))
(,y2 (aref ,coords 3)))
(declare (type coordinate ,x1 ,y1 ,x2 ,y2))
,@body))))
(defmacro with-standard-rectangle* ((&key x1 y1 x2 y2) rectangle &body body)
(with-gensyms (coords)
`(let ((,coords (slot-value ,rectangle 'coordinates)))
(declare (type (simple-array coordinate (4)) ,coords))
(let (,@(and x1 `((,x1 (aref ,coords 0))))
,@(and y1 `((,y1 (aref ,coords 1))))
,@(and x2 `((,x2 (aref ,coords 2))))
,@(and y2 `((,y2 (aref ,coords 3)))))
(declare (type coordinate
,@(and x1 `(,x1))
,@(and y1 `(,y1))
,@(and x2 `(,x2))
,@(and y2 `(,y2))))
,@body))))
(defun make-rectangle (point1 point2)
(make-rectangle* (point-x point1) (point-y point1) (point-x point2) (point-y point2)))
(defun make-rectangle* (x1 y1 x2 y2)
(psetq x1 (coerce (min x1 x2) 'coordinate)
x2 (coerce (max x1 x2) 'coordinate)
y1 (coerce (min y1 y2) 'coordinate)
y2 (coerce (max y1 y2) 'coordinate))
(if (or (coordinate= x1 x2)
(coordinate= y1 y2))
+nowhere+
(make-instance 'standard-rectangle :x1 x1 :x2 x2 :y1 y1 :y2 y2)))
(defmethod rectangle-edges* ((rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(values x1 y1 x2 y2)))
;;; standard-rectangles are immutable and all that, but we still need to set
;;; their positions and dimensions (in output recording)
(defgeneric* (setf rectangle-edges*) (x1 y1 x2 y2 rectangle))
(defmethod* (setf rectangle-edges*)
(x1 y1 x2 y2 (rectangle standard-rectangle))
(let ((coords (slot-value rectangle 'coordinates)))
(declare (type (simple-array coordinate (4)) coords))
(setf (aref coords 0) x1)
(setf (aref coords 1) y1)
(setf (aref coords 2) x2)
(setf (aref coords 3) y2))
(values x1 y1 x2 y2))
(defmethod rectangle-min-point ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(declare (ignore x2 y2))
(make-point x1 y1)))
(defmethod rectangle-min-point ((rect standard-rectangle))
(with-standard-rectangle* (:x1 x1 :y1 y1)
rect
(make-point x1 y1)))
(defmethod rectangle-max-point ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(declare (ignore x1 y1))
(make-point x2 y2)))
(defmethod rectangle-max-point ((rect standard-rectangle))
(with-standard-rectangle* (:x2 x2 :y2 y2)
rect
(make-point x2 y2)))
(defmethod rectangle-min-x ((rect rectangle))
(nth-value 0 (rectangle-edges* rect)))
(defmethod rectangle-min-x ((rect standard-rectangle))
(with-standard-rectangle* (:x1 x1)
rect
x1))
(defmethod rectangle-min-y ((rect rectangle))
(nth-value 1 (rectangle-edges* rect)))
(defmethod rectangle-min-y ((rect standard-rectangle))
(with-standard-rectangle* (:y1 y1)
rect
y1))
(defmethod rectangle-max-x ((rect rectangle))
(nth-value 2 (rectangle-edges* rect)))
(defmethod rectangle-max-x ((rect standard-rectangle))
(with-standard-rectangle* (:x2 x2)
rect
x2))
(defmethod rectangle-max-y ((rect rectangle))
(nth-value 3 (rectangle-edges* rect)))
(defmethod rectangle-max-y ((rect standard-rectangle))
(with-standard-rectangle* (:y2 y2)
rect
y2))
(defmethod rectangle-width ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(declare (ignore y1 y2))
(- x2 x1)))
(defmethod rectangle-width ((rect standard-rectangle))
(with-standard-rectangle* (:x1 x1 :x2 x2)
rect
(- x2 x1)))
(defmethod rectangle-height ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(declare (ignore x1 x2))
(- y2 y1)))
(defmethod rectangle-height ((rect standard-rectangle))
(with-standard-rectangle* (:y1 y1 :y2 y2)
rect
(- y2 y1)))
(defmethod rectangle-size ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(values (- x2 x1) (- y2 y1))))
(defmethod rectangle-size ((rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(values (- x2 x1) (- y2 y1))))
;; polyline/polygon protocol for standard-rectangle's
(defmethod polygon-points ((rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(list (make-point x1 y1)
(make-point x1 y2)
(make-point x2 y2)
(make-point x2 y1))))
(defmethod map-over-polygon-coordinates (fun (rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(funcall fun x1 y1)
(funcall fun x1 y2)
(funcall fun x2 y2)
(funcall fun x2 y1)))
(defmethod map-over-polygon-segments (fun (rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(funcall fun x1 y1 x1 y2)
(funcall fun x1 y2 x2 y2)
(funcall fun x2 y2 x2 y1)
(funcall fun x2 y1 x1 y1)))
(defmethod transform-region (transformation (rect standard-rectangle))
(cond ((rectilinear-transformation-p transformation)
(with-standard-rectangle (x1 y1 x2 y2)
rect
(multiple-value-bind (x1* y1*) (transform-position transformation x1 y1)
(multiple-value-bind (x2* y2*) (transform-position transformation x2 y2)
(make-rectangle* x1* y1* x2* y2*)))))
(t
(make-polygon (mapcar (lambda (p) (transform-region transformation p))
(polygon-points rect)))) ))
(defmethod region-contains-position-p ((self standard-rectangle) x y)
(with-standard-rectangle (x1 y1 x2 y2)
self
(and (<= x1 (coerce x 'coordinate) x2)
(<= y1 (coerce y 'coordinate) y2))))
;;; ---- 2.5.6 Ellipses and Elliptical Arcs in CLIM --------------------------------------
(defclass elliptical-thing ()
((start-angle :initarg :start-angle)
(end-angle :initarg :end-angle)
(tr :initarg :tr))) ;a transformation from the unit circle to get the elliptical object
(defmethod print-object ((ell elliptical-thing) stream)
(with-slots (start-angle end-angle tr) ell
(format stream "#<~A [~A ~A] ~A>"
(type-of ell)
(and start-angle (* (/ 180 pi) start-angle))
(and end-angle (* (/ 180 pi) end-angle))
tr)))
(defclass standard-ellipse (elliptical-thing ellipse) ())
(defclass standard-elliptical-arc (elliptical-thing elliptical-arc) ())
;;; ---- 2.5.6.1 Constructor Functions for Ellipses and Elliptical Arcs in CLIM ---------
(defun make-ellipse (center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key start-angle end-angle)
(make-ellipse* (point-x center-point) (point-y center-point)
radius-1-dx radius-1-dy radius-2-dx radius-2-dy
:start-angle start-angle
:end-angle end-angle))
(defun make-ellipse* (center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
&key start-angle end-angle)
(make-ellipical-thing 'standard-ellipse
center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
start-angle end-angle))
(defun make-elliptical-arc (center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key start-angle end-angle)
(make-elliptical-arc* (point-x center-point) (point-y center-point)
radius-1-dx radius-1-dy radius-2-dx radius-2-dy
:start-angle start-angle
:end-angle end-angle))
(defun make-elliptical-arc* (center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
&key start-angle end-angle)
(make-ellipical-thing 'standard-elliptical-arc
center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
start-angle end-angle))
(defun make-ellipical-thing (class
center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
start-angle end-angle)
(setf center-x (coerce center-x 'coordinate)
center-y (coerce center-y 'coordinate)
radius-1-dx (coerce radius-1-dx 'coordinate)
radius-1-dy (coerce radius-1-dy 'coordinate)
radius-2-dx (coerce radius-2-dx 'coordinate)
radius-2-dy (coerce radius-2-dy 'coordinate)
start-angle (and start-angle (coerce start-angle 'coordinate))
end-angle (and end-angle (coerce end-angle 'coordinate)) )
(let ((tr (make-3-point-transformation* 0 0 1 0 0 1
center-x center-y
(+ center-x radius-1-dx) (+ center-y radius-1-dy)
(+ center-x radius-2-dx) (+ center-y radius-2-dy))))
(cond ((and (null start-angle) (null end-angle)))
((null start-angle) (setf start-angle 0))
((null end-angle) (setf end-angle (* 2 pi))))
(make-instance class :tr tr :start-angle start-angle :end-angle end-angle) ))
(defmethod transform-region (transformation (self elliptical-thing))
(with-slots (start-angle end-angle tr) self
;; I think this should be untransform-angle below, as the ellipse angles
;; go counter-clockwise in screen coordinates, whereas our transformations
;; rotate clockwise.. -Hefner
(let ((start-angle* (and start-angle (untransform-angle transformation start-angle)))
(end-angle* (and end-angle (untransform-angle transformation end-angle))))
(when (reflection-transformation-p transformation)
(rotatef start-angle* end-angle*))
(make-instance (type-of self)
:tr (compose-transformations transformation tr)
:start-angle start-angle*
:end-angle end-angle*))))
(defmethod region-contains-position-p ((self standard-ellipse) x y)
;; XXX start/end angle still missing
(with-slots (tr) self
(multiple-value-bind (x y) (untransform-position tr x y)
(<= (+ (* x x) (* y y)) 1))))
(defmethod bounding-rectangle* ((region standard-ellipse))
;; XXX start/end angle still missing
(with-slots (tr) region
(flet ((contact-radius* (x y)
"Returns coordinates of the radius of the point, in
which the vector field (x y) touches the ellipse."
(multiple-value-bind (xc yc) (untransform-distance tr x y)
(let* ((d (sqrt (+ (* xc xc) (* yc yc))))
(xn (- (/ yc d)))
(yn (/ xc d)))
(transform-distance tr xn yn)))))
(multiple-value-bind (cx cy) (ellipse-center-point* region)
(if (zerop (ellipse-radii region))
(values cx cy cx cy)
(multiple-value-bind (vdx vdy) (contact-radius* 1 0)
(declare (ignore vdx))
(multiple-value-bind (hdx hdy) (contact-radius* 0 1)
(declare (ignore hdy))
(let ((rx (abs hdx))
(ry (abs vdy)))
(values (- cx rx) (- cy ry)
(+ cx rx) (+ cy ry))))))))))
(defun intersection-line/unit-circle (x1 y1 x2 y2)
"Computes the intersection of the line from (x1,y1) to (x2,y2) and the unit circle.
If the intersection is empty, NIL is returned.
Otherwise four values are returned: x1, y1, x2, y2; the start and end point of the
resulting line."
(let* ((dx (- x2 x1))
(dy (- y2 y1))
(a (+ (expt dx 2) (expt dy 2)))
(b (+ (* 2 x1 dx) (* 2 y1 dy)))
(c (+ (expt x1 2) (expt y1 2) -1)))
(let ((s1 (- (/ (+ (sqrt (- (expt b 2) (* 4 a c))) b) (* 2 a))))
(s2 (- (/ (- b (sqrt (- (expt b 2) (* 4 a c)))) (* 2 a)))))
(cond ((and (realp s1) (realp s2)
(not (and (< s1 0) (< s2 0)))
(not (and (> s1 1) (> s2 1))))
(let ((s1 (max 0 (min 1 s1)))
(s2 (max 0 (min 1 s2))))
(values (+ x1 (* s1 dx))
(+ y1 (* s1 dy))
(+ x1 (* s2 dx))
(+ y1 (* s2 dy)))))
(t
nil)))))
(defmethod region-intersection ((line line) (ellipse standard-ellipse))
(with-slots (tr) ellipse
(multiple-value-bind (x1 y1 x2 y2)
(multiple-value-call #'intersection-line/unit-circle
(multiple-value-call #'untransform-position tr (line-start-point* line))
(multiple-value-call #'untransform-position tr (line-end-point* line)))
(if x1
(multiple-value-call #'make-line*
(transform-position tr x1 y1)
(transform-position tr x2 y2))
+nowhere+))))
(defmethod region-intersection ((ellipse standard-ellipse) (line standard-line))
(region-intersection ellipse line))
;;; ---- 2.5.6.2 Accessors for CLIM Elliptical Objects -----------------------------------
(defmethod ellipse-center-point* ((self elliptical-thing))
(with-slots (tr) self
(transform-position tr 0 0)))
(defmethod ellipse-center-point ((self elliptical-thing))
(with-slots (tr) self
(transform-region tr (make-point 0 0))))
(defmethod ellipse-radii ((self elliptical-thing))
(with-slots (tr) self
(multiple-value-bind (dx1 dy1) (transform-distance tr 1 0)
(multiple-value-bind (dx2 dy2) (transform-distance tr 0 1)
(values dx1 dy1 dx2 dy2)))))
(defmethod ellipse-start-angle ((self elliptical-thing))
(with-slots (start-angle) self
start-angle))
(defmethod ellipse-end-angle ((self elliptical-thing))
(with-slots (end-angle) self
end-angle))
(defun ellipse-coefficients (ell)
;; Returns the coefficients of the equation specifing the ellipse as in
;; ax^2 + by^2 + cxy + dx + dy - f = 0
;; Note 1:
;; The `f' here may seem to be superfluous, since you
;; could simply multiply the whole equation by 1/f. But this is
;; not the case, since `f' may as well be 0.
;; Note 2:
;; In the literature you often find something like
;; (x^2)/a + (y^2)/b - 1 = 0 for an axis aligned ellipse, but
;; I rather choose to treat all coefficients as simple factors instead
;; of denominators.
(with-slots (tr) ell
;;warum die inverse hier?
(multiple-value-bind (a b d e c f) (get-transformation (invert-transformation tr))
(values
(+ (* a a) (* d d)) ; x**2
(+ (* b b) (* e e)) ; y**2
(+ (* 2 a b) (* 2 d e)) ; xy
(+ (* 2 a c) (* 2 d f)) ; x
(+ (* 2 b c) (* 2 e f)) ; y
(+ (* c c) (* f f) -1)))) )
;;; Straight from the horse's mouth -- moore
;;;
;;; Axis of an ellipse
;;; -------------------------
;; Given an ellipse with its center at the origin, as
;; ax^2 + by^2 + cxy - 1 = 0
;; The two axis of an ellipse are characterized by minimizing and
;; maximizing the radius. Let (x,y) be a point on the delimiter of the
;; ellipse. It's radius (distance from the origin) then is:
;; r^2 = x^2 + y^2
;; To find the axis can now be stated as an minimization problem with
;; constraints. So mechanically construct the auxiliarry function H:
;; H = x^2 + y^2 - k(ax^2 + by^2 + cxy - 1)
;; So the following set of equations remain to be solved
;; (I) dH/dx = 0 = 2x + 2kax + kcy
;; (II) dH/dy = 0 = 2y + 2kby + kcx
;; (III) dH/dk = 0 = ax^2 + by^2 + cxy - 1
;; Unfortunately, as I always do the math work - hopelessly, even -
;; Maxima is the tool of my choice:
;; g1: 2*x + 2*k*a*x + k*c*y$
;; g2: 2*y + 2*k*b*y + k*c*x$
;; g3: a*x*x + b*y*y + c*x*y -1$
;; sol1: solve ([g1,g2],[k,y])$
;; /* This yields two solutions because of the squares with occur. The
;; * last equation (G3) must therefore be handled for both solutions for
;; * y.
;; */
;; y1: rhs(first(rest(first(sol1))))$
;; y2: rhs(first(rest(first(rest(sol1)))))$
;; /* Substitute the 'y' found. */
;; sol2: solve(subst(y1,y,g3),x);
;; x11: rhs(first(sol2));
;; x12: rhs(first(rest(sol2)));
;; sol3: solve(subst(y2,y,g3),x);
;; x21: rhs(first(sol3));
;; x22: rhs(first(rest(sol3)));
;; /* dump everything */
;; dumpsol([[x=x11,y=y1], [x=x12,y=y1], [x=x21,y=y2], [x=x22,y=y2]]);
(defun ellipse-normal-radii* (ell)
(multiple-value-bind (a b c) (ellipse-coefficients ell)
(cond ((coordinate= 0 c)
;; this is the unit circle
(values 0 (sqrt (/ 1 b))
(sqrt (/ 1 a)) 0))
(t
(let* ((x1 (- (/ c
(sqrt (+ (- (* (* c c)
(sqrt (+ (* c c)
(* b b)
(- (* 2 a b)) (* a a)))))
(- (* 2 (* b b)
(sqrt (+ (* c c) (* b b)
(- (* 2 a b)) (* a a)))))
(* 2 a b (sqrt (+ (* c c) (* b b)
(- (* 2 a b))
(* a a))))
(* 2 b (* c c))
(* 2 (expt b 3))
(- (* 4 a (* b b))) (* 2 (* a a) b))))))
(y1 (- (/ (+ (* (sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a)))
x1)
(- (* b x1)) (* a x1))
c)))
(x2 (- (/ c
(sqrt (+ (* (* c c)
(sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a))))
(* 2 (* b b) (sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a))))
(- (* 2 a b (sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a)))))
(* 2 b (* c c))
(* 2 (expt b 3))
(- (* 4 a (* b b))) (* 2 (* a a) b))))))
(y2 (- (/ (+ (- (* (sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a)))
x2))
(- (* b x2)) (* a x2))
c))))
(values x1 y1 x2 y2))))))
;;; ---- Intersection of Ellipse vs. Ellipse ---------------------------------------------
;; Das ganze ist so unverstaendlich, ich muss noch mal nach meinen Notizen
;; fanden, um die Herleitung der Loesung fuer das Schnittproblem praesentieren
;; zu koennen.
(defun intersection-ellipse/ellipse (e1 e2)
;; Eine der beiden Ellipsen fuehren wir zuerst auf den Einheitskreis zurueck.
(let ((a (invert-transformation (slot-value e1 'tr))))
(let ((r (intersection-ellipse/unit-circle (transform-region a e2))))
(if (atom r)
r
(mapcar (lambda (p)
(multiple-value-bind (x y) (transform-position (slot-value e1 'tr) (car p) (cdr p))
(make-point x y)))
r)))))
(defun intersection-ellipse/unit-circle (ell)
(multiple-value-bind (a b c d e f) (ellipse-coefficients ell)
(let ((pn (elli-polynom ell)))
(cond ((= (length pn) 0)
:coincident)
(t
(let ((ys (newton-iteration pn 0d0))
(res nil))
(dolist (y ys)
(let ((x (sqrt (- 1 (* y y)))))
(when (realp x)
(when (coordinate= 0 (ellipse-equation a b c d e f x y))
(pushnew (cons x y) res :test #'equal))
(when (coordinate= 0 (ellipse-equation a b c d e f (- x) y))
(pushnew (cons (- x) y) res :test #'equal)) )))
res)) ))))
(defun ellipse-equation (a b c d e f x y)
(+ (* a x x) (* b y y) (* c x y) (* d x) (* e y) f))
(defun elli-polynom (ell)
;; Was ganz lustig ist, ist dass wir bei Kreisen immer ein Polynom
;; vom Grade zwei bekommen.
(multiple-value-bind (a b c d e f) (ellipse-coefficients ell)
(canonize-polynom
(vector (+ (* (- b a) (- b a)) (* c c))
(+ (* 2 b e) (* -2 a e) (* 2 c d))
(+ (* e e) (* 2 (- b a) (+ a f)) (* -1 c c) (* d d))
(+ (* 2 e a) (* 2 e f) (* -2 c d))
(+ (* (+ a f) (+ a f)) (* -1 d d)) ))) )
;; Wir basteln uns mal eine einfache Newtoniteration. Manchmal
;; scheitern wir noch hoffungslos an lokalen Minima. Ansonsten ist das
;; Konvergenzverhalten fuer unsere Aufgabe schon ganz gut. Aber wir
;; handeln uns durch das Abdividieren der Nullstellen z.T. noch
;; beachtliche Fehler ein; ich versuche das zu mildern in dem ich nach
;; Finden einer Nullstell noch eine paar Newtonschritte mit dem
;; Original-Polynom mache (newton-ziel-gerade).
;; Ich sollte man nicht so faul sein und die reichhaltige Literatur zu
;; Rate ziehen tun; es muss auch etwas bessers als Newtoniteration
;; geben. Ich habe da noch so vage Erinnerungen an die
;; Numerik-Vorlesung ...
(defun newton-ziel-gerade (pn x &optional (n 4))
(cond ((= n 0) x)
((multiple-value-bind (f p2) (horner-schema pn x)
(multiple-value-bind (f*) (horner-schema p2 x)
(newton-ziel-gerade pn (- x (/ f f*)) (- n 1)))))))
(defun solve-p1 (b c)
(if (= b 0)
nil
(list (- (/ c b)))))
(defun solve-p2 (a b c)
(cond ((= a 0)
(solve-p1 b c))
(t
(let* ((p (/ b a))
(q (/ c a))
(d (- (/ (* p p) 4) q)))
(cond ((< d 0)
nil)
((= d 0)
(list (/ p 2)))
(t
(list (+ (/ p 2) (sqrt d))
(- (/ p 2) (sqrt d))))))) ))
(defun maybe-solve-polynom-trivially (pn)
(case (length pn)
(0 (values nil t))
(1 (values nil t))
(2 (values (solve-p1 (aref pn 0) (aref pn 1)) t))
(3 (values (solve-p2 (aref pn 0) (aref pn 1) (aref pn 2)) t))
(t (values nil nil))))
(defun canonize-polynom (pn)
(cond ((= (length pn) 0) pn)
((coordinate= (aref pn 0) 0)
(canonize-polynom (subseq pn 1)))
(t pn)))
(defun newton-iteration (polynom x-start)
;; ACHTUNG: Speziell auf unser problem angepasst, nicht ohne lesen uebernehmen!
(multiple-value-bind (sol done?) (maybe-solve-polynom-trivially polynom)
(cond (done?
sol)
(t
(let ((x x-start)
x1
(n 0)
(pn polynom)
(eps-f 0d0)
(eps-f* 0d-16)
(eps-x 1d-20)
(m 20) ;maximal zahl schritte
(res nil) )
(loop
(cond ((> n m)
(return)))
(multiple-value-bind (f p2) (horner-schema pn x)
(multiple-value-bind (f*) (horner-schema p2 x)
(cond ((<= (abs f*) eps-f*)
;; Wir haengen an einer Extremstelle fest -- mit zufaelligem Startwert weiter.
(setf x1 (+ 1d0 (random 2d0))))
(t
(setf x1 (- x (/ f f*)))
(cond ((or (<= (abs f) eps-f)
(<= (abs (- x1 x)) eps-x))
;; noch ein paar newton schritte, um das ergebnis zu verbessern
(setf x1 (newton-ziel-gerade polynom x1))
(push x1 res)
;; abdividieren
(multiple-value-bind (f p2) (horner-schema pn x1)
f
(setq pn (canonize-polynom p2))
(multiple-value-bind (sol done?) (maybe-solve-polynom-trivially pn)
(when done?
;; Hier trotzdem noch nachiterieren -- ist das eine gute Idee?
(setf sol (mapcar (lambda (x) (newton-ziel-gerade polynom x)) sol))
(setf res (nconc sol res))
(return))))
(setf x1 x-start)
(setq n 0)) ))))
(setf x (min 1d0 (max -1d0 x1))) ;Darf man das machen?
(incf n)))
res)) )))
(defun horner-schema (polynom x)
;; Wertet das polynom `polynom' mit Hilfe des Hornerschemas an der
;; Stelle `x' aus; Gibt zwei Werte zurueck:
;; - den Funktionswert
;; - die letzte Zeile des Hornerschemas (Divisionsergebnis)
(let ((n (length polynom)))
(cond ((= n 0) (values 0))
((= n 1) (values (aref polynom 0) '#()))
(t
(let ((b (make-array (1- n))))
(setf (aref b 0) (aref polynom 0))
(do ((i 1 (+ i 1)))
((= i (- n 1))
(values
(+ (* (aref b (- i 1)) x) (aref polynom i))
b))
(setf (aref b i) (+ (* (aref b (- i 1)) x) (aref polynom i))))))) ))
;;;; ====================================================================================================
(defmethod region-union ((a point) (b point))
(cond ((region-equal a b)
a)
(t
(make-instance 'standard-region-union :regions (list a b)))))
(defmethod region-intersection ((a point) (b point))
(cond
((region-equal a b) a)
(t +nowhere+)))
(defmethod region-equal ((a point) (b point))
(and (coordinate= (point-x a) (point-x b))
(coordinate= (point-y a) (point-y b))))
;;; ====================================================================================================
;;; ---- Rectangle Sets ---------------------------------------------------------------------------------
(defclass standard-rectangle-set (region-set bounding-rectangle)
((bands
;; Represents the set of rectangles. This is list like:
;;
;; ((<y_1> . <x_band_1>)
;; (<y_2> . <x_band_2>)
;; :
;; (<y_n>))
;;
;; <x_band_i> := (x_i_1 u_i_1 x_i_2 u_i_2 ... x_i_m u_i_m)
;;
;; Now a point (x,y) is member of the rectangle set, if there is an
;; i, such that y member of [y_i, y_(i+1)] and x member of x_band_i.
;;
;; An x is member of an band i, if there is an j, such that x
;; member [x_i_j, u_i_j].
;;
;; That is <x_band_i> describes the possible x-coordinates in the
;; y-range [y_i, y_(i+1)].
;;
:initarg :bands
:reader standard-rectangle-set-bands)
;;
(bounding-rectangle
;; Caches the regions bounding-rectangle. Is either NIL or the
;; bounding-rectangle, represented by a list (x1 y1 x2 y2).
:initform nil)))
(defmethod map-over-region-set-regions (fun (self standard-rectangle-set) &key normalize)
(with-slots (bands) self
(cond ((or (null normalize) (eql normalize :x-banding))
(map-over-bands-rectangles (lambda (x1 y1 x2 y2)
(funcall fun (make-rectangle* x1 y1 x2 y2)))
bands))
((eql normalize :y-banding)
(map-over-bands-rectangles (lambda (y1 x1 y2 x2)
(funcall fun (make-rectangle* x1 y1 x2 y2)))
(xy-bands->yx-bands bands)))
(t
(error "Bad ~S argument to ~S: ~S"
:normalize 'map-over-region-set-regions normalize)) )))
(defmethod region-set-regions ((self standard-rectangle-set) &key normalize)
(let ((res nil))
(map-over-region-set-regions (lambda (r) (push r res)) self :normalize normalize)
res))
(defun make-standard-rectangle-set (bands)
(cond ((null bands) +nowhere+)
((and (= (length bands) 2)
(null (cdr (second bands)))
(= (length (cdr (first bands))) 2))
(make-rectangle* (first (cdar bands)) (caar bands)
(second (cdar bands)) (caadr bands)))
((= (length (first bands)) 1)
(make-standard-rectangle-set (rest bands)))
(t
(make-instance 'standard-rectangle-set :bands bands)) ))
;;; rectangle-set vs. rectangle-set
(defmethod region-union ((xs standard-rectangle-set) (ys standard-rectangle-set))
(make-standard-rectangle-set (bands-union (standard-rectangle-set-bands xs)
(standard-rectangle-set-bands ys))))
(defmethod region-intersection ((xs standard-rectangle-set) (ys standard-rectangle-set))
(make-standard-rectangle-set (bands-intersection (standard-rectangle-set-bands xs)
(standard-rectangle-set-bands ys))))
(defmethod region-difference ((xs standard-rectangle-set) (ys standard-rectangle-set))
(make-standard-rectangle-set (bands-difference (standard-rectangle-set-bands xs)
(standard-rectangle-set-bands ys))))
;;; rectangle-set vs. rectangle and vice versa
(defmethod region-union ((xs standard-rectangle-set) (ys standard-rectangle))
(region-union xs (rectangle->standard-rectangle-set ys)))
(defmethod region-union ((xs standard-rectangle) (ys standard-rectangle-set))
(region-union (rectangle->standard-rectangle-set xs) ys))
(defmethod region-difference ((xs standard-rectangle-set) (ys standard-rectangle))
(region-difference xs (rectangle->standard-rectangle-set ys)))
(defmethod region-difference ((xs standard-rectangle) (ys standard-rectangle-set))
(region-difference (rectangle->standard-rectangle-set xs) ys))
(defmethod region-intersection ((xs standard-rectangle-set) (ys standard-rectangle))
(region-intersection xs (rectangle->standard-rectangle-set ys)))
(defmethod region-intersection ((xs standard-rectangle) (ys standard-rectangle-set))
(region-intersection (rectangle->standard-rectangle-set xs) ys))
;;; rectangle vs rectangle
(defmethod region-union ((xs standard-rectangle) (ys standard-rectangle))
(region-union (rectangle->standard-rectangle-set xs) (rectangle->standard-rectangle-set ys)))
(defmethod region-difference ((xs standard-rectangle) (ys standard-rectangle))
(region-difference (rectangle->standard-rectangle-set xs) (rectangle->standard-rectangle-set ys)))
(defmethod region-intersection ((xs standard-rectangle) (ys standard-rectangle))
(region-intersection (rectangle->standard-rectangle-set xs) (rectangle->standard-rectangle-set ys)))
(defmethod region-intersection ((xr rectangle) (yr rectangle))
(region-intersection (rectangle->standard-rectangle-set xr)
(rectangle->standard-rectangle-set yr)))
;;;
(defmethod region-equal ((xs standard-rectangle-set) (ys standard-rectangle-set))
;; Our bands representation is canonic
(equal (standard-rectangle-set-bands xs)
(standard-rectangle-set-bands ys)))
(defmethod region-contains-position-p ((self standard-rectangle-set) x y)
(block nil
(map-over-bands (lambda (y1 y2 isum)
(when (<= y1 y y2)
(when (isum-member x isum)
(return t)))
(when (> y y2)
(return nil)))
(standard-rectangle-set-bands self))
nil))
(defmethod region-contains-region-p ((xs standard-rectangle-set) (point point))
(multiple-value-bind (x y) (point-position point)
(region-contains-position-p xs x y)))
;;; ---- interval sums ----------------------------------------------------------------------------------
(defun isum-union* (xs ys) (isum-op xs ys boole-ior 0 0 nil))
(defun isum-difference* (xs ys) (isum-op xs ys boole-andc2 0 0 nil))
(defun isum-intersection* (xs ys) (isum-op xs ys boole-and 0 0 nil))
;; You could optimize all this like hell, but I better let the code
;; alone.
;; BTW this is the first time I make use of boole-xyz
(defun isum-op (as bs boole-op in-a in-b x0)
(let (x)
(cond ((and (null as) (null bs))
nil)
(t
(cond ((null bs)
(setq in-a (- 1 in-a))
(setq x (pop as)))
((null as)
(setq in-b (- 1 in-b))
(setq x (pop bs)))
((< (first as) (first bs))
(setq in-a (- 1 in-a))
(setq x (pop as)))
((< (first bs) (first as))
(setq in-b (- 1 in-b))
(setq x (pop bs)))
(t
(setq in-a (- 1 in-a)
in-b (- 1 in-b))
(setq x (pop as))
(pop bs)))
(cond ((zerop (boole boole-op in-a in-b))
(if x0
(list* x0 x (isum-op as bs boole-op in-a in-b nil))
(isum-op as bs boole-op in-a in-b x0)))
(t
(if (null x0)
(isum-op as bs boole-op in-a in-b x)
(isum-op as bs boole-op in-a in-b x0))))))))
;;; ---- Bands ------------------------------------------------------------------------------------------
;; A band list is represented by
;; ((x_0 . a_0) (x_1 . a_1) ... (x_n . nil))
;; The a_i are the relevant interval sums for x in [x_i, x_(i+1)].
;; The empty band could have been representated as
;; ((x . nil)) x arbitrary
;; But to get a cononic representation, I'll choose simply NIL.
;; A better representation would be
;; (x_0 a_0 x_1 a_1 ... x_n)
;; Pro: Unlimited bands could be represented by simply skipping the
;; first or last 'x'. So similar representation could apply to
;; interval sums also. But I let the representation as it is, since
;; this version is well tested.
(defun bands-op (as bs isum-op z0 a b)
(let (z1)
(cond ((and (null as) (null bs))
(if z0
(list (cons z0 nil))
nil))
(t
(setq z1 (cond ((null as) (caar bs))
((null bs) (caar as))
(t (min (caar as) (caar bs)))))
(let ((rest (bands-op (if (and as (= z1 (caar as))) (cdr as) as)
(if (and bs (= z1 (caar bs))) (cdr bs) bs)
isum-op
z1
(if (and as (= z1 (caar as))) (cdar as) a)
(if (and bs (= z1 (caar bs))) (cdar bs) b)))
(isum (funcall isum-op a b)))
(if z0
(if (and rest (equal isum (cdar rest)))
(cons (cons z0 isum)
(cdr rest))
(cons (cons z0 isum)
rest))
rest))) )))
(defun canon-empty-bands (x)
(cond ((null (cdr x)) nil)
(t x)))
(defun bands-union (as bs)
(canon-empty-bands (bands-op as bs #'isum-union* nil nil nil)))
(defun bands-intersection (as bs)
(canon-empty-bands (bands-op as bs #'isum-intersection* nil nil nil)))
(defun bands-difference (as bs)
(canon-empty-bands (bands-op as bs #'isum-difference* nil nil nil)))
(defun rectangle->xy-bands* (x1 y1 x2 y2)
(list (list y1 x1 x2)
(cons y2 nil)))
(defun rectangle->yx-bands* (x1 y1 x2 y2)
(list (list x1 y1 y2)
(cons x2 nil)))
(defun xy-bands->yx-bands (bands)
;; Das kann man sicherlich noch viel geschicker machen ...
(let ((res nil))
(map-over-bands-rectangles (lambda (x1 y1 x2 y2)
(setf res (bands-union res (rectangle->yx-bands* x1 y1 x2 y2))))
bands)
res))
(defun map-over-bands-rectangles (fun bands)
(map-over-bands (lambda (y1 y2 isum)
(do ((p isum (cddr p)))
((null p))
(funcall fun (car p) y1 (cadr p) y2)))
bands))
(defun map-over-bands (fun bands)
(do ((q bands (cdr q)))
((null (cdr q)))
(funcall fun (caar q) (caadr q) (cdar q))))
(defun isum-member (elt isum)
(cond ((null isum) nil)
((< elt (car isum)) nil)
((<= elt (cadr isum)) t)
(t (isum-member elt (cddr isum)))))
(defun rectangle->standard-rectangle-set (rect)
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(make-instance 'standard-rectangle-set :bands (rectangle->xy-bands* x1 y1 x2 y2))))
(defmethod transform-region (tr (self standard-rectangle-set))
(cond ((scaling-transformation-p tr)
(multiple-value-bind (mxx mxy myx myy tx ty)
(get-transformation tr)
(declare (ignore mxy myx))
(let ((rev-x-p (< mxx 0))
(rev-y-p (< myy 0)))
(flet ((correct (bands)
(loop for ((y . nil) (nil . xs)) on (nreverse bands)
collect `(,y . ,xs))))
(make-standard-rectangle-set
(loop for band in (standard-rectangle-set-bands self)
for new-band = (loop for x in (cdr band)
collect (+ (* mxx x) tx) into new-xs
finally (return (cons (+ (* myy (car band)) ty)
(if rev-x-p
(nreverse new-xs)
new-xs))))
collect new-band into new-bands
finally (return (if rev-y-p
(correct new-bands)
new-bands))))))))
(t
;; We have insufficient knowledge about the transformation,
;; so we have to take the union of all transformed rectangles.
;; Maybe there is a faster way to do this.
(let ((res +nowhere+))
(map-over-region-set-regions
(lambda (rect)
(setf res (region-union res (transform-region tr rect))))
self)
res)) ))
;;; ====================================================================================================
(defclass standard-bounding-rectangle (standard-rectangle) ())
(defmethod region-equal ((a everywhere-region) (b everywhere-region))
t)
(defmethod region-equal ((a nowhere-region) (b nowhere-region))
t)
(defmethod region-equal ((a everywhere-region) (b region))
nil)
(defmethod region-equal ((a nowhere-region) (b region))
nil)
(defmethod region-equal ((a region) (b everywhere-region))
nil)
(defmethod region-equal ((a region) (b nowhere-region))
nil)
(defmethod region-equal ((a standard-rectangle) (b standard-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* a)
(multiple-value-bind (u1 v1 u2 v2) (rectangle-edges* b)
(and (coordinate= x1 u1)
(coordinate= y1 v1)
(coordinate= x2 u2)
(coordinate= y2 v2)))))
(defmethod region-equal ((a standard-rectangle) (b path)) nil)
(defmethod region-equal ((a path) (b standard-rectangle)) nil)
(defmethod transform-region (tr (self everywhere-region)) (declare (ignore tr)) +everywhere+)
(defmethod transform-region (tr (self nowhere-region)) (declare (ignore tr)) +nowhere+)
(defmethod region-contains-position-p ((self everywhere-region) x y)
(declare (ignore x y))
t)
(defmethod region-contains-position-p ((self nowhere-region) x y)
(declare (ignore x y))
nil)
(defmethod region-contains-position-p ((self standard-region-union) x y)
(some (lambda (r) (region-contains-position-p r x y))
(standard-region-set-regions self)))
(defmethod region-contains-position-p ((self standard-region-intersection) x y)
(every (lambda (r) (region-contains-position-p r x y))
(standard-region-set-regions self)))
(defmethod region-contains-position-p ((self standard-region-difference) x y)
(and (region-contains-position-p (standard-region-difference-a self) x y)
(not (region-contains-position-p (standard-region-difference-b self) x y))))
;; Trivial set operations
(defmethod region-union ((a everywhere-region) (b region)) +everywhere+)
(defmethod region-union ((a region) (b everywhere-region)) +everywhere+)
(defmethod region-union ((a nowhere-region) (b region)) b)
(defmethod region-union ((a region) (b nowhere-region)) a)
(defmethod region-intersection ((a everywhere-region) (b region)) b)
(defmethod region-intersection ((a region) (b everywhere-region)) a)
(defmethod region-intersection ((a nowhere-region) (b region)) +nowhere+)
(defmethod region-intersection ((a region) (b nowhere-region)) +nowhere+)
;;;(defmethod region-difference ((a everywhere-region) (b region)) b)
(defmethod region-difference ((a region) (b everywhere-region)) +nowhere+) ;mit ohne alles
(defmethod region-difference ((a nowhere-region) (b region)) +nowhere+)
(defmethod region-difference ((a region) (b nowhere-region)) a)
;; dimensionally rule
(defmethod region-union ((a area) (b path)) a)
(defmethod region-union ((a path) (b point)) a)
(defmethod region-union ((a area) (b point)) a)
(defmethod region-union ((a path) (b area)) b)
(defmethod region-union ((a point) (b path)) b)
(defmethod region-union ((a point) (b area)) b)
(defmethod transform-region (tr (self standard-region-difference))
(with-slots (a b) self
(make-instance 'standard-region-difference
:a (transform-region tr a)
:b (transform-region tr b))))
(defmethod transform-region (tr (self standard-region-union))
(with-slots (regions) self
(make-instance 'standard-region-union :regions (mapcar (lambda (r) (transform-region tr r)) regions))))
(defmethod transform-region (tr (self standard-region-intersection))
(with-slots (regions) self
(make-instance 'standard-region-intersection :regions (mapcar (lambda (r) (transform-region tr r)) regions))))
(defmethod region-set-regions ((self standard-region-union) &key normalize)
(declare (ignorable normalize))
(standard-region-set-regions self))
(defmethod region-set-regions ((self standard-region-intersection) &key normalize)
(declare (ignorable normalize))
(standard-region-set-regions self))
(defmethod region-set-regions ((self standard-region-difference) &key normalize)
(declare (ignorable normalize))
(list (standard-region-difference-a self)
(standard-region-difference-b self)))
(defmethod region-set-regions ((self region) &key normalize)
(declare (ignorable normalize))
(list self))
(defmethod map-over-region-set-regions (fun (self standard-region-union) &key normalize)
(declare (ignorable normalize))
(mapc fun (standard-region-set-regions self)))
(defmethod map-over-region-set-regions (fun (self standard-region-intersection) &key normalize)
(declare (ignorable normalize))
(mapc fun (standard-region-set-regions self)))
(defmethod map-over-region-set-regions (fun (self standard-region-difference) &key normalize)
(declare (ignorable normalize))
(funcall fun (standard-region-difference-a self))
(funcall fun (standard-region-difference-b self)))
(defmethod map-over-region-set-regions (fun (self region) &key normalize)
(declare (ignorable normalize))
(funcall fun self))
(defun line-intersection* (x1 y1 x2 y2 u1 v1 u2 v2)
(let ((dx (- x2 x1)) (dy (- y2 y1))
(du (- u2 u1)) (dv (- v2 v1)))
(let ((q (- (* dx dv) (* du dy))))
(cond ((not (and (<= (min x1 x2) (max u1 u2)) (<= (min u1 u2) (max x1 x2))
(<= (min y1 y2) (max v1 v2)) (<= (min v1 v2) (max y1 y2))))
nil)
((coordinate= 0 q)
(cond ((coordinate= (* (- v1 y1) dx) (* (- u1 x1) dy))
;; koninzident
(cond ((> (abs dx) (abs dy))
(let* ((sx1 (max (min x1 x2) (min u1 u2)))
(sx2 (min (max x1 x2) (max u1 u2)))
(sy1 (+ (* (- sx1 x1) (/ dy dx)) x1))
(sy2 (+ (* (- sx2 x1) (/ dy dx)) x1)))
(values :coincident sx1 sy1 sx2 sy2)))
(t
(let* ((sy1 (max (min y1 y2) (min v1 v2)))
(sy2 (min (max y1 y2) (max v1 v2)))
(sx1 (+ (* (- sy1 y1) (/ dx dy)) y1))
(sx2 (+ (* (- sy2 y1) (/ dx dy)) y1)))
(values :coincident sx1 sy1 sx2 sy2)))))
(t
;;paralell -- kein Schnitt
nil)))
(t
(let ((x (/ (+ (* dx (- (* u1 dv) (* v1 du))) (* du (- (* y1 dx) (* x1 dy)))) q))
(y (/ (+ (* dy (- (* u1 dv) (* v1 du))) (* dv (- (* y1 dx) (* x1 dy)))) q)))
(if (and (or (<= x1 x x2) (<= x2 x x1))
(or (<= u1 x u2) (<= u2 x u1))
(or (<= y1 y y2) (<= y2 y y1))
(or (<= v1 y v2) (<= v2 y v1)))
(values :hit x y)
nil)) ) )) ))
(defmethod region-intersection ((a standard-line) (b standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(multiple-value-bind (u1 v1) (line-start-point* b)
(multiple-value-bind (u2 v2) (line-end-point* b)
(multiple-value-bind (r sx1 sy1 sx2 sy2) (line-intersection* x1 y1 x2 y2 u1 v1 u2 v2)
(case r
(:hit (make-point sx1 sy1))
(:coincident (make-line* sx1 sy1 sx2 sy2))
((nil) +nowhere+))))))))
;; IHMO the CLIM dimensionality rule is brain dead!
(defmethod region-intersection ((a standard-polyline) (b region))
(let ((res +nowhere+))
;; hack alert
(map-over-polygon-segments
(lambda (x1 y1 x2 y2)
(setf res (region-union res (region-intersection (make-line* x1 y1 x2 y2) b))))
a)
res))
(defmethod region-difference ((a standard-polyline) (b region))
(let ((res +nowhere+))
(map-over-polygon-segments
(lambda (x1 y1 x2 y2)
(setf res (region-union res (region-difference (make-line* x1 y1 x2 y2) b))))
a)
res))
(defmethod region-difference ((a region) (b standard-polyline))
(map-over-polygon-segments
(lambda (x1 y1 x2 y2)
(setf a (region-difference a (make-line* x1 y1 x2 y2))))
b)
a)
(defmethod region-intersection ((b region) (a standard-polyline))
(region-intersection a b))
(defmethod region-intersection ((a region) (p point))
(multiple-value-bind (x y) (point-position p)
(if (region-contains-position-p a x y)
p
+nowhere+)))
(defmethod region-intersection ((p point) (a region))
(region-intersection a p))
(defmethod region-intersection ((a standard-region-union) (b region))
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (r) (setf res (region-union res (region-intersection r b)))) a)
res))
(defmethod region-intersection ((a region) (b standard-region-union))
(region-intersection b a))
(defmethod region-intersection ((a standard-rectangle-set) (b region))
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (r) (setf res (region-union res (region-intersection r b)))) a)
res))
(defmethod region-intersection ((a region) (b standard-rectangle-set))
(region-intersection b a))
(defmethod region-intersection ((a region) (b standard-region-intersection))
(map-over-region-set-regions (lambda (r) (setf a (region-intersection a r))) b)
a)
(defmethod region-intersection ((a standard-region-intersection) (b region))
(region-intersection b a))
(defmethod region-intersection ((a region) (b region))
(make-instance 'standard-region-intersection :regions (list a b)))
(defmethod region-intersection ((x region) (y standard-region-difference))
(with-slots (a b) y
(region-difference (region-intersection x a) b)))
(defmethod region-intersection ((x standard-region-difference) (y region))
(with-slots (a b) x
(region-difference (region-intersection y a) b)))
(defmethod region-difference ((x area) (y path)) x)
(defmethod region-difference ((x area) (y point)) x)
(defmethod region-difference ((x path) (y point)) x)
(defmethod region-difference ((x everywhere-region) (y region))
(make-instance 'standard-region-difference :a x :b y))
(defmethod region-difference ((x everywhere-region) (y nowhere-region))
x)
(defmethod region-difference ((x everywhere-region) (y everywhere-region))
+nowhere+)
(defmethod region-difference ((x region) (y standard-region-difference))
(with-slots (a b) y
(region-union (region-difference x a) (region-intersection x b))))
(defmethod region-difference ((x region) (y standard-region-union))
;; A \ (B1 u B2 .. u Bn) = ((((A \ B1) \ B2) ... ) \ Bn)
(let ((res x))
(map-over-region-set-regions (lambda (a)
(setf res (region-difference res a)))
y)
res))
(defmethod region-difference ((x standard-region-union) (y region))
;; (A u B) \ C = A\C u B\C
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (a)
(setf res (region-union res (region-difference a y))))
x)
res))
(defmethod region-difference ((x region) (y standard-rectangle-set))
(let ((res x))
(map-over-region-set-regions (lambda (a)
(setf res (region-difference res a)))
y)
res))
(defmethod region-difference ((x standard-rectangle-set) (y region))
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (a)
(setf res (region-union res (region-difference a y))))
x)
res))
(defmethod region-difference ((x point) (y region))
(multiple-value-bind (px py) (point-position x)
(if (region-contains-position-p y px py)
+nowhere+
x)))
(defmethod region-difference ((x standard-region-difference) (y region))
;; (A\B)\C = A \ (B u C)
(with-slots (a b) x
(region-difference a (region-union b y))))
(defmethod region-difference ((x region) (y standard-region-intersection))
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (b)
(setf res (region-union res (region-difference x b))))
y)
res))
;; Diese CLIM dimensionality rule ist in hoechsten ma?e inkonsistent
;; und bringt mehr probleme als sie beseitigt.
;;; ---- Set operations on polygons ---------------------------------------------------------------------
(defstruct (pg-edge (:constructor make-pg-edge* (x1 y1 x2 y2 extra)))
x1 y1 x2 y2 extra)
(defstruct pg-splitter
links ;liste von punkten
rechts) ; von unten nach oben
(defun make-pg-edge (p1 p2 extra)
(multiple-value-bind (x1 y1) (point-position p1)
(multiple-value-bind (x2 y2) (point-position p2)
(make-pg-edge* x1 y1 x2 y2 extra))))
(defmethod region-intersection ((a standard-polygon) (b standard-polygon))
(polygon-op a b #'logand))
(defmethod region-union ((a standard-polygon) (b standard-polygon))
(polygon-op a b #'logior))
(defmethod region-difference ((a standard-polygon) (b standard-polygon))
(polygon-op a b #'logandc2))
(defmethod region-intersection ((a standard-polygon) (b standard-rectangle))
(polygon-op a b #'logand))
(defmethod region-union ((a standard-polygon) (b standard-rectangle))
(polygon-op a b #'logior))
(defmethod region-difference ((a standard-polygon) (b standard-rectangle))
(polygon-op a b #'logandc2))
(defmethod region-intersection ((a standard-rectangle) (b standard-polygon))
(polygon-op a b #'logand))
(defmethod region-union ((a standard-rectangle) (b standard-polygon))
(polygon-op a b #'logior))
(defmethod region-difference ((a standard-rectangle) (b standard-polygon))
(polygon-op a b #'logandc2))
(defun polygon-op (pg1 pg2 &optional logop)
(let ((sps nil))
(over-sweep-bands pg1 pg2
(lambda (sy0 sy1 S &aux (ys nil))
(setq ys (list sy0 sy1))
(dolist (k1 S)
(dolist (k2 S)
(multiple-value-bind (px py)
(line-intersection** (pg-edge-x1 k1) (pg-edge-y1 k1)
(pg-edge-x2 k1) (pg-edge-y2 k1)
(pg-edge-x1 k2) (pg-edge-y1 k2)
(pg-edge-x2 k2) (pg-edge-y2 k2))
(when (and px (< sy0 py sy1))
(pushnew py ys :test #'coordinate=)))))
(setq ys (sort ys #'<))
(do ((q ys (cdr q)))
((null (cdr q)))
(let ((by0 (car q)) (by1 (cadr q))
(R nil))
(dolist (k S)
(when (> (pg-edge-y2 k) (pg-edge-y1 k))
(multiple-value-bind (x1 y1 x2 y2)
(restrict-line-on-y-interval* (pg-edge-x1 k) (pg-edge-y1 k)
(pg-edge-x2 k) (pg-edge-y2 k)
by0 by1)
(declare (ignore y1 y2))
(push (list x1 x2 (pg-edge-extra k)) R))))
(setq R (sort R #'< :key (lambda (x) (+ (first x) (second x)))))
(labels
((add (lo lu ro ru)
(dolist (s sps
;; ansonsten
(push (make-pg-splitter :links (list lu lo)
:rechts (list ru ro))
sps) )
(when (and (region-equal lo (car (pg-splitter-links s)))
(region-equal ro (car (pg-splitter-rechts s))))
(push lu (pg-splitter-links s))
(push ru (pg-splitter-rechts s))
(return))) ))
(let ((eintritt nil)
(ina 0)
(inb 0))
(dolist (k R)
(ecase (third k)
(:a (setq ina (- 1 ina)))
(:b (setq inb (- 1 inb))))
(cond ((/= 0 (funcall logop ina inb))
(when (null eintritt)
(setq eintritt k)))
(t
(when eintritt
(add (make-point (first eintritt) by0)
(make-point (second eintritt) by1)
(make-point (first k) by0)
(make-point (second k) by1))
(setq eintritt nil)) )))) ) )) ) )
(setq sps (delete +nowhere+ (mapcar #'pg-splitter->polygon sps)))
(cond ((null sps) +nowhere+)
((null (cdr sps))
(car sps))
((make-instance 'standard-region-union :regions sps))) ))
(defun over-sweep-bands (pg1 pg2 fun)
(let ((es (nconc (polygon->pg-edges pg1 :a) (polygon->pg-edges pg2 :b))))
(setq es (sort es #'< :key #'pg-edge-y1))
(let ((ep es)
(sy (pg-edge-y1 (car es)))
(S nil))
(do () ((null ep))
(setq S (delete-if (lambda (e)
(<= (pg-edge-y2 e) sy))
S))
(do () ((or (null ep) (/= sy (pg-edge-y1 (car ep)))))
(push (pop ep) S))
(let ((sy2 (or (and ep (pg-edge-y1 (car ep)))
(reduce #'max (mapcar #'pg-edge-y2 S)))))
(funcall fun sy sy2 S)
(setq sy sy2)) ))))
(defun polygon->pg-edges (pg extra)
(let ((pts (polygon-points pg))
(res nil))
(let ((prev pts)
(cur (cdr pts))
(next (cddr pts)))
(loop
(when (or (> (point-y (car next)) (point-y (car cur)))
(and (= (point-y (car next)) (point-y (car cur)))
(> (point-x (car next)) (point-x (car cur)))))
(push (make-pg-edge (car cur) (car next) extra) res))
(when (or (> (point-y (car prev)) (point-y (car cur)))
(and (= (point-y (car prev)) (point-y (car cur)))
(> (point-x (car prev)) (point-x (car cur)))))
(push (make-pg-edge (car cur) (car prev) extra) res))
(when (not (or (> (point-y (car next)) (point-y (car cur)))
(and (= (point-y (car next)) (point-y (car cur)))
(> (point-x (car next)) (point-x (car cur))))
(> (point-y (car next)) (point-y (car cur)))
(and (= (point-y (car next)) (point-y (car cur)))
(> (point-x (car next)) (point-x (car cur))))))
(push (make-pg-edge (car cur) (car cur) extra) res))
(psetq prev cur
cur next
next (or (cdr next) pts))
(when (eq prev pts)
(return)) ))
res))
(defun restrict-line-on-y-interval* (x1 y1 x2 y2 ry0 ry1)
(let ((dx (- x2 x1))
(dy (- y2 y1)))
(values (+ (* (- ry0 y1) (/ dx dy)) x1) ry0
(+ (* (- ry1 y1) (/ dx dy)) x1) ry1)))
(defun pg-splitter->polygon (s)
(make-polygon (clean-up-point-sequence (nconc (pg-splitter-links s) (reverse (pg-splitter-rechts s))))))
(defun clean-up-point-sequence (pts)
(cond ((null (cdr pts)) pts)
((region-equal (car pts) (cadr pts))
(clean-up-point-sequence (cdr pts)))
((null (cddr pts)) pts)
((colinear-p (car pts) (cadr pts) (caddr pts))
(clean-up-point-sequence (list* (car pts) (caddr pts) (cdddr pts))))
(t
(cons (car pts) (clean-up-point-sequence (cdr pts)))) ))
(defun colinear-p (p1 p2 p3)
(multiple-value-bind (x1 y1) (point-position p1)
(multiple-value-bind (x2 y2) (point-position p2)
(multiple-value-bind (x3 y3) (point-position p3)
(coordinate= (* (- x2 x1) (- y3 y2))
(* (- x3 x2) (- y2 y1)))))))
(defun line-intersection** (x1 y1 x2 y2 u1 v1 u2 v2)
(let ((dx (- x2 x1)) (dy (- y2 y1))
(du (- u2 u1)) (dv (- v2 v1)))
(let ((q (- (* dx dv) (* du dy))))
(cond ((coordinate= 0 q)
nil)
(t
(let ((x (/ (+ (* dx (- (* u1 dv) (* v1 du))) (* du (- (* y1 dx) (* x1 dy)))) q))
(y (/ (+ (* dy (- (* u1 dv) (* v1 du))) (* dv (- (* y1 dx) (* x1 dy)))) q)))
(values x y)))))))
;;; -----------------------------------------------------------------------------------------------------
(defmethod region-union ((a standard-region-union) (b nowhere-region))
a)
(defmethod region-union ((b nowhere-region) (a standard-region-union))
a)
(defmethod region-union ((a standard-region-union) (b region))
(assert (not (eq b +nowhere+)))
(make-instance 'standard-region-union :regions (cons b (standard-region-set-regions a))))
(defmethod region-union ((b region) (a standard-region-union))
(assert (not (eq b +nowhere+)))
(make-instance 'standard-region-union :regions (cons b (standard-region-set-regions a))))
(defmethod region-union ((a standard-region-union) (b standard-region-union))
(assert (not (eq b +nowhere+)))
(assert (not (eq a +nowhere+)))
(make-instance 'standard-region-union
:regions (append (standard-region-set-regions a) (standard-region-set-regions b))))
(defmethod region-union ((a region) (b region))
(make-instance 'standard-region-union :regions (list a b)))
(defmethod region-union ((a standard-rectangle-set) (b path)) a)
(defmethod region-union ((b path) (a standard-rectangle-set)) a)
(defmethod region-union ((a standard-rectangle-set) (b point)) a)
(defmethod region-union ((b point) (a standard-rectangle-set)) a)
;;; ---- Intersection Line/Polygon ----------------------------------------------------------------------
(defun geraden-schnitt/prim (x1 y1 x12 y12 x2 y2 x22 y22)
(let ((dx1 (- x12 x1)) (dy1 (- y12 y1))
(dx2 (- x22 x2)) (dy2 (- y22 y2)))
;; zwei geraden gegeben als
;; g : s -> (x1 + s*dx1, y1 + s*dy1)
;; h : t -> (x2 + t*dx2, y2 + t*dy2)
;; -> NIL | (s ; t)
(let ((quot (- (* DX2 DY1) (* DX1 DY2))))
(if (coordinate= quot 0)
nil
(values
(- (/ (+ (* DX2 (- Y1 Y2)) (* DY2 X2) (- (* DY2 X1))) quot))
(- (/ (+ (* DX1 (- Y1 Y2)) (* DY1 X2) (- (* DY1 X1))) quot)))) )) )
(defun geraden-gleichung (x0 y0 x1 y1 px py)
;; ??? This somehow tries to calculate the distance between a point
;; and a line. The sign of the result depends upon the side the point
;; is on wrt to the line. --GB
(- (* (- py y0) (- x1 x0))
(* (- px x0) (- y1 y0))))
(defun position->geraden-fktn-parameter (x0 y0 x1 y1 px py)
(let ((dx (- x1 x0)) (dy (- y1 y0)))
(if (> (abs dx) (abs dy))
(/ (- px x0) dx)
(/ (- py y0) dy))))
(defun map-over-schnitt-gerade/polygon (fun x1 y1 x2 y2 points)
;; This calles 'fun' with the "Geradenfunktionsparameter" of each
;; intersection of the line (x1,y1),(x2,y2) and the polygon denoted
;; by 'points' in a "sensible" way. --GB
(let ((n (length points)))
(dotimes (i n)
(let ((pv (elt points (mod (- i 1) n))) ;the point before
(po (elt points (mod i n))) ;the "current" point
(pn (elt points (mod (+ i 1) n))) ;the point after
(pnn (elt points (mod (+ i 2) n)))) ;the point after**2
(cond
;; The line goes directly thru' po
((line-contains-point-p** x1 y1 x2 y2 (point-x po) (point-y po))
(let ((sign-1 (geraden-gleichung x1 y1 x2 y2 (point-x pn) (point-y pn)))
(sign-2 (geraden-gleichung x1 y1 x2 y2 (point-x pv) (point-y pv))))
(cond ((or (and (> sign-1 0) (< sign-2 0))
(and (< sign-1 0) (> sign-2 0)))
;; clear cases: the line croses the polygon's border
(funcall fun (position->geraden-fktn-parameter x1 y1 x2 y2 (point-x po) (point-y po)) ))
((= sign-1 0)
;; more difficult:
;; The line is coincident with the edge po/pn
(let ((sign-1 (geraden-gleichung x1 y1 x2 y2 (point-x pnn) (point-y pnn))))
(cond ((or (and (> sign-1 0) (< sign-2 0))
(and (< sign-1 0) (> sign-2 0)))
;; The line goes through the polygons border, by edge po/pn
(funcall fun (position->geraden-fktn-parameter x1 y1 x2 y2 (point-x po) (point-y po)) ))
(t
;; otherwise the line touches the polygon at the edge po/pn,
;; return both points
(funcall fun (position->geraden-fktn-parameter x1 y1 x2 y2 (point-x po) (point-y po)) )
(funcall fun (position->geraden-fktn-parameter x1 y1 x2 y2 (point-x pn) (point-y pn)) ) ))))
(t
;; all other cases: Line either touches polygon in
;; a point or in an edge [handled above]. --GB
nil) )))
((line-contains-point-p** x1 y1 x2 y2 (point-x pn) (point-y pn))
nil)
(t
(multiple-value-bind (k m)
(geraden-schnitt/prim x1 y1 x2 y2 (point-x po) (point-y po) (point-x pn) (point-y pn))
(when (and k (<= 0 m 1)) ;Moegliche numerische Instabilitaet
(funcall fun k)))))))))
(defun schnitt-gerade/polygon-prim (x1 y1 x2 y2 points)
(let ((res nil))
(map-over-schnitt-gerade/polygon (lambda (k) (push k res)) x1 y1 x2 y2 points)
(sort res #'<)))
(defun schnitt-line/polygon (x1 y1 x2 y2 polygon)
(let ((ks (schnitt-gerade/polygon-prim x1 y1 x2 y2 (polygon-points polygon))))
(assert (evenp (length ks)))
(let ((res nil))
(do ((q ks (cddr q)))
((null q))
(let ((k1 (max 0d0 (min 1d0 (car q))))
(k2 (max 0d0 (min 1d0 (cadr q)))))
(when (/= k1 k2)
(push (make-line* (+ x1 (* k1 (- x2 x1))) (+ y1 (* k1 (- y2 y1)))
(+ x1 (* k2 (- x2 x1))) (+ y1 (* k2 (- y2 y1))))
res))))
(cond ((null res) +nowhere+)
((null (cdr res)) (car res))
(t (make-instance 'standard-region-union :regions res)) ))))
(defmethod region-contains-position-p ((pg polygon) x y)
(setf x (coerce x 'coordinate))
(setf y (coerce y 'coordinate))
(let ((n 0) (m 0))
(map-over-schnitt-gerade/polygon (lambda (k)
(when (>= k 0) (incf n))
(incf m))
x y (+ x 1) y (polygon-points pg))
(assert (evenp m))
(oddp n)))
(defmethod region-intersection ((a standard-line) (b standard-polygon))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(schnitt-line/polygon x1 y1 x2 y2 b))))
(defmethod region-intersection ((b standard-polygon) (a standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(schnitt-line/polygon x1 y1 x2 y2 b))))
(defmethod region-intersection ((a standard-line) (b standard-rectangle))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(schnitt-line/polygon x1 y1 x2 y2 b))))
(defmethod region-intersection ((b standard-rectangle) (a standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(schnitt-line/polygon x1 y1 x2 y2 b))))
(defmethod region-difference ((a standard-line) (b standard-polygon))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(differenz-line/polygon x1 y1 x2 y2 b))))
(defmethod region-difference ((a standard-line) (b standard-rectangle))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(differenz-line/polygon x1 y1 x2 y2 b))))
(defun differenz-line/polygon (x1 y1 x2 y2 polygon)
(let ((ks (schnitt-gerade/polygon-prim x1 y1 x2 y2 (polygon-points polygon))))
(assert (evenp (length ks)))
(let ((res nil)
(res2 nil))
(push 0d0 res)
(do ((q ks (cddr q)))
((null q))
(let ((k1 (max 0d0 (min 1d0 (car q))))
(k2 (max 0d0 (min 1d0 (cadr q)))))
(when (/= k1 k2)
(push k1 res)
(push k2 res))))
(push 1d0 res)
(setf res (nreverse res))
(do ((q res (cddr q)))
((null q))
(let ((k1 (car q))
(k2 (cadr q)))
(when (/= k1 k2)
(push (make-line* (+ x1 (* k1 (- x2 x1))) (+ y1 (* k1 (- y2 y1)))
(+ x1 (* k2 (- x2 x1))) (+ y1 (* k2 (- y2 y1))))
res2))))
(cond ((null res2) +nowhere+)
((null (cdr res2)) (car res2))
(t (make-instance 'standard-region-union :regions res2)) ))))
(defmethod region-difference ((a standard-line) (b standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(multiple-value-bind (u1 v1) (line-start-point* b)
(multiple-value-bind (u2 v2) (line-end-point* b)
(cond ((and (coordinate= 0 (geraden-gleichung x1 y1 x2 y2 u1 v1))
(coordinate= 0 (geraden-gleichung x1 y1 x2 y2 u2 v2)))
(let ((k1 (position->geraden-fktn-parameter x1 y1 x2 y2 u1 v1))
(k2 (position->geraden-fktn-parameter x1 y1 x2 y2 u2 v2)))
(psetq k1 (max 0 (min k1 k2))
k2 (min 1 (max k1 k2)))
(let ((r (nconc (if (> k1 0)
(list (make-line* x1 y1 (+ x1 (* k1 (- x2 x1))) (+ y1 (* k1 (- y2 y1)))))
nil)
(if (< k2 1)
(list (make-line* (+ x1 (* k2 (- x2 x1))) (+ y1 (* k2 (- y2 y1))) x2 y2))
nil))))
(cond ((null r) +nowhere+)
((null (cdr r)) (car r))
(t (make-instance 'standard-region-union :regions r)) ))))
(t
a)))))))
(defmethod region-union ((a standard-line) (b standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(multiple-value-bind (u1 v1) (line-start-point* b)
(multiple-value-bind (u2 v2) (line-end-point* b)
(cond ((and (coordinate= 0 (geraden-gleichung x1 y1 x2 y2 u1 v1))
(coordinate= 0 (geraden-gleichung x1 y1 x2 y2 u2 v2)))
(let ((k1 (position->geraden-fktn-parameter x1 y1 x2 y2 u1 v1))
(k2 (position->geraden-fktn-parameter x1 y1 x2 y2 u2 v2)))
(psetq k1 (min k1 k2)
k2 (max k1 k2))
(cond ((and (<= k1 1) (>= k2 0))
(let ((k1 (min 0 k1))
(k2 (max 1 k2)))
(make-line* (+ x1 (* k1 (- x2 x1))) (+ y1 (* k1 (- y2 y1)))
(+ x1 (* k2 (- x2 x1))) (+ y1 (* k2 (- y2 y1))))))
(t
(make-instance 'standard-region-union :regions (list a b))))))
((and (coordinate= x1 u1) (coordinate= y1 v1))
(make-polyline* (list u2 v2 x1 y1 x2 y2)))
((and (coordinate= x2 u2) (coordinate= y2 v2))
(make-polyline* (list x1 y1 x2 y2 u1 v1)))
((and (coordinate= x1 u2) (coordinate= y1 v2))
(make-polyline* (list u1 v1 x1 y1 x2 y2)))
((and (coordinate= x2 u1) (coordinate= y2 v1))
(make-polyline* (list x1 y1 x2 y2 u2 v2)))
(t
(make-instance 'standard-region-union :regions (list a b))) ))))))
(defmethod region-union ((a standard-polyline) (b standard-line))
(with-slots (points) a
(cond ((polyline-closed a)
(make-instance 'standard-region-union :regions (list a b)))
((region-equal (car points) (line-end-point b))
(make-polyline (cons (line-start-point b) points)))
((region-equal (car points) (line-start-point b))
(make-polyline (cons (line-end-point b) points)))
((region-equal (car (last points)) (line-end-point b))
(make-polyline (append points (list (line-start-point b)))))
((region-equal (car (last points)) (line-start-point b))
(make-polyline (append points (list (line-end-point b)))))
(t
(make-instance 'standard-region-union :regions (list a b))))))
(defmethod region-union ((a standard-line) (b standard-polyline))
(region-union b a))
(defmethod region-union ((a standard-polyline) (b standard-polyline))
(with-slots ((a-points points)) a
(with-slots ((b-points points)) b
(cond ((polyline-closed a)
(make-instance 'standard-region-union :regions (list a b)))
((polyline-closed b)
(make-instance 'standard-region-union :regions (list a b)))
((region-equal (car a-points) (car b-points))
(make-polyline (append (reverse (cdr a-points)) b-points)))
((region-equal (car (last a-points)) (car (last b-points)))
(make-polyline (append a-points (reverse (cdr b-points)))))
((region-equal (car a-points) (car (last b-points)))
(make-polyline (append b-points (cdr a-points))))
((region-equal (car (last a-points)) (car b-points))
(make-polyline (append a-points (cdr b-points))))
(t
(make-instance 'standard-region-union :regions (list a b)))))))
(defmethod region-union ((a standard-rectangle-set) (b polygon))
(region-union (rectangle-set->polygon-union a) b))
(defmethod region-union ((a polygon) (b standard-rectangle-set))
(region-union a (rectangle-set->polygon-union b)))
(defun rectangle-set->polygon-union (rs)
(let ((res nil))
(map-over-region-set-regions (lambda (r) (push r res)) rs)
(make-instance 'standard-region-union :regions res)))
(defmethod region-union ((a standard-region-difference) (b region))
(make-instance 'standard-region-union :regions (list a b)))
(defmethod region-union ((a region) (b standard-region-difference))
(make-instance 'standard-region-union :regions (list a b)))
(defmethod region-equal ((a standard-line) (b standard-line))
(or (and (region-equal (line-start-point a) (line-start-point b))
(region-equal (line-end-point a) (line-end-point b)))
(and (region-equal (line-start-point a) (line-end-point b))
(region-equal (line-end-point a) (line-start-point b)))))
(defmethod region-union ((a nowhere-region) (b nowhere-region))
+nowhere+)
(defmethod region-exclusive-or ((a region) (b region))
(region-union (region-difference a b) (region-difference b a)))
(defmethod region-contains-region-p ((a region) (b point))
(region-contains-position-p a (point-x b) (point-y b)))
;; xxx was ist mit (region-contains-region-p x +nowhere+) ?
(defmethod region-contains-region-p ((a everywhere-region) (b region))
t)
(defmethod region-contains-region-p ((a nowhere-region) (b region))
nil)
(defmethod region-contains-region-p ((a everywhere-region) (b everywhere-region))
t)
(defmethod region-contains-region-p ((a region) (b everywhere-region))
;; ??? was ist mit
;; (region-union (region-difference +everywhere+ X) X) ???
nil)
(defmethod region-contains-region-p ((a region) (b nowhere-region))
t)
;; REGION-CONTAINS-REGION-P region1 region2
;;
;; Returns t if all points in the region region2 are members of the
;; region region1; otherwise, it returns nil.
;;
;; aka region2 ist teilmenge von region1 aka B\A = 0
;;
;; REGION-INTERSECTS-REGION-P region1 region2
;;
;; Returns nil if region-intersection of the two regions region1 and
;; region2 would be +nowhere+; otherwise, it returns t.
;;
;; aka region1 und region2 sind nicht disjunkt aka AB /= 0
;;
;; generic versions
(defmethod region-equal ((a region) (b region))
(region-equal +nowhere+ (region-exclusive-or a b)))
(defmethod region-intersects-region-p ((a region) (b region))
(not (region-equal +nowhere+ (region-intersection a b))))
(defmethod region-contains-region-p ((a region) (b region))
(or (eq a b)
(region-equal +nowhere+ (region-difference b a))))
;;;; ====================================================================================================
(defmethod bounding-rectangle* ((a standard-line))
(with-slots (x1 y1 x2 y2) a
(values (min x1 x2) (min y1 y2) (max x1 x2) (max y1 y2))))
(defmethod bounding-rectangle* ((a standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
a
(values x1 y1 x2 y2)))
(defmethod bounding-rectangle* ((self standard-rectangle-set))
(with-slots (bands bounding-rectangle) self
(values-list (or bounding-rectangle
(setf bounding-rectangle
(let (bx1 by1 bx2 by2)
(map-over-bands-rectangles (lambda (x1 y1 x2 y2)
(setf bx1 (min (or bx1 x1) x1)
bx2 (max (or bx2 x2) x2)
by1 (min (or by1 y1) y1)
by2 (max (or by2 y2) y2)))
bands)
(list bx1 by1 bx2 by2)))))))
(defmethod bounding-rectangle* ((self standard-polygon))
(values (reduce #'min (mapcar #'point-x (polygon-points self)))
(reduce #'min (mapcar #'point-y (polygon-points self)))
(reduce #'max (mapcar #'point-x (polygon-points self)))
(reduce #'max (mapcar #'point-y (polygon-points self)))))
(defmethod bounding-rectangle* ((self standard-polyline))
(values (reduce #'min (mapcar #'point-x (polygon-points self)))
(reduce #'min (mapcar #'point-y (polygon-points self)))
(reduce #'max (mapcar #'point-x (polygon-points self)))
(reduce #'max (mapcar #'point-y (polygon-points self)))))
(defmethod bounding-rectangle* ((self standard-point))
(with-slots (x y) self
(values x y x y)))
(defmethod bounding-rectangle* ((self standard-region-union))
(let (bx1 by1 bx2 by2)
(map-over-region-set-regions (lambda (r)
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* r)
(setf bx1 (min (or bx1 x1) x1)
bx2 (max (or bx2 x2) x2)
by1 (min (or by1 y1) y1)
by2 (max (or by2 y2) y2))))
self)
(values bx1 by1 bx2 by2)))
(defmethod bounding-rectangle* ((self standard-region-difference))
(with-slots (a b) self
(cond ((eq a +everywhere+)
(bounding-rectangle* b))
(t
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* a)
(multiple-value-bind (u1 v1 u2 v2) (bounding-rectangle* b)
(values (min x1 u1) (min y1 v1)
(max x2 u2) (min y2 v2))))) )))
(defmethod bounding-rectangle* ((self standard-region-intersection))
;; kill+yank alert
(let (bx1 by1 bx2 by2)
(map-over-region-set-regions (lambda (r)
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* r)
(setf bx1 (min (or bx1 x1) x1)
bx2 (max (or bx2 x2) x2)
by1 (min (or by1 y1) y1)
by2 (max (or by2 y2) y2))))
self)
(values bx1 by1 bx2 by2)))
;;;; ====================================================================================================
(defun make-bounding-rectangle (x1 y1 x2 y2)
(setf x1 (coerce x1 'coordinate)
y1 (coerce y1 'coordinate)
x2 (coerce x2 'coordinate)
y2 (coerce y2 'coordinate))
(make-instance 'standard-bounding-rectangle :x1 (min x1 x2) :y1 (min y1 y2) :x2 (max x1 x2) :y2 (max y1 y2)))
(defmethod bounding-rectangle ((region rectangle))
region)
(defmethod bounding-rectangle ((region region))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* region)
(make-bounding-rectangle x1 y1 x2 y2)))
(defmacro with-bounding-rectangle* ((min-x min-y max-x max-y) region &body body)
;; What is the purpose of this macro; IHMO m.-v.-b. looks as nice as with-b.-.r. .
`(multiple-value-bind (,min-x ,min-y ,max-x ,max-y) (bounding-rectangle* ,region)
,@body))
(defmethod bounding-rectangle-position ((self bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* self)
(declare (ignore x2 y2))
(values x1 y1)))
(defmethod set-bounding-rectangle-position ((self standard-rectangle) x y)
;;(error "DO NOT CALL ME")
;;Yes, but... output records are based on rectangles
(with-standard-rectangle (x1 y1 x2 y2)
self
(setf (rectangle-edges* self)
(values x y (+ x (- x2 x1)) (+ y (- y2 y1))))))
(defmethod bounding-rectangle-min-x ((self bounding-rectangle))
(nth-value 0 (bounding-rectangle* self)))
(defmethod bounding-rectangle-min-y ((self bounding-rectangle))
(nth-value 1 (bounding-rectangle* self)))
(defmethod bounding-rectangle-max-x ((self bounding-rectangle))
(nth-value 2 (bounding-rectangle* self)))
(defmethod bounding-rectangle-max-y ((self bounding-rectangle))
(nth-value 3 (bounding-rectangle* self)))
(defmethod bounding-rectangle-width ((self bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* self)
(declare (ignore y1 y2))
(- x2 x1)))
(defmethod bounding-rectangle-height ((self bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* self)
(declare (ignore x1 x2))
(- y2 y1)))
(defmethod bounding-rectangle-size ((self bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* self)
(values (- x2 x1) (- y2 y1))))
;;;
(defmethod print-object ((self standard-rectangle) stream)
(print-unreadable-object (self stream :type t :identity t)
(with-standard-rectangle (x1 y1 x2 y2)
self
(format stream "X ~S:~S Y ~S:~S" x1 x2 y1 y2))))
;;;;
(defmethod region-intersects-region-p :around ((a bounding-rectangle) (b bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* a)
(multiple-value-bind (u1 v1 u2 v2) (bounding-rectangle* b)
(cond ((and (<= u1 x2) (<= x1 u2)
(<= v1 y2) (<= y1 v2))
(call-next-method))
(t
nil)))))
(defmethod region-intersects-region-p ((a standard-rectangle) (b standard-rectangle))
(declare (ignorable a b))
;; for rectangles, the bounding rectangle test is correct, so if we
;; wind up here, we just can return T.
t
;;(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* a)
;; (multiple-value-bind (u1 v1 u2 v2) (rectangle-edges* b)
;; (and (<= u1 x2) (<= x1 u2)
;; (<= v1 y2) (<= y1 v2))))
)
;;; Internal helpers
(defmacro with-grown-rectangle* (((out-x1 out-y1 out-x2 out-y2)
(in-x1 in-y1 in-x2 in-y2)
&key
radius
(radius-x radius)
(radius-y radius)
(radius-left radius-x)
(radius-right radius-x)
(radius-top radius-y)
(radius-bottom radius-y))
&body body)
`(multiple-value-bind (,out-x1 ,out-y1 ,out-x2 ,out-y2)
(values (- ,in-x1 ,radius-left)
(- ,in-y1 ,radius-top)
(+ ,in-x2 ,radius-right)
(+ ,in-y2 ,radius-bottom))
,@body))
Something went wrong with that request. Please try again.