
JavaScript Plugin 
Tony Voss

Version 2.2  14 Nov 2023 - plugin history here


Contents		 	 	 	 	 	 	 	 	 	 Page 
1. Introduction and summary	 
7

The basics	 
7
JavaScript  and the embedded engine	 
8
File strings	 
8
Multiple consoles	 
8
Arranging a console	 
8

2. JavaScript plugin extensions	 
9
print(arg1, arg2…)	 
9

print<colour>(arg1, arg2…)	 
9

printUnderlined(arg1, arg2…)	 
9

alert(arg1, arg2…)	 
9

printLog(arg1, arg2…)	 
9

messageBox(message)	 
9

readTextFile(fileNameString)	 
10

writeTextFile(text, fileNameString, mode)	 
10

require(moduleName)	 
10

toClipboard(text)	 
10

text = fromClipboard()	 
11

timeAlloc(milliseconds)	 
11

consoleHide() or consoleHide(name)	 
11

consoleShow() or consoleShow(name)	 
11

consolePark() or consolePark(name)	 
11

consoleName(name)	 
11

stopScript() or stopScript(string)	 
11
Event handling	 
11

onSeconds(functionName, seconds[, parameter])	 
12

onDialogue(function, dialogue)	 
12

Page  of 1 71



Understanding the result	 
12
Implicit result	 
12
Explicit result	 
13

scriptResult(arg1, arg2…)	 
13

3. OpenCPN APIs	 
14
OCPNpushNMEA0183(sentence)	 
14

OCPNpushNMEA0183(sentence, driverHandle)	 
14

OCPNgetMessageNames()	 
14

OCPNsendMessage(messageName[, message])	 
14

OCPNonNMEA0183(functionName)	 
14

OCPNonNMEA0183(functionName, ident)	 
14

OCPNonNMEA2000(functionName, pgn)	 
15

OCPNonActiveLeg(functionName)	 
15

OCPNonMessageName(functionName, messageName)	 
16

navdata = OCPNgetNavigation()	 
17

OCPNonNavigation(function)	 
17

OCPNgetARPgpx()	 
17

OCPNgetNewGUID()	 
17

OCPNgetPluginConfig()	 
18

config = OCPNgetOCPNconfig()	 
18

OCPNrefreshCanvas()	 
18

OCPNgetAISTargets()	 
19
Positions	 
20

APIs for positions	 
20

OCPNgetVectorPP(fromPosition, toPosition)	 
20

OCPNgetPositionPV(fromPosition, vector)	 
20

OCPNgetGCdistance(Pos1, pos2)	 
20

OCPNgetCursorPosition()	 
20
Waypoints	 
21

APIs for waypoints	 
22

OCPNgetWaypointGUIDs(selector)	 
22

OCPNgetActiveWaypointGUID()	 
22

OCPNgetSingleWaypoint(GUID)	 
22

OCPNdeleteSingleWaypoint(GUID)	 
22

Page  of 2 71



GUID = OCPNaddSingleWaypoint(waypoint)	 
22

OCPNupdateSingleWaypoint(waypoint)	 
23
Routes	 
24

APIs for routes	 
24

OCPNgetRouteGUIDs(selector)	 
24

OCPNgetActiveRouteGUID()	 
24

OCPNgetRoute(GUID)	 
24

OCPNdeleteRoute(GUID)	 
24

GUID = OCPNaddRoute(route)	 
24

OCPNupdateRoute(route)	 
25
Tracks	 
26

APIs for tracks	 
26

OCPNgetTrackGUIDs(selector)	 
26

GUID = OCPNaddTrack(track)	 
26

OCPNgetTrack(GUID)	 
26

OCPNdeleteTrack(GUID)	 
26

OCPNupdateTrack(track)	 
26
Menus	 
27

OCPNonContextMenu(function, menuItem [,info])	 
27
Other	 
27

OCPNsoundAlarm()	 
27

4. Objects and methods	 
28
Position constructor	 
28

Position(lat, lon) or	 
28

Position({latitude:lat, longitude:lon})	 
28
Waypoints constructor	 
30

Waypoint()	 
30

Waypoint(lat,lon)	 
30

Waypoint(position)	 
30

Waypoint(waypoint)	 
30
About hyperlinks	 
31
Route	 
32

Route()               constructs a route object with its methods	 
32

Route(route) constructs a copy of the given route adding methods	 
32

Page  of 3 71



About JavaScript objects and OpenCPN objects	 
34
5. Modules	 
35

Loading your own functions	 
35
Writing and loading your own object constructors	 
35

6. Working with Date Time	 
36
7. Error handling	 
37
8. Execution time limit	 
38
9. Dialogues	 
39

onDialogue(function, dialogue)	 
39
Styling	 
42
Example with styling	 
42

10. Automatically running scripts	 
43
11. Working with multiple scripts	 
44

chainScript(fileString [, brief]);	 
44

brief = getBrief();	 
44

12. Working with multiple consoles	 
45
Communicating between scripts	 
45
Working with multiple consoles in scripts	 
45

consoleAdd(consoleName)	 
45

consoleExists(consoleName)	 
45

consoleClose(consoleName)	 
45

consoleGetOutput(consoleName)	 
45

consoleClearOutput(consoleName)	 
45

consoleLoad(consoleName, script)	 
45

consoleRun(consoleName [,brief])	 
45

consoleBusy(consoleName)	 
45

onConsoleResult(consoleName, function [, brief])	 
45

13. Tidying up	 
47
onExit(functionName)	 
47

14. Working with SignalK	 
48
15. Working with NMEA2000	 
49

Background	 
49
The NMEA2000 object	 
49

Page  of 4 71



Shortcut	 
50
The descriptors	 
50
Descriptor ambiguity	 
50

Using the canboat analyser	 
51
16. Invoking another process	 
52

Executing a program	 
52
Warnings	 
52

result = execute(command);	 
52

result = execute(command, env, errorOption);	 
52
Running a shell script	 
53

17. JavaScript Plugin Tools	 
53
Consoles	 
53
Directory	 
53
NMEA	 
53
Message	 
53
Parking	 
53
Diagnostics	 
53

18. Tips	 
54
Examining objects	 
54

19. Trouble-shooting character code issues	 
55
Working with non-7-bit characters such as the degree symbol	 
55

20. Demonstration Scripts	 
56
A. Save script preferences for next script run	 
56
B. Process and edit NMEA sentences	 
56
C. Counting NMEA sentences over time	 
57
D. Locate and edit waypoint, inserting hyperlinks	 
57
E. Build routes from NMEA sentences	 
58
F. Build race courses	 
59
G. Driver	 
61
H. TackAdvisor	 
61
I. SendActiveRoute	 
61

Instructions for making this work with a device running iNavX	 
61

Appendix A. NMEA2000 and canboat analyser	 
63
Appendix B. Plugin version history	 
65

Page  of 5 71



C. Document history	 71

Page  of 6 71



1. Introduction and summary 
This document is a user guide and reference manual for the JavaScript plugin for OpenCPN.

The plugin allows you to run JavaScript and to interact with OpenCPN.  You can use it to build your own enhancements to standard OpenCPN functionality.

There is a separate technical guide covering the inner workings of the plugin and instructions for building it from sources.

Changes since the previous version are highlighted in yellow.

Change in documentation only are highlighted in pale yellow.


The basics 
Once the plugin has been enabled, its icon appears in the control strip.

Click on the icon to open the plugin console(s).  The console comprises a script pane, an output pane and various buttons.  You can write your JavaScript in the script pane and click on the Run button.  The script will be compiled and executed.  Any output is displayed in the output pane.  You can adjust the boundary between the two panes by dragging the dot up or down - but you need to release before the change comes into effect.

As a trivial example, enter


(4+8)/3

and the result 4 is displayed.  But you could also enter, say

function fibonacci(n) {  

function fib(n) {  
if (n == 0) return 0;  
if (n == 1) return 1;  
return fib(n-1) + fib(n-2);  
}  

var res = [];  
for (i = 0; i < n; i++) res.push(fib(i));  
return(res.join(' '));  
}

print("Fibonacci says: ", fibonacci(20), "\n");

Get code

The script displays

Fibonacci says: 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 
2584 4181

This illustrates how functions can be defined and called, including recursively.  So we have a 
super calculator!

This guide includes many JavaScript code examples.  You can copy them and paste into the 
script window to try them or use as a starting point but the formatting does not survive this.  For 
the non-trivial ones, a Get code link is given whereby you can access the code which you can 
copy.  If the code is too long to copy from that displayed, you can use the Raw button to view it in 
a copyable form.

Note that the script pane displays line numbers - useful for understanding any syntax error 
messages.  It also supports indent tabbing, which you should use to indent your script as in the 
above example.  It colours the script to aid understanding as follows:

• Comments

• Strings

• JavaScript key words supported

• Plugin extensions to JavaScript documented in this guide

• JavaScript key words not supported - do not use these words

You can use the Load button to load JavaScript from a .js file.  The file name string is displayed 
above the script.  The Save button saves the script back to the named file and the Save As 
button allows you to save it to a different chosen file.

If you have previously loaded scripts, Load will display a list of the ten most recently loaded 
scripts as well as an Other button.  You can use the Organise button to move recent scripts 
into a Favourites list where they will endure.

If a file name string is displayed when the plugin is closed down, that script will be reloaded when 
the plugin is re-opened.

You can also paste a script in from somewhere else.  You might choose to prepare a non-trivial 
script in a JavaScript-aware editor.  I use BBEdit on my Mac.

While a script is running, the Run button changes to Stop.  This is relevant when a script is 
awaiting a call-back from OpenCPN (see later).  Pressing Stop will cancel outstanding call-backs.


Page  of 7 71

https://gist.github.com/antipole2/e5b3a0b88e566f72046d4b08b99b2c16


JavaScript  and the embedded engine 
A useful guide/tutorial on JavaScript can be found here.  The engine fully supports ECMAScript 
E5.1 with partial support for E6 and E7.

Note that the embedded engine does not support:

• for-of loops

• classes

• arrow functions

The tutorial also covers JavaScript’s use in web pages which is not relevant at this time.


File strings 
Some functions access files on your computer not by a dialogue window but by a file string, e.g. my_projects/JavaScript/usefull_script.js

A file string can be absolute - it identifies the location of the file explicitly.  Sometimes, like the example above, it is relative to the plugin's current directory. 

You can change the current directory in the Directory tab of the tools window, accessed via the tools button top-right in the console or via the plugin preferences button in the plugin's entry in OpenCPN options.


Multiple consoles 
Since plugin version 0.4, you can have multiple consoles, each of which can run separate scripts.  You can add extra consoles using the Consoles tab of the tools window.

You can delete a console using its close button.  The console script must be cleared first as a precaution against accidental deletion and at least one console must remain.

The later section Working with multiple consoles covers some of the many things you can do using multiple consoles.


Arranging a console 
A console contains two panes, one for the script and its buttons and the other for the output and its button.  They are like two panes of a sash window.

There is a sash bar between them, and the space available for each can be changed by moving the sash bar up or down.

You may find a console is in the way of other uses of OpenCPN.  You can hide all consoles by toggling the JavaScript icon in the OpenCPN tool bar.  Toggle it again to make all consoles visible.  A script can hide itself (or another console).  To make it visible again, you need to toggle the JavaScript icon once or twice until all consoles are visible.  A hidden console will automatically become visible again if anything is written to its output pane. 

An alternative way of reducing clutter is to reduce the console size.  The console has a Park button to minimise it and park it out of the way at the top of the screen.  A script can park itself using consolePark(). If anything is subsequently written in the output pane of a very small console, it will automatically be made larger so you can see the output. To unpark a parked console, you can click on its close button. This will actually grow it and not close it.

When a script terminates, the result (see later) is delivered to the output pane, thus making any hidden or very small console visible.  It is possible to suppress the result so that this does not happen.

When OpenCPN terminates normally or the plugin is deactivated, the consoles, their positions and sizes are remembered for next time the plugin is activated.


Page  of 8 71

https://www.w3schools.com/js/default.asp


2. JavaScript plugin extensions 
As the JavaScript engine is intended for embedding, it does not contain any input/output 
functionality, which is inevitably environment dependent.

I have implemented extensions to provide some output capability.


print(arg1, arg2…)
The print function displays a series of arguments in the results pane.  Each argument can be of 
type string,  number, boolean, array or object. If an argument is an array, the elements will be 
listed.  If it is an object, it will be displayed as its JSON string.  Example:

print("Hello world ", 10*10, " times over\n");

Displays Hello world 100 times over.  It is often useful to include the string "\n" as the 
last  character to deliver a newline.  If the console has been hidden, it will be shown so that the 
output can be seen.


print<colour>(arg1, arg2…)
Where <colour> is one of Red, Orange, Green or Blue.

As for print but prints in the specified colour.  Example:

printGreen("This line will print in green\n");

printUnderlined(arg1, arg2…)
Displays the text underlined - useful for headings.


alert(arg1, arg2…)
This is similar to print but the output is displayed in an alert box.  The final newline is less 
necessary here.

This function returns immediately, leaving the alert displayed so as not to hold up OpenCPN.  The 
alert window has a button with which the user can dismiss the alert once read.

Because of the immediate return, it is possible to raise a subsequent alert before the previous one 
has been dismissed.  In this case, the subsequent alert text will be added to the existing alert.

If you call alert with no argument, it returns the existing status true or false indicating whether 
the alert is being displayed, so you can test whether the alert has been dismissed by calling it 
without any arguments.

If you call alert with a single argument of false, any existing alert will be dismissed.

Example:

alert("This is the first alert");
alert("\nThis text will be added to the first alert");
[… other script steps]
if (alert()) print("The alert has not yet been dismissed\n");
alert(false); // dismisses alert

The script will not complete until any alert has been dismissed, although you can use the 
stopScript() function or the Stop button to force script termination.

The alert box can be dragged where you wish and this repositioning will be remembered for 
subsequent alerts, including across OpenCPN relaunches.


printLog(arg1, arg2…)
Prints to the OpenCPN log file. No final newline is needed.  Use sparingly.


messageBox(message)
There are various options available


Page  of 9 71



choice = messageBox(message);
choice = messageBox(message, "OK");
choice = messageBox(message, "");

All these display the message in a message box  with OK and Cancel buttons. The message may 
contain "\n" to split it across lines.

choice = messageBox(message, "YesNo");

Instead of the OK button, Yes and No buttons are provided

By default, the message box has a caption identifying it is from the JavaScript plugin and the 
console name.  You can supply your own caption as a third argument.  An empty string 
suppresses the caption.

choice = messageBox(message,"YesNo","My caption");

The value of choice indicates which button was selected

	 1	 OK

	 2	 Yes

	 3	 No

The cancel button raises a cancel error, which will normally terminate the script.  You can handle 
the error yourself by catching it with the JavaScript try/catch capability - see Error Handling.

The message is displayed as a modal dialogue so the script does not continue until a button is 
selected.  This is useful for multistep processing.  It may impact the functioning of OpenCPN and 
the accessibility of other windows and its effect should be checked if conducting critical 
navigation.  If called from within a callback, it will block all other callbacks.   To avoid these issues, 
use alert or onDialogue.


readTextFile(fileNameString)
Reads the text file fileNameString and returns the text as a string.  Example:

input = readTextFile("/Users/Tony/myfile");  
print("File contains: ", input, "\n");

If the given fileNameString is not absolute, it will be looked for in the current directory as currently 
set for the plugin.

If the fileNameString commences "https:" or "http:", it is taken to be a URL and the file will be 
read from that location.

NB OpenCPN will be blocked while the file is read.


writeTextFile(text, fileNameString, mode)
Writes the text to the file fileNameString.
If mode = 0, the file must not exist.

If mode = 1, any existing file will be overwritten.

If mode = 2, the text will be appended to any existing lines in the file.

Example:

writeTextFile("/Users/Tony/myfile.txt");  

If the given fileString is not absolute, it will be looked for or created in the current directory as 
currently set for the plugin.


require(moduleName)
Loads and compiles the given module. See the Modules section.


toClipboard(text)
Copies the supplied text string to the clipboard.

See an example application here.


Page  of 10 71



text = fromClipboard()
Returns the contents of the clipboard as a string. 


timeAlloc(milliseconds)
If a script takes too long to run, it will time out to avoid blocking other functions of OpenCPN.  
This function grants more time and returns the time remaining at the time of the call. See the 
Execution time limit section.


consoleHide() or consoleHide(name)
Hides the console.

If a console name is given, that console will be hidden.

If hidden, the console will reappear when any output is added to the output window and on script 
termination.

NB Prior to plugin version 0.4, this function took a value of true or false.  This use is deprecated.


consoleShow() or consoleShow(name)
Shows the console.

If a console name is given, that console will be shown.


consolePark() or consolePark(name)
Parks the console out of the way or if a name is given that console is parked.  Parking a console 
is usually better than hiding it as you can gain access to it by enlarging it without toggling the 
hide/show status, which effects all the consoles.

If no other consoles are parked, it will be parked in the left-most position at the top of the screen.

 If other consoles are already parked, the console will be parked to the right of the rightmost 
parked console.

When a parked console is moved to a different level, it is no longer regarded as parked.

If this script step is performed in a console already parked, it will be minimised in the same 
parking position.

The parking place and spacing has a default location which is platform dependent.  You can use 
the Parking tab in the tools to set your own custom location. This takes you through manually 
parking two consoles by which the plugin learns how you want consoles to be parked.


consoleName(name)
Changes the name of the console to that given.  Returns the name.

If the argument is omitted, the existing name is returned.

You can also change any console's name in the consoles pane of the tools.


stopScript() or stopScript(string)
Causes the script to stop.  If a string argument is supplied, it becomes the result.


Event handling 
Often it is necessary to set up a response to an event.  Many functions set up a call-back to a 
function you supply and their function names include on.  The first argument is the name of the 
function to be called on the event (not in quote marks).  These calls set up one call-back only.  If 
you want the function to be called repeatedly, it needs set up the next call within it.  When the 'on' 
function is executed, a check is made that the nominated function exists within your main code.  
Usually any error will be reported on compilation.  However, where a call is made within a called-
back function, the error can only be discovered at that time.


Page  of 11 71



onSeconds(functionName, seconds[, parameter])
Sets up a call to functionName after a time of seconds have elapsed.  Optionally, you may 
include a third parameter, which will be used as the argument for the call-back.  Example:

onSeconds(timesUp, 15, "15 seconds gone");
function timesUp(what){  

print(what, "\n");  
}

After 15 seconds, this would display the message 15 seconds gone.

Unlike other call-backs, you may set up up to 10 timed call-backs to different functions or the 
same function but each call-back is fulfilled only once.  If multiple call-backs are due at the same 
time, they are fulfilled in the order they were set up.

Calling onSeconds with no parameters onSeconds( ) cancels all timers and their callbacks.


onDialogue(function, dialogue)
Opens a dialogue window as defined in the dialogue argument which must be an array of 
structures each describing an element of the dialogue.

This function returns immediately to avoid holding up OpenCPN while you respond to the 
dialogue.

When you select one of the action buttons, the specified function is called with a modified copy 
of the dialogue structure as its argument.  Example:

onDialogue(process, [{type:"field", label:"name"}]);  

function process(dialogue){  
print("Name is ", dialogue[0].value, "\n");  
}

This script displays a dialogue with a single field labelled name together with an OK button. When 
the button is selected, the entered name is printed.

Complex dialogues with multiple components can be constructed and processed.  This is 
described in the separate section Dialogues.

The script will not complete while a dialogue remains open, although you can use the Stop button 
or exitScript() to force script termination.

The dialogue box can be dragged where you wish and this repositioning will be remembered for 
subsequent dialogues, including across OpenCPN re-launches.

A call of onDialogue(false) will dismiss any existing dialogue and return true if there was an 
existing dialogue.


Understanding the result 
After a script has completed, the result is displayed in blue in the output window after any other output, such as from print statements.


Implicit result 
The result is usually the result of the last executed statement, so for


3+4;  
3 == 4;

the result is false.  The 3+4 is not the last statement.  The last statement has a boolean value of 
false.

For

print("Hi there!\n");

this will display  Hi there! and the result is undefined as the print function does not return a 
result.

If there are callbacks, the display of the result will be held over until the last callback has been 
completed or the script is stopped or an error has been thrown.


Page  of 12 71



Explicit result 
Instead of the implicit result, you can make it explicit using the scriptResult function:


scriptResult(arg1, arg2…)
The arguments are the same as for print. This sets the result to what would be printed and it is 
displayed as the result later.

If scriptResult( ) is called more than once, the last call overrides previous calls.

The function returns the result that will be displayed, so you can manipulate previous results.

scriptResult("My result");  
...  
scriptResult("Previous result was: ", scriptResult());

This would leave a result of Previous result was: My result

If the scriptResult is set to null or the empty string "", the result is suppressed entirely.

scriptResult(null);

Page  of 13 71



3. OpenCPN APIs 
I have developed a number of APIs to access the functionality of OpenCPN.

These are all functions with names starting with OCPN. 


OCPNpushNMEA0183(sentence)

OCPNpushNMEA0183(sentence, driverHandle)
The earlier form OCPNpushNMEA is deprecated,


Sentence is an NMEA sentence.  It will be truncated at the first * character, thus dropping any 
existing checksum.  A new checksum is appended and the sentence pushed out over the 
OpenCPN connections.  Example:

OCPNpushNMEA("$OCRMB,A,0.000,L,,Yarmouth," + 
"5030.530,N,00120.030,W,15.386,82.924,0.000,5030.530,S,00120.030,E,V");

A check is made that the sentence starts with an NMEA heading. Officially, the maximum length 
of an NMEA sentence with checksum is 80 but OpenCPN allows much longer sentences.

If driverHandle is specified, the sentence will e pushed through the specified connection.  
Otherwise it will be pushed to all relevant connections.  See Driver handles.

The previous API OCPNpushNMEA is deprecated in favour of OCPNpushNMEA0183.


OCPNgetMessageNames()
Returns a list of the message names seen since the console was created.  The list is one name 
per line.  If a call-back is outstanding for that message, the name of the function is also displayed.  
Example:

print(OCPNgetMessageNames());

This is primarily used to determine what messages are being received and their precise names.


OCPNsendMessage(messageName[, message])
Sends an OpenCPN message.  messageName is a text string being the name of the message to 
be sent, as reported by OCPNgetMessageNames.  Optionally, you may include a second 
parameter being the JSON string of the message to be sent.  Example:

routeGUID = "48cf3bc5-3abb-4f73-8ad2-994e796289eb";  
OCPNsendMessage("OCPN_ROUTE_REQUEST",JSON.stringify({"GUID":routeGUID}));

Before making this call, you should have set up a call-back function using OCPNonMessageName.

Sending a message to OCPN_DRAW_PI is not supported and will throw an error.


OCPNonNMEA0183(functionName)

OCPNonNMEA0183(functionName, ident)
The earlier form OCPNonNMEAsentence is deprecated

Sets up a function to process the next NMEA0183 sentence received by the plugin.  The function 
returns a structure containing OK -a boolean value concerning the validity of the checksum - and 
value - the sentence itself.  Example:

OCPNonNMEA0183(processNMEA);  
 
function processNMEA(result){  

if (result.OK) print("Sentence received: ", result.value, "\n");  
else print("Got bad NMEA checksum\n");  
}

If ident is omitted, any NMEA0183 sentence will be passed to the function.  Only a single one of 
these 'any sentence' calls can be outstanding.


Page  of 14 71



If ident is provided, it must be 3 or 5 letters specifying the sentence type to be received.  If 5 
letters, the talker ID is ignored.  You can have multiple requests outstanding, allowing you to 
handle different sentence types in different functions.

You can have both one 'any sentence' and specific sentence calls.


OCPNonNMEA2000(functionName, pgn)
Sets up a function to process to handle the next payload for the given PGN.

The function will be called with three arguments as in this example:

OCPNonNMEA2000(handle, pgn);
function handle(payload, pgn, source){

// payload is binary message
// source is the OpenCPN handle for the input driver

The payload comprises an Actisense header followed by the NMEA data


Byte offset	 Containing

00, 01	 	 0x93, xx

02	 	 priority

03-05	 	 pgn (binary)

06	 	 destination

07	 	 source

08-11	 	 timestamp (undefined in OpenCPN)

12	 	 count for NMEA2000 data

13 onwards	 NMEA2000 data


See Working with NMEA2000 for how to work with this.


OCPNonActiveLeg(functionName)
Sets up a function to process the next active leg information received by the plugin.  The function 
returns a structure containing the following attributes:


Page  of 15 71



Example:

OCPNonActiveLeg(processInfo);  
 
function processInfo(info){  

print(info.distance, " nm to go to mark ", info.markName, "\n");
}

OCPNonMessageName(functionName, messageName)
Sets up a call-back to functionName next time a message with the name messageName is 
received.  The function is passed the message, which is in JSON format.  Example:

routeGUID = "48cf3bc5-3abb-4f73-8ad2-994e796289eb";  
OCPNonMessageName(handleRT, "OCPN_ROUTE_RESPONSE");  
OCPNsendMessage("OCPN_ROUTE_REQUEST",JSON.stringify({"GUID":routeGUID}));  
 
function handleRT(routeJS){  

route = JSON.parse(routeJS);  
try {print("RouteGUID ", routeGUID, " has the name ",  

route.name, "\n");}  
catch(err){print("No such route\n");}  
};

Get code

Notes:

• I have here set up the call-back before sending the request to be sure the call-back is in place 

when the message arrives.

• If the route GUID does not exist, the print will fail, so I am using JavaScript's try & catch to 

handle this.


.markName Destination waypoint name - abbreviated to six characters

.bearing Bearing to waypoint

.distance Distance to waypoint

.xte The cross-tack error

.arrived true if within the arrival circle, else false

Page  of 16 71

https://gist.github.com/antipole2/99735f881ba903ef1326d0dccf17c35a


navdata = OCPNgetNavigation()
This function returns the latest OpenCPN navigation data as a structure as shown:


Example use:

fix = OCPNgetNavigation();  
print("Last fix had ", fix.nSats, "satellites\n");

While developing this API, I experimented with making it Signal K friendly and returned a Signal K 
style structure, which is much more complicated.  That version remains available as

OCPNgetNavigationK();

If you want to explore this, you can print the structure.


OCPNonNavigation(function)
This is an alternative to OCPNgetNavigation().  The function is called with the navigation data 
its argument the next time the navigational data changes.  The data structure is same as that 
retuned by OCPNgetNavigation except that .HDM and .nSats are not included.


OCPNgetARPgpx()
This function returns the active route point as a GPX string or an empty string if there is no active 
route point.  You need to parse the GPX string as required.  Example:

APRgpx = OCPNgetARPgpx();  // get Active Route Point as GPX  
if (APRgpx.length > 0){  

waypointPart  = /<name>.*<\/name>/.exec(APRgpx);  
waypointName = waypointPart[0].slice(6, -7);  
print("Active waypoint is ", waypointName, "\n");  
}  

else print("No active waypoint\n");

Get code


OCPNgetNewGUID()
This function returns a new GUID string as generated by OpenCPN.


Attributes .fixTime Time of fix in seconds since 1st January 1970

.position
.latitude latitude in degrees

.longitude longitude in degrees

.SOG Speed Over Ground

.COG Course Over Ground

.HDM Heading Magnetic

.HDT Heading True

.variation Magnetic variation

.nSats Number of satellites

Page  of 17 71

https://gist.github.com/antipole2/7c8b3e5d70e4b6475baa48ad088b5da3


OCPNgetPluginConfig()
This function returns a structure detailing the plugin configuration with the following attributes: 

config = OCPNgetOCPNconfig()
Returns the OCPN configuration as a JSON string.

You could print this to see what information is available.

By default this is the configuration at the time the plugin was activated.  If the configuration might 
have changes, you can get an updated version through the OCPNsendMessage and 
OCPNonMessageName mechanism. 


OCPNrefreshCanvas()
Refreshes the canvas window.  If your script has made changes to displayed information such as 
waypoints or routes, this will update the display accordingly. 

Attributes .PluginVersionMajor
Plugin version

.PluginVersionMinor

.patch Patch number

.comment Any comment about the version

.ApiMajor
OpenCPN API version number

.ApiMinor

.wxWidgets wxWidgets version number

.DuktapeVersion Duktape JavaScript engine version number

.inHarness True if plugin running in the test harness, else false

Page  of 18 71



OCPNgetAISTargets()
Returns an array of the AIS objects each with the following attributes:


.MMSI The target's MMSI number

.shipName Ship name (if received)

.class 0 if Class A; 1 if Class B

.callSign Radio callsign

.IMO Ship identification number 

.shipType Number representing the ship type, including:

19	 pleasure vessel

34	 vessel diving

36	 sailing vessel

37	 pleasure craft

40	 high speed craft

50	 pilot vessel

52	 tug

70	 cargo ship

Fuller list here.

.navStatus Number representing the navigational status.  The following values are 
believed to have the meaning ascribed:

0	 underway 
1	 at anchor

5	 moored

14	 AIS SART

15	 AIS SART test

Fuller list here.

.position.latitude 

.position.longitude
Position

.range Range in nm

.bearing Bearing ºT

.CPAvalid if true, CPA details valid

.CPAminutes Time to CPA in minutes 

.CPAnm Nautical miles distance at CPA

.alarmState 0 no alarm 
1 alarm set 
2 alarm acknowledged

Page  of 19 71

https://api.vtexplorer.com/docs/ref-aistypes.html
https://help.marinetraffic.com/hc/en-us/articles/203990998-What-is-the-significance-of-the-AIS-Navigational-Status-Values-


Positions 
A position has two attributes - a latitude and longitude pair.

We can create a position thus:


myPosition = {latitude:61,longitude:2};

The difference between two positions is a vector comprising a bearing and distance pair.


APIs for positions 

OCPNgetVectorPP(fromPosition, toPosition)
Returns the vector to move from the first position to the second position.  Example:

move = OCPNgetVector({latitude:61,longitude:2}, 
                     {latitude:60,longitude:2});  
print(move, "\n");
// prints {"bearing":180,"distance":60}

OCPNgetPositionPV(fromPosition, vector)
Given a position and a vector, returns the position after applying the vector.  Example:

start = {latitude:55, longitude:-1};  
vector = {bearing:180, distance:60};  
end = OCPNgetPositionPV(start, vector);  
print("end position ", end, "\n");  
// prints end position {"latitude":54.001, "longitude":-1}

Note: any methods in the start position are not inherited in the returned position - only the latitude 
and longitude are returned.  See  Objects and Methods for instructions on how to create a new 
position with methods.


OCPNgetGCdistance(Pos1, pos2)
Returns the great circle distance between two positions.


OCPNgetCursorPosition()
Returns the cursor position as a latitude and longitude pair.


Page  of 20 71



Waypoints 
In the JavaScript plugin, waypoints have the following attributes


Property Description Notes

.GUID

.position .latitude

.longitude

Required

.markName The waypoint mark name - default is Circle

.description Free text description of waypoint

.isVisible true if waypoint is displayed - default ??

.isNameVisible true if waypoint mark name is displayed - default is false

.iconName Can be set in mixed text case but is always returned in lower case only

.iconDescription The icon name in mixed case, as in the property's window Read only

.nRanges Number of range rings - default is 0

.rangeRingSpace Space between rings - default 1.0

.rangeRingColour In HTML hex format - default #FF0000 (red)

.useMinScale If true, only display waypoint at large scale - default ??

.minScale If .useMinSCale is true, the minimum scale for waypoint to be 
displayed - default 1e9

.hyperlinkList Array of hyperlinks, each containing

.description  	 text to be linked

.link	 	 The URL to link to

.type	 	 (use unknown - do not use)

.creationDateTime Creation date/time in milliseconds since 1st January 1970 (to 1 
second)

.isFreeStanding If true, this waypoint exists independently of any route and 
appears in the waypoints list.

If false, this waypoint exists only by being included in one or 
more routes.

Read only

.routeCount Count of the number of routes in which this waypoint occurs Read only

Page  of 21 71



APIs for waypoints 
Later in this guide in Objects and methods I describe the position, waypoint and route objects, 
which are the most powerful way of handling these concepts in JavaScript.

This section documents the underlying APIs used to implement them.  You can call these APIs 
directly, if you wish, but the returned structures will not include any methods.


OCPNgetWaypointGUIDs(selector)
Returns an array of waypoint GUIDs.


selector determines which GUIDs are returned and can take the following values 
0 or selector omitted	 objects not in layer 
1	 	 	 objects in a layer 
-1	 	 	 all objects both in layer and not 
NB Prior to OpenCPN v5.8 and plugin v2.1 this selector is ignored and all objects are returned, as 
if it were -1.  Thus the behaviour of OCPNgetWaypointGUIDs() has changed.


Example:

var GUIDs;  
GUIDs = OCPNgetWaypointGUIDs();  
print("There are ", GUIDs.length,  

" waypoints and number 3 has the GUID ", GUIDs[3], "\n");  
// prints in my case There are 236 waypoints and number 3 has the GUID  
// 5caa0922-3e7c-432d-b075-afe34fbb19b1

Note: the returned array includes the self-standing waypoints that are listed in the waypoints tab 
of the  Route & Mark Manager and also routepoints that are only used in routes which are not 
included in that list.


OCPNgetActiveWaypointGUID()
Returns the GUID of the active waypoint or false if none.


OCPNgetSingleWaypoint(GUID)
Returns a waypoint structure for the given GUID. Throws an error if the GUID does not exist.

Example:

GUID = "137eecdd-e3e0-4eea-9d72-6cec0e500dbe";  
myWaypoint = OCPNgetSingleWaypoint(GUID);  
print("Waypoint name is ", myWaypoint.markName, "\n");

OCPNdeleteSingleWaypoint(GUID)
Deletes a single waypoint, given the GUID.

Example:

OCPNdeleteSingleWaypoint("6aaded39-8163-43ff-9b6d-13ad729c7bb1");

Throws an error if there is no existing waypoint with the given GUID.


GUID = OCPNaddSingleWaypoint(waypoint)
Adds a single waypoint into OpenCPN.  The argument must be a waypoint structure.

If waypoint.GUID contains a GUID, that will be used.  If that GUID already exists, an error is 
thrown.  If no GUID is provided, a new GUID will be obtained for you.  This function returns the 
GUID used.  If you do not supply a GUID, you need to save the returned one if needed.


Page  of 22 71



Example:

newWaypoint = {position:{latitude: 60, longitude:-1}};  
newWaypoint.markName = "Near pub";  
newWaypoint.iconName = "anchor";  
newWaypoint.isVisible = true;  
newWaypoint.description = "Good pub close by ashore";  
GUID = OCPNaddSingleWaypoint(newWaypoint);  
newWaypoint.GUID = GUID; // store the allocated GUID back in newWaypoint

OCPNupdateSingleWaypoint(waypoint)
Updates a single waypoint into OpenCPN.  The argument must be a waypoint structure with an 
exiting GUID.

Throws an error if there is no existing waypoint with the given GUID. 

Page  of 23 71



Routes 
Route structures have the following attributes


APIs for routes 

OCPNgetRouteGUIDs(selector)
Returns an array of route GUIDs.  See this page for specification of selector.


OCPNgetActiveRouteGUID()
Returns the GUID of the active route if any, else false.


 When a route is active, OCPNgetActiveWaypoint() returns the GUID of the active 
waypoint within the route.  If the same waypoint occurs more than once in the same 
route, it is not possible to learn which of its occurrences is the active one.


OCPNgetRoute(GUID)
Returns a route structure for the given GUID, complete with an array of the waypoints.  Throws an 
error if route does not exist.

Example:

myRoute = OCPNgetroute("137eecdd-e3e0-4eea-9d72-6cec0e500abc");  
print("Route name is ", myRoute.name, "\n");

OCPNdeleteRoute(GUID)
Deletes a route, given the GUID.

Example:

OCPNdeleteRoute("6aaded39-8163-43ff-9b6d-13ad729c7abc");

Throws an error if the route does not exist.

Any waypoints in the route that are not free-standing and are not included in any other route will 
be deleted.


GUID = OCPNaddRoute(route)
Adds a route into OpenCPN.  The argument must be a route structure, which should contain an 
array of waypoints.

If a waypoint is an existing one, only the GUID need be supplied.  The other attributes will be 
ignored.


.GUID

.name Route name

.from From text

.to To text

.description The route description

.isVisible True if the route is being displayed else false

.isActive True if this route is active

.waypoints Array of waypoints in route

Page  of 24 71

NB



If a waypoint is new, do not include a GUID.  A new point will be created using the attributes of 
the point.

If route.GUID contains a GUID, that will be used.  Otherwise a new GUID will be obtained for 
you.  This function returned the GUID used.  If you do not supply a GUID, you need to save the 
returned one if needed.  If you supply a GUID and it is already in use, an error is thrown. 

OCPNupdateRoute(route)
Updates a route into OpenCPN.  The argument must be a route object with an exiting GUID.

Throws an error if there is no existing route with the included GUID.

This API can be used to

• update the attributes of the route structure as listed above

• add, remove or reorder waypoints in the route

Note: if an included waypoint has no GUID, it will be added as a new routepoint.  If it has a GUID, 
that will be assumed to be an existing waypoint and the rest of the waypoint structure is ignored.

If you want to update a waypoint's details, use the OCPNupdateSingleWaypoint function on that 
waypoint.


Page  of 25 71



Tracks 
Track structures have the following attributes


APIs for tracks 

OCPNgetTrackGUIDs(selector)
Returns an array of route GUIDs.  See this page for specification of selector.


GUID = OCPNaddTrack(track)
Adds a track into OpenCPN.  The argument must be a track structure, which should contain an 
array of trackpoints.

If a trackpoint is an existing one, only the GUID need be supplied.  The other attributes will be 
ignored.

If a trackpoint is new, do not include a GUID.  A new point will be created using the attributes of 
the trackpoint.

If track.GUID contains a GUID, that will be used.  Otherwise a new GUID will be obtained for 
you.  This function returned the GUID used.  If you do not supply a GUID, you need to save the 
returned one if needed.  If you supply a GUID and it is already in use, an error is thrown.


OCPNgetTrack(GUID)
Returns a track structure for the given GUID, complete with an array of the trackpoints.  Throws 
an error if the track does not exist.


OCPNdeleteTrack(GUID)
Deletes a track, given the GUID.


OCPNupdateTrack(track)
Updates a track into OpenCPN.  The argument must be a track object with an exiting GUID.

Throws an error if there is no existing track with the included GUID.

This API can be used to

• update the attributes of the track structure as listed above

• add, remove or reorder trackpoints in the track

Note: if an included trackpoint has no GUID, it will be added as a new trackpoint.  If it has a GUID, 
that will be assumed to be an existing trackpoint and the rest of the trackpoint structure is 
ignored.

Changing details of a tracepoint is not supported.


.GUID

.name Track name

.from From text

.to To text

St

.waypoints Array of trackpoints, each of which comprises

.latitude

.longitude

.timeStamp

Page  of 26 71



Menus 
OCPNonContextMenu(function, menuItem [,info])
Adds menuItem to the context menu.  When this is selected, the function is invoked and given the 
position.  The position has an additional attribute info which contains the third parameter from 
the above call or an empty string, if none,  The context menu item is removed so it must be 
recreated if it is still required.

Example:

menuName = "Drop Anchor";  
OCPNonContextMenu(dropMark, menuName);  
consolePark();  
 
function dropMark(location){  

waypoint = {  
position: location,  
markName: "Anchorage", iconName:"Anchor",  
minScale: 52000, useMinScale: true,  
}  

OCPNaddSingleWaypoint(waypoint);  
OCPNonContextMenu(dropMark, menuName);  
}

This script adds a context menu item Drop Anchor, which can be used to drop a bespoke anchor 
mark, which as written here only displays at large scale.


Other 
OCPNsoundAlarm()
Plays an alarm sound. Returns true if successful.


Page  of 27 71



4. Objects and methods 
JavaScript supports the use of objects.  These can be a convenient way of representing complex 
data structures together with their own properties and methods.

You can construct your own objects within your script or load a constructor from a file using the 
require function.  By convention, constructors have an initial capital letter as a reminder that 
they are constructors.

The JavaScript plugin has a library of useful constructors for constructing relevant objects and 
these are described here:


Position constructor 
Position(lat, lon) or

Position({latitude:lat, longitude:lon})
This constructs a position object as follows:


Example 1:

Position = require("Position"); // loads the constructor  
myPosition = new Position(58.5, -1.5);// constructs a position  
myPosition.longitude = 0.5;// change the longitude
print(myPosition.formatted, "\n"); // displays 58° 30.000'N 000° 30.000'E  
print(myPosition.NMEA, "\n");    // displays 5830.000,N,0030.000,E

Example 2:

The Position constructor can also be given a latitude & longitude pair structure.  Extending the 
code in Example 1, we could write:

shiftedPosition = new Position(OCPNgetPositionPV(myPosition, 
           {bearing:180,distance:30}));  
print(shiftedPosition.formatted, "\n");  
// prints 58° 00.071’N 000° 30.000’W

To load constructor require("Position") Note: the constructor can take optional latitude & 
longitude values

myposition = new Position(60, -1.5);

or it can take a latitude & longitude pair

or an existing position object

myposition = new Position({latitude:60,longitude:-1.5});

Attributes .latitude latitude in degrees

.longitude longitude in degrees

.fixTime time of position fix if recorded, else 0

Properties .formatted Is the position formatted for the human eye

.nmea Is the position formatted as used in NMEA sentences.  
You need to add the comma before and after, if 
required.

Methods .NMEAdeode(sentence, n) decodes the NMEA sentence and sets the position to 
the nth position in the sentence

.latest( ) Sets the position to the latest position available from 
OpenCPN and .fixTime to the time of that fix.  If no fix 
has been obtained since OpenCPN was started, the 
time will be zero.

Page  of 28 71



Example 3: Decode an NMEA string and print the second position for the human eye:

Position = require("Position");  
thisPos = new Position;  
sentence =  
"$OCRMB,A,0.000,L,,UK-
S:Y,5030.530,N,00121.020,W,0021.506,82.924,0.000,5030.530,S,00120.030,E,V,A*69"; 
thisPos.NMEAdecode(sentence,2);  
print(thisPos.formatted, "\n"); // displays 50° 30.530’N 001° 20.030’W

Page  of 29 71



Waypoints constructor 
Waypoint()
constructs empty waypoint object with its methods


Waypoint(lat,lon)
constructs waypoint object for the given latitude and longitude


Waypoint(position)
constructs waypoint object for the given position


Waypoint(waypoint)
constructs waypoint object for the given waypoint, thus adding the waypoint object methods to a 
waypoint structure.

The constructed waypoint object is as follows:


  A waypoint returned from OpenCPN is 'bare' - just containing the attributes and no 
methods.  To add the methods to a bare waypoint, construct a copy using, say

bareWaypoint = OCPNgetWaypoint(GUID);  
fullWaypoint = new Waypoint(bareWaypoint);

  // now you can use...
    print(fullWaypoint.summary(), "\n");

 

To load constructor require("Waypoint")

Attributes As for waypoints

Methods .add(GUID) Adds the waypoint into OpenCPN using the optional 
GUID, which must not already exist.  If GUID is omitted, 
a new GUID will be obtained.

Returns the GUID if successful, else an error is thrown.

You must save the GUID if needed.

.get(GUID) Gets the waypoint from OpenCPN and sets the object 
to it.

If GUID is supplied, that is the waypoint loaded.  If 
GUID is omitted, the GUID in waypoint.GUID is 
used.

Returns the GUID if successful, else an error is thrown.

You must save the GUID if there is any doubt which 
one was used.

.update() Updates the waypoint in OpenCPN to match the 
contents of this object.  The GUID in 
waypoint.GUID must already exist else an error is 
thrown.

.delete(GUID) Deletes the waypoint in OpenCPN with GUID.  If GUID 
is omitted, uses the GUID in waypoint.GUID.
An error will be thrown if a waypoint with 
the GUID does not exist.

.summary( ) Returns a brief readable summary of the waypoint 
markName and position.

Page  of 30 71

Hint



About hyperlinks 
Waypoints and routes can have a description attribute.  They can also have one or more 
hyperlinks - attributes which load a web link or a local file.  A hyperlink is itself an object thus:

In a waypoint object, the hyperlinks exist as an array of objects in the .hyperlinks attribute.  
Herewith an example of adding hyperlinks to a a waypoint:

myWaypoint = newWaypoint;  
var link1 = {description:"OpenCPN", link: "https://opencpn.org"};  
var link2 = {description:"OpenCPN team", link:  

"https://opencpn.org/OpenCPN/info/team.html"};  
// push the hyperlinks onto the array  
myWaypoint.hyperlinkList.push(link1);
myWaypoint.hyperlinkList.push(link2);

Page  of 31 71



Route 
Route()               constructs a route object with its methods

Route(route) constructs a copy of the given route adding methods

The constructed route object is as follows:


To load constructor require("Route")

Attributes .name The route name

.GUID

.from The from text

.to The to text

.description The description field

.waypoints An array of the waypoints in the route, each being a 
waypoint object.

.isVisible Determine whether the route is displayed.

.isActive Read-only.  The value is ignored when updating 
OpenCPN

.waypoints An array of the waypoints in the route, each being a 
waypoint object.

Methods .add(GUID) Adds the route into OpenCPN using the optional GUID, 
which must not already exist.  If GUID is omitted, a new 
GUID will be obtained.

Returns the GUID which you may need to save.

An error is thrown if the GUID is already in use.

.get(GUID) Gets the route from OpenCPN and sets the object to it.

If GUID is supplied, that is the waypoint loaded.  If 
GUID is omitted, the GUID in waypoint.GUID is 
used.

Returns the GUID if successful, else an error is thrown.

You must save the GUID if there is any doubt which 
one was used.

route.waypoints will be an array of the route’s 
waypoints.

.update() Updates the route in OpenCPN to match the contents 
of this object.  The GUID in 
route.GUID must already exist otherwise an error is 
thrown.

.delete(GUID) Deletes the route in OpenCPN with GUID.  If GUID is 
omitted, uses the GUID in route.
If a route with the GUID does not exist, an error is 
thrown.

.purgeWaypoints() Deletes all waypoints within the route object, including 
the waypoint’s hyperlinks.

Page  of 32 71



    A route returned from OpenCPN is 'bare' - just containing the attributes and no   
methods.  To add the methods to a bare route, construct a copy using, say


bareRoute = OCPNgetRoute(GUID);  
        fullRoute = new Route(bareRoute);

// now you can use, for example, ...
fullRoute.update();

Page  of 33 71

Hint



About JavaScript objects and OpenCPN objects 
It is important to understand the difference between objects in OpenCPN and the objects in a 
JavaScript representing them.  Consider the following:


JavaScript What changes in JavaScript What changes in OpenCPN

myRoute = new Route() New JavaScript route object 
created

Nothing

myRoute.add() Nothing Route is added

myRoute.purgeWaypoints() Waypoints are purged from the 
JavaScript object

Nothing

myRoute.delete() Nothing OpenCPN route is deleted

delete myRoute JavaScript object is deleted Nothing

Page  of 34 71



5. Modules 
Above, you learnt how to load a constructor from the built-in library.

You can also load code from your own file space using the require function.   If the require argument is a simple name without a suffix or file path separator, require looks for a built-in component.  Otherwise it uses the require parameter to look for a file.  If the parameter is a relative file string, it looks relative to the current directory set for the plugin.  If it is an absolute file path, then it loads that file.


Loading your own functions 
As an example of how to write your own functions to load with require, consider the fibonacci 
function shown above.

You could save this into a file, load it with a require statement and call it, e.g.:

require("myJavaScipts/fibby.js");  
print("Fibonacci said: ", fibonacci(10), "\n");

Writing and loading your own object constructors 
Constructors work similarly to functions but construct an object .  Here is a trivial constructor for 
an object which includes a method

function Boat(_name, _make, _model, _length){  

this.name = _name;  
this.make = _make  
this.model = _model  
this.length = _length;  
this.summary = function(){return(this.name + " is an " +  

this.make + " " + this.model + " of length " +  
this.length +"m\n");}  

}

Note how the attributes are set when the constructor is called.  As this is a constructor, an object 
must be created from it, once loaded.  Example:

Boat = require("myjavascripts/Boat.js");  
myBoat = new Boat("Antipole", "Ovni", 395, 12);  
myBoat.length = 12.2; // correction  
print(myBoat.summary(), "\n");  
// prints Antipole is an Ovni 395 of length 12.2m

Page  of 35 71



6. Working with Date Time 
OpenCPN counts the time in seconds since 1st January 1970.

The JavaScript Date object uses milliseconds since the same epoch, so it is necessary to convert as required. The following script illustrates this:


Position = require("Position");  
latestPos = new Position();  
latestPos.latest(); // sets to latest position  
presentTime = new Date()/1000; // convert to seconds  
print("Latest position ", latestPos.formatted);  
print("was acquired ", (presentTime - latestPos.time).toFixed(1),  

"s ago");  
print(" at ", Date(latestPos.time*1000), "\n");  // time to msecs

When I tested the above, it displayed:

Latest position 50° 41.054’N 002° 5.307’W was acquired 2.7s ago at 2020-08-12 09:47:34.762+01:00 

Page  of 36 71



7. Error handling 
Many of the extensions 'throw' an error when an error situation is encountered.  The script will be terminated with an error message.  This makes for simple scripting - you do not need to test for errors in these cases.

If you wish to handle the error yourself and continue with the script, you can catch it using the try/catch JavaScript construct:


try {  
OCPNdeleteWaypoint("non-existent GUID");  
}  

catch(error) {  
print("Caught error ", error.message, "\n");  
// corrective action here  
}

Catch is passed the error object of which error.message is the most useful.  The attributes are:




It is wise to always display the error message.  The error might not be what you think 
it is and without that information you could look for the problem in the wrong place.


.message The error message.

.fileName Name of file where error was thrown.

.lineNumber Line number within file.  If an error is thrown from your script, this will 
show the line number.  However, errors are often thrown from within 
the plugin and the fileName and lineNumber are for the plugin code 
rather than your script.

.stack Stack trace back from the throw.

Page  of 37 71

Tip



8. Execution time limit 
Your script could get into a continuous loop and never end.  This might be because of a simple 
scripting error or because some condition for ending the script was not being met. As simple 
example, the following script never ends because true is always true:

while(true) ;

This would lead to OpenCPN being locked up with the only way out to force-quit OpenCPN - not 
something you want to happen during navigation!

To protect against this, the plugin places a time limit on script execution and will terminate it if the 
limit is exceeded.  By default this is set at 1000ms.  Each callback gets its own 1000ms limit.

The timeAlloc function extends the time limit and returns the number of milliseconds remaining 
at the time of the call before it is extended.  Optionally you may provide a new time allocation in 
place of the default.  This new allocation will be used at the call and all subsequent calls not 
specifying a different one.  Subsequent call-backs will be given this allocation.

For a long script, you might use timeAlloc to grant extra time once you have reached a point 
where time might be exhausted.

Beware of using timeAlloc in a loop.  If the script gets stuck in the loop, it might repeatedly 
allocate more time thus defeating the timeout mechanism.

[ long script steps reach a point where further time will be needed]  
print("At this point ", timeAlloc(2000), "ms remain\n");  
[ more script steps for which 2000ms have been granted ]

There is a detailed time-out tester available.

Get code


Page  of 38 71

https://gist.github.com/antipole2/ddc75149103ec0011657d101f8b03c5f


9. Dialogues 
The onDialogue API provides a way of creating and completing dialogues in a way that does not 
prevent other functioning of OpenCPN.  It is possible to build quite complex dialogues with 
multiple buttons and this is described in this section.

The basic call is:


onDialogue(function, dialogue)
where function is the function to be called when a button is selected and dialogue is a 
descriptor of the dialogue to be presented.  This function returns immediately so that functioning 
of OpenCPN is not suspended while the user responds to the dialogue.

dialogue is an array of one or more structures each describing an element of the dialogue to be 
displayed.  Each element of the dialogue array must include its type attribute. Which other 
attributes are applicable depends on the type.

The specified function is given a copy of the dialogue array, in which certain elements will be 
changed to reflect the action taken with the dialogue, as described in the table in purple.  An 
additional element will have been added identifying the button used to dismiss the dialogue.
type Purpose Other attributes 

Grey items are 
optional

Explanation

"caption" Specify caption in 
dialogue bar

value:"caption" If value is omitted, the caption will be 
blank.

If no caption element  is provided, the 
caption defaults to  "JavaScript 
dialogue".

"text" Places text in the 
dialogue

value:"text" The text from the value attribute in 
placed in the dialogue. 

Multiple text elements can be used to 
place information as required.

"field" Provide an input 
field.

label:"text" Text to form label for field.

value:"text" This attribute will always be included 
in the returned structure and will be 
set to the value of the field on 
completion of the dialogue.

If this attribute is included in the call, it 
will be displayed in the field as place 
holder text which can be edited/
replaced while the dialogue is open.

width:number Width of field.  Default is width:100.

height:number Height of field. Default is 22 or 
whatever is needed for larger text set 
by style.

multiLine:boolean If true, the field will be be multi-line.

sufix:"text" Suffix text to be displayed after the 
field, e.g. "ºT"

fieldStyle See below on styling

Page  of 39 71



"tick" Provide a tick box value:"text" The text against the tick box.

If the value starts with "*" that 
character will not be displayed but the 
box will be pre-ticked.

In the returned structure value will be 
true or false.

"tickList" Provide a list of 
items to tick

value:["A", "B"…] In the returned structure, value is an 
array of the ticked items only.  If none, 
it will be an empty array.

"choice" Choose one from 
a list of items.

value:["A", "B"…] The first item is the default value.

In the returned structure, value is the 
selected value.

"radio" Provide a set of 
radio buttons, of 
which just one 
can be selected.


No more than 50 
buttons will be 
displayed.

label:"text" Text to form label for the buttons. 
Omit to suppress label.

value:["one","two"…] Array of texts specifying the button 
choices.

In the returned structure, this attribute 
will be set to the single button 
selected on completion of the 
dialogue (not in an array).

"slider" Provides a 
horizontal slider 
allowing selection 
of an integer 
value

range:[start, end] Numeric values for the start and end 
of the slider range

value:number Initial value of slider

In the returned structure, value is the 
selected value.

width:number Width of slider (not a string).  Default 
is width:200.

label:"text" Text to form label for the slider. Omit 
to suppress label.

"spinner" Provides a 
numerical field 
that can be spun 
up or down

range:[start, end] Numeric values for the start and end 
of the spinner range

value:number Initial value of spinner.  Defaults to 
zero.

In the returned structure, value is the 
selected value.

label:"text" Text to form label for the spinner. Omit 
to suppress label.

"hLine" Horizontal line None Adds a horizontal line as a separator.

type Purpose Other attributes 
Grey items are 
optional

Explanation

Page  of 40 71



Simple example:

myDialogue = [

{type:"text", value:"Complete this field"},
{type:"field"},
{type:"button", label:["Cancel", "*OK"]}
];

onDialogue(action, myDialogue);

function action(dialogue){
if (dialogue[dialogue.length-1].label == "OK")

print("Completed field is: ", dialogue[1].value, "\n");
else print("Cancelled\n");
}

"button" Add one or more 
action buttons

label:"button"

or

label:["one","two"…]

The label for the button.  If more than 
one, these are specified in an array.

If the button starts with '*', it will 
become the default button, which can 
be acted on using the enter key.  The 
'*' is not displayed.  Example: "*Done"

In the returned structure, this attribute 
will be set to the single button 
selected on completion of the 
dialogue (not in an array) and without 
any *.

If there is no element of type button, a 
default button "OK" will be added by 
the plugin.  No corresponding element 
will be added to the returned structure 
as OK will be the only action choice.

type Purpose Other attributes 
Grey items are 
optional

Explanation

Page  of 41 71



Styling 
You may want to adjust the style of text in a dialogue.  You can include the style attribute with 
any of the above but it will not have any effect on some dialogue components.

For the field type the style operates on the label, field and any suffix.  You can override the style 
for the field itself with fieldStyle

Styling is not included in the returned version of the dialogue array.


Example with styling 
Here is an example showing various types and including some styling.

Get code.



In the demonstration scripts, there is practical application which 
builds race routes through a series of dialogues.


style:{style attributes} Available with 
fieldStyle?

size:<number> Font size e.g. size:20

font:<string> Font name e.g. font:"courier"

If the font name does not match one in your system, it may 
prevent other style components from working.

As a special case, if the font name is set to "monospace", a 
monospaced font will be used, which is useful when displaying 
tabular data over multiple lines.

✔

italic:<bool> e.g. italic:true ✔

bold:<bool> e.g. bold:true ✔

underline:<bool> e.g. underline:true

Page  of 42 71

https://gist.github.com/antipole2/426e39991e2b727bd378de3c5ffe127a


10. Automatically running scripts 
It is possible to arrange for a script to be automatically loaded and run when the plugin is started, 
without the need to load the script and run it manually.

Your script needs to be stored in a .js file.  Test it before attempting to run it automatically.

When a script has been loaded from a file or saved to one, the auto run button will be shown at 
the top of the console.  If this is ticked before OpenCPN closes normally, then when the plugin is 
activated, that script will be loaded and run automatically.

If the script hides the console, the console will not be seen until it is unhidden or the script 
produces output in the output pane or the script terminates.

If a script is running while hidden and you need to stop it, you can make the console appear by 
toggling the tool bar icon.  You could then stop the script if required.

To stop a script running automatically, untick the option before quitting OpenCPN.


In the unlikely event that a script were to crash OpenCPN and that script were being run 
automatically, OpenCPN might crash immediately on launch before you could stop it running.  To 
get out of this situation, open the opencpn.ini file and in the JavaScript section find the 
offending console name and  change AutoRun=1 to AutoRun=0.  This will stop the script 
running automatically on launch.


Page  of 43 71



11. Working with multiple scripts 
You can link scripts in a chain to be run successively.  This can be used to break up long scripts 
into successive 'chapters'.  A script can pass a brief to its successor.


chainScript(fileString [, brief]);
Loads the script in the file fileString into the script window, gives it a brief if supplied and runs 
it.

The successor script can collect its brief with


brief = getBrief();
Example:

Let a file successor.js contain the script

print("Found brief ", getBrief(), "\n");

And run the script

chainScript("successor.js", "Brief text", true);

This last will load and run successor.js, which will print

Found brief Brief text

Although the brief is limited to a text string, an array or structure could be passed as a JSON 
string.


Page  of 44 71



12. Working with multiple consoles 
You can have more than one console.  Each console has its own script, which runs independently, 
apart from interactions detailed later.

To create an additional console, use the Consoles tab in JavaScript tools to give it an 
alphanumeric name and create it.  You can also access the tools through the Preferences button 
in the plugin entry in the list of plugins in the OpenCPN Options panel.

To delete a console, use its close button.  As a precaution against accidental loss of a script, the 
script window must be cleared before being closed.  You cannot delete the last and only console.


Communicating between scripts 
The OpenCPN messaging system can be used to send messages between scripts.  The receiving script must be waiting for the message when it is sent.


Working with multiple consoles in scripts 
It is possible to create and use multiple consoles from within a script.

To use the facilities described in this section, you need to load the optional Console extensions with


require("Consoles");

consoleAdd(consoleName)
Adds the console specified, the same as adding via the tools.

An error will be thrown if the console already exists.


consoleExists(consoleName)
Returns true if the console exists, else false.


consoleClose(consoleName)
Closes the console.

You cannot close the console running this script step.


consoleGetOutput(consoleName)
Returns the contents of the output pane of the named console.


consoleClearOutput(consoleName)
Clears the contents of the output pane of the console.

If the argument is omitted, it clears its own output.


consoleLoad(consoleName, script)
If script ends with .js, it will load the script from a file of that name.  Otherwise, script is taken to 
be a JavaScript and that is loaded.


consoleRun(consoleName [,brief])
Runs the script in the console, optionally giving a brief.


consoleBusy(consoleName)
Returns true of the console is busy running a script or waiting for callbacks, else false;


onConsoleResult(consoleName, function [, brief])
Runs the script in the console and sets up a call-back to the specified function on completion.  
The other script is given the brief, if supplied.

On completion, the function is invoked and given an argument being the outcome from the other 
as a structure with attributes:


Page  of 45 71



Example

require("Consoles"); 

name = "TestConsole";
if (!consoleExists(name)) consoleAdd(name);
consoleLoad(name, "myJavaScript.js");
onConsoleResult(name, allDone, "Go well");

function allDone(result){
if (result.type == 1)

throw("myJavaScript threw error " + result.value);
print("Result from myJavaScript was ", result.value, "\n");
}

This script creates the console if it does not already exist, loads it with a script and runs it giving it 
a brief.  On completion, the callback to function allDone checks for an error and throws an error in 
itself and otherwise prints the result.


.type The type of outcome as an integer

0	 other script threw an error

1	 other script timed out

2	 other script completed normally

4	 other script executed a scriptStop( ) step

8	 other script's console was closed by another script

.value If an error, the error reason.

Otherwise, the script result

Page  of 46 71



13. Tidying up 
Sometimes you may need to tidy up after a script terminates, a console is closed or is terminated 
because OpenCPN has quit.  As an example, the Tack Advisor script creates a temporary two-
point route to suggest where to tack.  If OpenCPN were to quit with Tack Advisor displaying this 
route, the route would still exist when OpenCPN is next run although it would then be 
meaningless.


onExit(functionName)
This call specifies a function to be called after the script has completed, including when a console 
is stopped.  This can be used to clean up.  In the above example, any route created to advise 
where to tack is deleted.

The function is called during the wrapping up process.  Some actions within such a function are 
meaningless.  For example, if call-backs are set up they will have no effect.  If the onExit function 
itself throws an error, it will be displayed in the output window but if the window is being closed, it 
would vanish along with the console.  It would be prudent to test the function in a situation where 
the console remains visible.

The following calls are not allowed in the function and will throw an error: 
• require()


• stopScript()


• Any function setting up a callback, such as OCPNonSeconds

The function will not be called when a script terminates because


• An error has been thrown


• The console has been closed, including closed by another script


• The plugin is deactivated, including when OpenCPN is shut down


Page  of 47 71



14. Working with SignalK 
OpenCPN process certain SignalK messages.  If you wish, you can process SignalK messages in 
a JavaScript, which has a natural affinity with JSON.

The following script shows how to use the OpenCPN message interface to receive SignalK 
messages.  This illustration script simply prints out certain information.

// Listen out for SignalK messages and display
Position = require("Position");
OCPNonMessageName(received, "OCPN_CORE_SIGNALK");

function received(message){
signalK = JSON.parse(message);

//   uncomment next line to pretty-print object
// print(JSON.stringify(signalK, null, "\t"), "\n\n");

for (u = 0; u < signalK.updates.length; u++){
update = signalK.updates[u];
timeStamp = update.timestamp;
sentence = update.source.sentence;
values = update.values;
for (v = 0; v < values.length; v++){

what = values[v].path;
value = values[v].value;
}

switch (sentence){
case "GLL":

position = new Position(value);
print("Position at\t\t", timeStamp, " is\t",

                     position.formatted, "\n");
break;

case "VTG":
cog = values[1].value;
sog = values[2].value;
print("Over ground at\t\t", timeStamp, " is\tCOG:",

                     cog, "\tSOG:", sog,  "\n");
break;

case "VHW":
hdt = values[0].value;
stw = values[1].value;
print("Through water at\t", timeStamp, " is\tHDT:",

                     hdt, "\tSTW:", stw,  "\n");

	 	 	 break;

	 	 default:


}
}

OCPNonMessageName(received, "OCPN_CORE_SIGNALK");
};

Sample output:

Position at 2023-11-13T13:39:36.000Z is49° 42.903'N 003° 35.039'W

Over ground at 2023-11-13T12:51:05.808Z isCOG:123.4 SOG:2.34

Through water at 2023-11-13T12:51:05.814Z isHDT:125.2 STW:2.86

Page  of 48 71



15. Working with NMEA2000 
An NMEA2000 message type is known as its PGN (Parameter Group Number).

OpenCPN includes decoders for some 50 PGNs and uses these to handle navigational data.  
Plugins such as Dashboard use them to display a variety of data.

The JavaScript plugin can independently decode and give access to any message for which there 
is a known description - presently 373.


Background 
Unlike NMEA0183 and Signal K, NMEA2000 messages are complex and coded in binary.  How 
they are encoded is proprietary and available only to NMEA2000 licensees, who are bound by a 
non-disclosure agreement.  However, a few projects have worked out how the various PGNs are 
enclosed.

The canboat project has published a list of 'descriptors' - computer readable descriptions of the 
PGNs and created utilities written in C++ to process messages according to these descriptors.

A daughter project canboatjs has replicated the code in JavaScript.  However, it is a large 
complex suite of scripts using the latest JavaScript concepts not available to the JavaScript 
plugin and is not usable for our purpose here.

The JavaScript plugin can independently decode NMEA2000 messages using the canboat 
descriptors.


The NMEA2000 object 
A script can construct any NMEA2000 object for which there is a canboat descriptor and can be 
used to decode NMEA messages into JavaSCript objects.  An example with comments illustrates 
this.

Nmea2000 = require("NMEA2000");
// by convention, constructors are given an initial capital letter
// to remind us it is a constructor and not an object

// construct an NMEA2000 object for 129029 (GNSS Position Data)
NMEA129029 = new Nmea2000(129029);

// the bare object has the attributes of PGN 129029 but the values are
// undefined. You could pretty-print it using
print(JSON.stringify(NMEA129029, null, "\t"), "\n");

The object's decode method will decode a PGN 129029 message's data.  Example:

Pos = require("Position"); // constructor so we can format positions
OCPNonNMEA2000(handle129029, 129029); // listen for message

function handle129029(message){
fix = NMEA129029.decode(message.data);//decodes data in the payload
position = new Position(fix.latitude, fix.longitude);
print("Position: ", position.formatted, "\n");
print("Fix time: ",  fix.date + " " + fix.time, "\n");
print("using ", fix.numberOfSvs, " satellites\n");
}

Sample output:

Position: 52° 37.143'N 001° 28.919'E
Fix time: 2023.10.22 17:34:59
using 12 satellites

Page  of 49 71

https://canboat.github.io/canboat/canboat.html#main


Shortcut 
The above code constructs the NMEA129029 object once at the start and can use it for 
repeatedly decoding PGN129029 messages.  If you are not repeatedly using it, you could 
construct and decode in one step by including the data for the constructor:

fix = new Nmea2000(message.pgn, message.data);

The descriptors 
The plugin has a library of descriptors copied from canboatjs.  The NMEA2000 constructor loads 
the appropriate descriptor.  Should you wish to view the descriptor, it is available as 
the .descriptor. attribute.  You could pretty-print it by

print(JSON.stringify(NMEA129029.descriptor, null, "\t"), "\n");

One of the descriptor's attributes is .Complete, which is true if is believed to be a complete 
description.  You could write:

print("This descriptor is ", 
NMEA129029.descriptor.Complete?"complete":"doubtful", "\n");

You can also load a descriptor directly from the library without using the NMEA2000 constructor:

descriptor = require("pgnDescriptors")(129029);

You can load an array of all descriptors with

descriptors = require("pgnDescriptors")();

You might want to decode using a custom descriptor.  Perhaps you have a descriptor not in the 
plugin's library or have a corrected version of a descriptor.  You can construct the NMEA2000 
object using a custom descriptor in place of one from the library using one of these:

NMEAspecial = new Nmea2000(myDescriptor);
NMEAspecial = new Nmea2000(myDescriptor, message.data);

Descriptor ambiguity 
Some PGNs are used differently by different manufacturers.  For example PGN 130824 is used 
differently by Maretron for Annunciator and B&G for key-value data.  Attempts to load PGN 
130824 will throw an error citing this ambiguity.

However, you can load an array containing all definitions of a PGN using, e.g.:

descriptors = require("pgnDescriptors")(130824, {"options":"returnAll");

You could decide which on these is correct for your installation and construct using the relevant 
descriptor.

Should you have the complication of having equipment from both manufacturers, you would need 
to construct both NMEA2000 objects and examine the manufacturer code in the data to decide 
which object to use on a message by message basis.  The manufacturer code can be decoded by

code = ((data[14] << 8) & (data[13])) >> 5;

See here to relate the code to the manufacturer.


Page  of 50 71

https://canboat.github.io/canboat/canboat.html#lookup-enumerations


Using the canboat analyser 
If you have the canboat software installed on your computer, you can use it to decode an 
NMEA2000 message instead of the NMEA2000 object.  The canboatAnalyzer function converts 
the message data from that provided by OpenCPN to the pseudo-Actisense format expected by 
canboat analyzer, invokes the analyser and returns an NMEA2000 object.  This process is 
significantly slower than using the decoder built in to the NMEA2000 object but might be useful if 
you wish to compare results. Example:

canboatAnalyzer = require("canboatAnalyzer.js"); // load the function
analyzer = "/Users/Tony/OpenCPN_project/canboat/rel/

darwin-arm64/analyzer"; //where to find the analyser program
//use the base shell
myObject = canboatAnalyzer(test.data, "bash", analyzer);

The attribute values should be the same for the two methods but the object structure differs.  See 
Appendix A for this. 

Page  of 51 71



16. Invoking another process 
A script can launch another process and will wait to receive the result.


Executing a program 
Warnings 
The plugin waits for the other process to complete.  You could start a long one.  There is no 
timeout.

You could start a process that cannot complete.  For example, it might try to read from the 
terminal input (stdin).  Since there is no terminal it will wait indefinitely.  There is no way to get out 
of this, other than to force quit OpenCPN.

You should not experiment with this while depending on OpenCPN to navigate!


result = execute(command);

result = execute(command, env, errorOption);
The command is run as a sub-process and the script waits for the result.  The result is a structure 
holding the output to stdout and stderr.  Example:

result = execute("hostname");
print(result.stdout, "\n");// on my computer this prints its host name

A second argument env can be provided set the environment for the sub-process.  The following 
illustrates all options:

env = {

"PATH":"/bin:~/myPrograms",// where to search for programs
"PWD":"~/ocpnProject, // working directory for the sub-process
"SHELL":"/bin/zsh" // shell to use
}

Some programs, such as the canboat analyzer, write non-error information to stderr.  If you wish 
to see such output, it is available at result.stderr.

If a real error occurs, an error will be thrown.  This would show you the error message but you 
would not get an opportunity to see what had been written to that point.  You can override this by 
providing a third argument of true.  In this case an error will not  be thrown and the result will 
have an addition property errorCode, which will be

0	 no error

-1	 unable to launch process

+ve	 error code

If the error code is positive, you can examine the output on stdout up to the error. stderr 
should include the real error message.

 If you want to provide this third argument but not set the env options, you can use null.

result = execute("echo 'Hello world!'", null, true);
if (result.errorCode != 0) printOrange("after output of ", result.stdout,

" got error ", result.stderr, "\n");
else print(result.stdout, "\n");

Page  of 52 71



Running a shell script 
For non-trivial commands, such as a shell pipeline, it will be easier to use the shell function, 
which you can load if required.  The following example imagines you want a list of the track files in 
a particular folder

shell = require("shell");
result = shell("cd ~/Tracks; ls | grep track");
trackFiles = result.stdout;// list of files with 'track' in their name

You can give the shell function optional arguments thus:

result = shell(pipeline, shell, errorOption);

shell is the name of the shell to use.  The default is "bash".l

errorOption is the same as for execute above.


17. JavaScript Plugin Tools 
The tools window is accessed top right of any console or through the Preferences button in 
plugin's entry in the plugin manager.

The tools comprise six pages


Consoles 
Allow creation of an additional console and renaming of an existing console.

Console options:

• Float windows on the OpenCPN frame (on by default).  Mainly relevant to MacOS.

• Preserve the Show consoles toggle status in the toolbar (off by default)


Directory 
Allows setting of the current directory.


NMEA 
Allow allows you to simulate sending an NMEA message to the plugin for testing purposes.


Message 
Allow allows you to simulate sending an OPenCPN message to the plugin for testing purposes.


Parking 
Allows you to customise the parameters for parking consoles, including the park location.


Diagnostics 
See the technical manual for this.


Page  of 53 71



18. Tips 
This section provides a few tips on working with the plugin.


Examining objects 
During development of a script, it can be very helpful to examine a JavaScript object.  You can do 
this by printing it out.

nav = OCPNgetNavigation();  
print(nav, "\n");

The printed object will look something  like:

{"fixTime":1672843366,"position"{"latitude":57.494,"longitude":-4.2344},"
SOG":null,"COG":null,"variation":0,"HDM":null,"HDT":null,"nSats":0}

For a large object, reading this can be tricky.  In such a case it is better to use 
JSON.stringify() to transform it into a pretty JSON string.  The following uses a tab character 
to indent the structure.

print(JSON.stringify(nav, null, "\t"), "\n");

which would display the following equivalent, which is much easier to read.

{  

"fixTime": 1672843366,  
"position": {  

"latitude": 57.494,  
"longitude": -4.2344  

},  
"SOG": null,  
"COG": null,  
"variation": 0,  
"HDM": null,  
"HDT": null,  
"nSats": 0  

}

See a JavaScript tutorial for all the capabilities of JSON transformations in JavaScript.


Page  of 54 71



19. Trouble-shooting character code issues 
If you prepare or edit your script in an external program, it may introduce characters not 
compatible with the JavaScript engine.  Examples

• smart quotes around "Hello" like this: “Hello”

• Smart single quotes around  'goodbye'  like this: ‘goodbye’

• The apostrophe can be useful as itself or as an alternative string delimiter, as in 
'This string includes a quote character "'  
The apostrophe ' might get entered as any of  ‘ ’ ‛ ′ ´ ` 


• wxWidgets uses Unicode characters and copying text from OpenCPN could introduce 
characters which would throw the JavaScript engine.


The plugin tried to fix up unacceptable characters in scripts before compiling.  If your script fails 
with the engine tripping over bad characters, narrow it down to which characters are causing the 
problem with a simple script as short as possible thus:

"º’\€".

Running this script should return a result of the contents of the quoted string.

In the diagnostics tab of the tools window is a facility to examine characters and their translation.  
Please submit the dumped code analysis with a problem report.

Under Windows, the plugin is unable to convert the prime character ′ and it will likely cause a 
JavaScript error.


Working with non-7-bit characters such as the degree 
symbol

If you use characters not included in the 7-bit set, it may or may not work and you may have 
compatibility issues across different platforms. It is safest to generate these characters within a 
script using the String.fromCharCode( ) function that return the required character.

A relevant case is the degree symbol º which has the decimal code 176 and is not in the 7-bit set. 
If you display a bearing with, say,

print(“Bearing is ” , bearing, “ºT\n”);

this works under MacOS but not under Windows. Instead you could use

print(“Bearing is “, bearing, String.fromCharCode(176), “T\n”);  

Page  of 55 71



20. Demonstration Scripts 
In this section, you will find a number of scripts that demonstrate aspects of in the plug-in.  They are chosen for their ability to demonstrate the capabilities of the plugin and perhaps act as starters for creating your own applications. You can copy the scripts and paste them into the script window.  In many cases they do things that can be done in OpenCPN itself but aim to show how these things can be done programatically.

There is also a library of contributed scripts available here.


A. Save script preferences for next script run 
This script demonstrates one way of saving some preferences for use in a subsequent script or 
re-run of the same script.

The preferences are held in a structure prefs and saved to a text file in a JSON string.  For this 
simple script to work, the preferences file must already exist and contain at least the empty JSON 
string { }.

The script sets up a call to saveConfig( ) on its exit in which the prefs structure is saved to the file 
as a JSON string.

When the script starts, it reads the file and parses it into a structure.

It then modifies some preferences.

prefFile = "/Tony/myFiles/prefsFile.txt"; // location of text file
onExit(saveConfig);
 
prefs = JSON.parse(readTextFile(prefFile));  
print("Old prefs were: ", prefs);  
prefs.iconName = "Circle";
prefs.scale = 5;

function saveConfig(){
writeTextFile(JSON.stringify(prefs), prefFile, 1);
print("Prefs saved\n");
}

B. Process and edit NMEA sentences 
This script addresses an issue someone had whereby their RMC sentences did not include 
magnetic variation, which was available in their HDG sentences.  This script captures variation 
from the HDG sentences and inserts it into any RMC sentences that do not already have the 
variation.

(Hint to help you understand this: the .split method splits a string at each of the specified 
character into an array, here called splut.  .join does the reverse.)


Page  of 56 71

https://github.com/antipole2/JavaScripts-shared/blob/main/library/library_index.adoc


// insert magnetic variation into RMC sentence  
var vardegs = "";  
var varEW = "";  
OCPNonNMEAsentence(processNMEA);  
function processNMEA(input){  

if (input.OK){  
sentence = input.value;  
if (sentence.slice(3,6) == "HDG")  

{  
splut = sentence.split(",");  
vardegs = splut[4]; varEW = splut[5];  
}  

else if (sentence.slice(3,6) == "RMC")  
{  
splut = sentence.split(",");  
if ((splut[10] == "") && (vardegs != ""))  

{ // only if no existing variation and  
  // we have var to insert  
splut[10] = vardegs; splut[11] = varEW;  
splut[0] = "$JSRMC";  
result = splut.join(",");  
OCPNpushNMEA(result);  
}  

}  
}  

OCPNonNMEAsentence(processNMEA);  
};

Getcode


When you push an NMEA sentence from within a function like this, it will itself be 
processed by the function. If that processing causes another matching sentence to 
be pushed, you could set up an infinite loop, which would cause OpenCPN to hang. 

In the above code, the pushed sentence is given a different sender, which is being 
filtered out of received sentences by OpenCPN.


C. Counting NMEA sentences over time 
This script NMEA-counter.js counts down for 30 seconds and then lists the OpenCPN messages 
and NMEA sentences it has seen.  The NMEA sentences are sorted by count and then 
alphabetically.

Get code


D. Locate and edit waypoint, inserting hyperlinks 
This script locates a waypoint called "lunch stop" and changes its icon name to "Anchor".  It 
nudges the waypoint slightly north, adds a description and adds some hyperlinks referencing the 
nearby pub.


Page  of 57 71

! ! !

https://gist.github.com/antipole2/f2fe6d571d7b13235600117341533eda
https://gist.github.com/antipole2/cbf0bc76a74e61c0975415834a222bfc


// Add hyperlinks to an existing waypoint with markName of 'lunch stop'  
wpName = "lunch stop";  
guids = OCPNgetWaypointGUIDs();  
foundIt = false;  
for (i = 0; i < guids.length; i++){  

// look for our waypoint  
lunchWaypoint = OCPNgetSingleWaypoint(guids[i]);  
if (lunchWaypoint.markName == wpName){  

foundIt = true;  
break;  
}  

}  
if (!foundIt) throw("Waypoint not found");  
// we have our waypoint - now update it  
lunchWaypoint.iconName = "Anchor";  
// nudge the position north towards shore  
lunchWaypoint.position.latitude += 0.001;  
lunchWaypoint.description = "Great anchorage with pub close ashore";  
lunchWaypoint.hyperlinkList.push({description:"Pub website",  

link:"https://goldenanchor.co.uk"});  
lunchWaypoint.hyperlinkList.push({description:"Menu",  

link:"https://goldenanchor.co.uk/menu"});  
OCPNupdateSingleWaypoint(lunchWaypoint); // update OpenCPN waypoint

Get code


E. Build routes from NMEA sentences 
This script listens for routes being received over NMEA in the form of WPL and RTE sentences 
and creates OpenCPN routes from them.

There is an option to match received routes with any existing route of the same name and replace 
it.  In this case a check is made that the existing routes have unique route names.

There is an internal simulator.  In simulation mode, the script does not listen for real NMEA 
sentences but generates simulated ones which are passed to the sentence processor.

As a JavaScript example, this script is interesting because it:

• it has a built-in simulator allowing testing without having incoming NMEA data

• makes full use of the Position, Waypoint and Route constructors

• has to deal with the complication that RTE sentences may be sent in instalments, as 

necessitated by the 80 character length limit

• It makes good use of JavaScript arrays, including:


- pushing items onto an array

- pulling (shift) items off the front

- joining items into a string


This script was written as a demonstrator for researchers at the Technical University of Denmark.


Get code


Page  of 58 71

https://gist.github.com/antipole2/2c52e9bc0e63e2aed9acb87efd0b4ba4
http://Build_routes_fom_NMEA.js


F. Build race courses 
This script was inspired by bobgarrett's wish to be able to create race course routes from  a list of 
waypoint names rather than hunt for them on the chart.

The script allows the user to specify a regular expression pattern by which to select those 
waypoints which are race marks.

 In the eastern Solent, the race mark names all start with the digit 5 followed by another character 
and a space. In this example there is also a waypoint Line placed on the start line and we are 
going to build a route for Race 1.  When you click on Build route, you are presented with the Race 
mark selector.

In this dialogue you select the course marks in order adding them to the course.  You can indicate 
whether they are to be left to port or starboard.

In this example, the finish is through the start line, so the final selection is Line and the button to 
finish.

The script then builds the route in OpenCPN and also displays the route with the list of waypoints 
indicating the bearing and distance to each and which side to pass.  The caption includes the 
course length.

Get code


This script makes extensive use of the onDialogue function and is a useful example to work from. 

Page  of 59 71

https://www.cruisersforum.com/forums/f134/create-route-from-waypoint-names-240341.html
https://www.cruisersforum.com/forums/f134/create-route-from-waypoint-names-240341.html
https://gist.github.com/antipole2/6dbd4745b7b3bd68e931f47ead28f5b7


 

Page  of 60 71



G. Driver 
This is a simulator that can be used to drive the ship in the absence of actual NMEA inputs.  It is 
an alternative to the ShipDriver plugin but does not use steering to gradually change course.  It 
generates GLL, VTG and WML NMEA sentences.  You could add others as required.

You can set Speed Over Ground (SOG), Course Over Ground (COG), Wind angle and wind speed.  
Selecting Compass course will then drive the boat along the selected course.  The angle to the 
wind is displayed.

You can instead specify an angle to the wind and port or starboard tack.  It will then calculate the 
required COG.  Selecting the opposite tack will tack the boat.

Driver can be run in its own console and used, for example, to experiment with or test the 
TackAdvisor and SendActiveRoute scripts running in their own consoles.

Get code


H. TackAdvisor 
This script monitors for when you have an active waypoint and will need to tack to reach it.  It 
then displays the two tack legs required.

If you are running off the wind to an active waypoint, and will need to gybe to reach it, it displays 
the two legs and hence the recommended point to gybe.

TackAdvisor does not take cross-current offsets into account and will not give an accurate tack 
point if the cross-current is significant.

If TackAdvisor is standing by and not displaying your tacks when you are expecting it to, check for 
the following.  It will not display tacks under any of these conditions:

• No active waypoint

• You are off the wind by more than the configured amount, i.e. reaching

• You are heading too close to the wind to be sailing

• You are running close to straight for the waypoint

You can exercise TackAdvisor without being underway by running Driver in a separate console.  When you set Driver to a beat or near run, TackAdvisor will display the necessary tacks.


Get code


I. SendActiveRoute 
This script monitors for when you have an active route and sends a series of NMEA sentences so 
that another device such as a chart plotter or a device running iNavX will follow the route itself.  
Any updates to the route, such as modifying a route point or advancing from one route point to 
the next will be updated within the receiving device.

When the script detects an active route, it sends the following NMEA sentences:

A. A series of WPL sentences defining the waypoints in the route

B. A group of RTE sentences creating a route comprising the waypoints

C. A BOD sentence with the bearing from the position at which the leg was activated to the next 

route point.

These sentences cause a device running iNavX to hold a mirror copy of the current route and 
navigate to the active point within the route.

While a route is active, OpenCPN sends APB sentences with the routeName.  Unfortunately, the 
route name is truncated.  This script fixes up the APB sentences to carry the full route name.


Instructions for making this work with a device running iNavX 
1. Have OpenCPN receive NMEA data on one port - say 60001

2. Have OpenCPN send NMEA data on a different port - say 60002.  Because my Wifi router only 

handles a single TCP connection, I send using UDP.


Page  of 61 71

https://github.com/antipole2/JavaScripts-shared/blob/f76d0a38b96080323d088542b818e04f33861f2e/Driver/Driver.js
https://github.com/antipole2/JavaScripts-shared/blob/f76d0a38b96080323d088542b818e04f33861f2e/TackAdvisor/TackAdvisor.js


3. Connect your iPad/iPhone to the same WiFi network.

4. Within iNavX select Instruments  > TCP/IP and set the protocol and port number to as in Step 

2 above.

5. On the same panel, Enable Waypoints and enable Link.  You should now see the NMEA 

sentences scrolling in the monitoring pane of this panel.

6. Click Done and then select the Chart.

The device should now follow the ship's navigation using the ship's navigation data.

When a waypoint becomes active in OpenCPN, it becomes active in iNavX.

When a route is activated in OpenCPN, it appears as the active route in iNavX. As OpenCPN 
advances the routepoint, so iNavX advances its active routepoint.  Progress along the route is 
available in the route tab of the ribbon at the top of the iNavX screen, together with predicted time 
on route and ETA.

If you wish to force an advance to the next routepoint, this is best done on OpenCPN, whereupon 
iNavX will update too.  Should you advance the routepoint in iNavX, it will start ignoring changes 
in the active routepoint send from OpenCPN.  To restore this, go to the panel used for step 5 
above, turn Enable Waypoints off and back on again.

Should OpenCPN fail/crash/hang-up etc., iNavX will continue to navigate the route independently.  
Should the ship's navigational data over NMEA fail, an iOS device with GPS will use its location 
service instead and continue to navigate the route.

This has been tested on iNavX running on an iPad and iPhone.  It should also work on an Android 
device running iNavX but I have not tested that.

Get code

J. Copy ship's formatted position

This script creates an extra context menu that copes the ship's latest position as a formatted 
string.  This could be used to paste the position into a log or report.


Position = require("Position");
OCPNonContextMenu(doIt, "Copy position");
function doIt(){

navData = OCPNgetNavigation();
Shipos = new Position(navData.position);
toClipboard(Shipos.formatted);
OCPNonContextMenu(doIt, "Copy position");
}

Page  of 62 71

https://github.com/antipole2/JavaScripts-shared/blob/f76d0a38b96080323d088542b818e04f33861f2e/SendActiveRoute/SendActiveRoute.js


Appendix A. NMEA2000 and canboat analyser 
The objects returned by these two methods of decoding NMEA message data yield the same data 
attribute values (with one exception noted below) but differ in the structure.

There follows a side-by-side example using PGN 129540.

1. The first seven attributes come from the Actisense header and are enumerated in a different 

order.  This does not effect accessing them programatically.

2. OpenCPN leaves the Actisense header timestamp undefined.  The canboat analyser requires a 

valid timestamp and so the canboatAnalyzer function inserts an arbitrary one.  This is 
always the same and should be ignored.


3. After the Actisense header come the fields according to the descriptor.  Canboat analyzser 
creates all these as attributes of an attribute fields.   This complicates access to the data 
and NMEA2000 puts them directly in the NMEA2000 object.


4. For the attributes thereafter, canboat analyser uses the attribute description from the 
descriptor as the attribute name.  These may include spaces, which makes for invalid 
attributes when accessing the data.  You cannot write 
sats = object.GNSS Sats in View; NMEA2000 uses the attribute id so you can write 
sats = object.gnssSatsInView; The attribute ids start lower case.


5. Where the is a repeating field, such as for each satellite, canboat analyser creates an array 
list[ ].  If there were more than one set of repeating fields, there would be two lists with the 
same name.  NMEA2000 creates an attribute for the count and then an array with the name of 
the list.


6. Many of the descriptor fields specify the units of the parameter.  For example, it will tell you 
whether a temperature is in ºC or ºK.  Navigation parameters such as headings or courses are 
in degrees.  Satellite elevation and azimuth are in radians, as recorded in the descriptor.  
Canboat analyser arbitrarily converts these to degrees, despite what the descriptor says.  This 
is the only such case I have found.  NMEA2000 leaves them in radians.


Page  of 63 71



NMEA2000

{

	 "pgn": 129540,

	 "id": "gnssSatsInView",

	 "description": "GNSS Sats in View",

	 "timestamp": "undefined",

	 "prio": 3,

	 "dst": 255,

	 "src": 1,

	 "sid": 13,

	 "rangeResidualMode": "invalid",

	 "satsInViewCount": 12,

	 "satsInView": [

	 	 {

	 	 	 "prn": 25,

	 	 	 "elevation": "1.308900",

	 	 	 "azimuth": "4.694900",

	 	 	 "snr": "31.000000",

	 	 	 "rangeResiduals": 0,

	 	 	 "status": "Used"

	 	 },

	 	 {

	 	 	 "prn": 28,

	 	 	 "elevation": "0.523500",

	 	 	 "azimuth": "5.288300",

	 	 	 "snr": "28.000000",

	 	 	 "rangeResiduals": 0,

	 	 	 "status": "Used"

	 	 }, 

canboatAnalyzer.js

{

	 "timestamp":"2023-11-24-22:42:04.388",

	 "prio": 3,

	 "src": 1,

	 "dst": 255,

	 "pgn": 129540,

	 "description": "GNSS Sats in View",

	 "fields": {

	 	 "SID": 13,

	 	 "Sats in View": 12,

	 	 "list": [

	 	 	 {

	 	 	 	 "PRN": 25,

	 	 	 	 "Elevation": 75,

	 	 	 	 "Azimuth": 269,

	 	 	 	 "SNR": 31,

	 	 	 	 "Range residuals": 0,

	 	 	 	 "Status": "Used"

	 	 	 },

	 	 	 {

	 	 	 	 "PRN": 28,

	 	 	 	 "Elevation": 30,

	 	 	 	 "Azimuth": 303,

	 	 	 	 "SNR": 28,

	 	 	 	 "Range residuals": 0,

	 	 	 	 "Status": "Used"

	 	 	 },


Page  of 64 71



Appendix B. Plugin version history 
Version Date

0.1 20 Jul 2020 Initial alpha release for feedback

0.2 • Error reporting regularised

• Added various APIs including those to access GUIDs, waypoints & routes

• Script window greatly enhanced for writing JavaScript

• Output window brought into line with script window

• Dealing with spurious characters such as accents improved

• User and technical guides developed

• Builds for Windows and Linux added

• Established on GitHub

Version

Page  of 65 71



0.3 • The script window now highlights plugin extensions and unsupported 
keywords by colourising them.


• The result is now displayed last after any callbacks have completed rather 
than at the end of the main script.  The scriptResult( ) function can be called 
to set the result.


• Error handling has been improved and makes proper use of the Dukcode 
error object.


• Various APIs now throw an error rather than returning a boolean result, 
namely


✦OCPNgetSingleWaypoint( )

✦OCPNdeleteSingleWaypoint( )

✦OCPNaddSingleWaypoint( )

✦OCPNupdateSingleWaypoint( )

✦OCPNgetRoute( )

✦OCPNdeleteRoute( )

✦OCPNaddRoute( )

✦OCPNupdateRoute( )


• Print & alert now accept arrays and objects as arguments

• Alert no longer holds up OpenCPN

• Scripts will now timeout if they take too long, such as if in a loop.

• timeAlloc( ) allows management of the time limit.

• Extensive support for creating and responding to dialogue windows.

• OCPNonSeconds( ) has been renamed to onSeconds( )

• New JavaScript extensions


✦print<colour>( )

✦printLog( )

✦ timeAlloc( )

✦scriptResult( )

✦consoleHide( )

✦onDialogue( )

✦exitScript( )


• New APIs added

✦OCPNgetPluginConfig( )

✦OCPNrefreshCanvas( )

✦OCPNgetAISTargets( )

✦OCPNgetVectorPP()

✦OCPNgetPositionPV( )

✦OCPNgetGCdistance( )

DateVersion

Page  of 66 71



0.4 • Position.NMEA precision increased from 3 to 5 decimal places

• Added writeTextFile

• Console Hide & Show now separate calls

• Added script auto-start ability

• Added chainScript

• Added JavaScript tools panel and current directory concept

• Added support for multiple consoles

• Added support for inter-console calls

• Errors thrown from within the plugin APIs now show the line number and 

trace-back where applicable

• Added onExit( ) capability

• Bug fix: hidden console was reappearing if OCPNdeleteRoute failed

• Extra example scripts

0.5 Functional changes:

Waypoints

• Enhanced: waypoint APIs have extended attributes allowing more control 

over waypoint details.

• Additional attribute to distinguish between a free-standing waypoint and a 

routepoint

• Additional attribute giving a count of the number of routes including this 

waypoint

• New: get active waypoint GUID

Routes

• New: get all route GUIDs

• New: get active route GUID

Tracks (all new)

• get all track GUIDS

• get/update/delete track

• New: get active leg information

• New: printUnderlined

Behind the scenes

The plugin options have been moved within the opencpn.ini file from [Settings] 
to [Plugins]. The plugin will move settings to the new location as required.

Numerous changes for the move from wxWidgetsv512 to v515

0.6 Functional changes

Script and output panes

Now soft-fold text at window boundary

Dialogues

Text field styles: If the font is set to "monospace" a monospaced font is used.

1.0 Re-issue to accompany v1.0

DateVersion

Page  of 67 71



1.1 Output pane

• The output pane is now scrolled, so that the last output is always visible.

• The output length is now limited to 100,000 characters to avoid a rogue script 

exhausting memory.  If the output exceeds this, text is deleted from the top of 
the pane and a message inserted to indicate that this has happened.


Fixes

1. Sending a message to OCPN_DRAW_PI was causing a crash.  Because of 

the way OD processes messages, this cannot be supported.  It will now 
throw an error.


2. A check is now made to avoid a called back function being invoked while 
any other JavaScript code is being executed.  This is generalised protection 
against situations such as 1 above. 


3. Some dialogue elements require or accept a list of values. An empty list 
could lead to a crash.  Now an error is thrown.


4. Dialogue multi-line text fields now soft-wrap so long lines are readable.

5. When adding or updating a route, a routepoint without a GUID was not 

being allocated a new GUID.  Now it is.

6. onExit( ) was not being lexed blue in the script pane.


User Guide

• Error in documentation of track structure corrected.

• Added that with functions such as consoleClearOutput(), if the console 

name is omitted, it performs the action on the script's own console.

DateVersion

Page  of 68 71



2.0 18 Jan 2023 00:00Load script

The plugin now keeps a list of the ten most recently accessed script files.

Load now displays a dialogue in which you can select a file from the lists or you 
can choose Other... which opens a file selection dialogue.

You can also add a recent file to a list of favourites, which will always be offered, 
or you can remove a favourite.


Consoles

The script and output panes are now more flexible and better optimise their 
space, including when resized.

The splitter sash between the script and output pane now shows adjustments 
while being moved.

Consoles can now be reduced to a minimal size just showing the console 
name.

 Consoles can be parked in the frame top bar using the Park button.  A script 
can park its own console or another console.

The parking page of the tools allows you to set your own parameters for 
console parking, including the location of the park.

The consoles page of the tools now allows you to change the name of a 
console.


Extended APIs

readTextFile(fileString) - fileString can now be a URL and text will 
be read from that location, if OpenCPN is on-line.


New APIs

onContextMenu()    - create context menu item and handle with a 
function

consoleName()        - set the console name from a script

consolePark()       - park this or another console

messageBox()         - display message
OCPNsoundAlarm() - sound alarm


Other

 JavaScript engine updated from v2.5.0 to 2.7.0. 
        Performance improvements and bug fixes only.

 OCPNpushNMEA( ) now checks the sentence starts "$.....,"

 Extensive rationalisation of plugin code, especially regularising processing 
after execution of some JavaScript.  When an onExit script is not called has 
changed and is now documented. 

DateVersion

Page  of 69 71



2.1 14 Apr 2023 00:00Console Parking

Consoles are now parked by screen position rather than by the OpenCPN 
frame.


Getting GUIDs

You can now select whether to get GUIDs for ordinary objects, objects in  a 
layer or both.flag.


Routes

These now include the description and the isVisible attributes


Windows scaled displays

Supported


Console options

Options to choose Float on Top and to preserve toolbar  toggle status

2.2 Clipboard

Added toClipboard and fromClipboard functions


Drivers

Support for accessing and using the new input/output driver handles


Navigation data

Added OCPNonNavigation


NMEA0183

OCPNonNMEA ➙ OCPNonNMEA0183

NMEA0183 data can now be written via a specific driver handles

OCPNonNMEAsentence now supports receipt by specific NMEA sentence type


NMEA2000

Added OCPNonNMEA2000

Built in scripts gain OCPN2000,  pgnDescriptors & canboatAnalyzer


Running other processes

Added execute API and shell function


DateVersion

Page  of 70 71



C. Document history 
Version Date

0.1 19 Jul 2020 Initial version to accompany the plugin v0.1

0.2 20 Aug 2020 Update to accompany plugin release v0.2

0.2.1 3 Sep 2020 Code source links now to to gist itself rather than the raw window.  They no 
longer need to be changed if gist is updated.

0.3 16 Nov 2020 To accompany plugin v0.3

0.3.1 22 Dec 2020 Correction to demo script Process and edit NMEA sentences

0.4 20 Apr 2021 To accompany plugin v0.4

0.5 06 Dc 2021 To accompany plugin v0.5

0.6 23 Jan 2022 To accompany plugin v1.0

2.0 03 Jan 2023 To accompany plugin v2.0

2.1 14 April 2023 To accompany plugin v2.1

2.2 To accompany plugin v2.2

Page  of 71 71


	1. Introduction and summary
	The basics
	JavaScript  and the embedded engine
	File strings
	Multiple consoles
	Arranging a console

	2. JavaScript plugin extensions
	print(arg1, arg2…)
	print<colour>(arg1, arg2…)
	printUnderlined(arg1, arg2…)
	alert(arg1, arg2…)
	printLog(arg1, arg2…)
	messageBox(message)
	readTextFile(fileNameString)
	writeTextFile(text, fileNameString, mode)
	require(moduleName)
	toClipboard(text)
	text = fromClipboard()
	timeAlloc(milliseconds)
	consoleHide() or consoleHide(name)
	consoleShow() or consoleShow(name)
	consolePark() or consolePark(name)
	consoleName(name)
	stopScript() or stopScript(string)
	Event handling

	onSeconds(functionName, seconds[, parameter])
	onDialogue(function, dialogue)
	Understanding the result

	Implicit result
	Explicit result
	scriptResult(arg1, arg2…)
	3. OpenCPN APIs
	OCPNpushNMEA0183(sentence)
	OCPNpushNMEA0183(sentence, driverHandle)
	OCPNgetMessageNames()
	OCPNsendMessage(messageName[, message])
	OCPNonNMEA0183(functionName)
	OCPNonNMEA0183(functionName, ident)
	OCPNonNMEA2000(functionName, pgn)
	OCPNonActiveLeg(functionName)
	OCPNonMessageName(functionName, messageName)
	navdata = OCPNgetNavigation()
	OCPNonNavigation(function)
	OCPNgetARPgpx()
	OCPNgetNewGUID()
	OCPNgetPluginConfig()
	config = OCPNgetOCPNconfig()
	OCPNrefreshCanvas()
	OCPNgetAISTargets()
	Positions

	APIs for positions
	OCPNgetVectorPP(fromPosition, toPosition)
	OCPNgetPositionPV(fromPosition, vector)
	OCPNgetGCdistance(Pos1, pos2)
	OCPNgetCursorPosition()
	Waypoints

	APIs for waypoints
	OCPNgetWaypointGUIDs(selector)
	OCPNgetActiveWaypointGUID()
	OCPNgetSingleWaypoint(GUID)
	OCPNdeleteSingleWaypoint(GUID)
	GUID = OCPNaddSingleWaypoint(waypoint)
	OCPNupdateSingleWaypoint(waypoint)
	Routes

	APIs for routes
	OCPNgetRouteGUIDs(selector)
	OCPNgetActiveRouteGUID()
	OCPNgetRoute(GUID)
	OCPNdeleteRoute(GUID)
	GUID = OCPNaddRoute(route)
	OCPNupdateRoute(route)
	Tracks

	APIs for tracks
	OCPNgetTrackGUIDs(selector)
	GUID = OCPNaddTrack(track)
	OCPNgetTrack(GUID)
	OCPNdeleteTrack(GUID)
	OCPNupdateTrack(track)
	Menus

	OCPNonContextMenu(function, menuItem [,info])
	Other

	OCPNsoundAlarm()
	4. Objects and methods
	Position constructor

	Position(lat, lon) or
	Position({latitude:lat, longitude:lon})
	Waypoints constructor

	Waypoint()
	Waypoint(lat,lon)
	Waypoint(position)
	Waypoint(waypoint)
	About hyperlinks
	Route

	Route()               constructs a route object with its methods
	Route(route) constructs a copy of the given route adding methods
	About JavaScript objects and OpenCPN objects

	5. Modules
	Loading your own functions
	Writing and loading your own object constructors

	6. Working with Date Time
	7. Error handling
	8. Execution time limit
	9. Dialogues
	onDialogue(function, dialogue)
	Styling
	Example with styling
	10. Automatically running scripts
	11. Working with multiple scripts
	chainScript(fileString [, brief]);
	brief = getBrief();
	12. Working with multiple consoles
	Communicating between scripts
	Working with multiple consoles in scripts

	consoleAdd(consoleName)
	consoleExists(consoleName)
	consoleClose(consoleName)
	consoleGetOutput(consoleName)
	consoleClearOutput(consoleName)
	consoleLoad(consoleName, script)
	consoleRun(consoleName [,brief])
	consoleBusy(consoleName)
	onConsoleResult(consoleName, function [, brief])
	13. Tidying up
	onExit(functionName)
	14. Working with SignalK
	15. Working with NMEA2000
	Background
	The NMEA2000 object

	Shortcut
	The descriptors
	Descriptor ambiguity
	Using the canboat analyser

	16. Invoking another process
	Executing a program

	Warnings
	result = execute(command);
	result = execute(command, env, errorOption);
	Running a shell script

	17. JavaScript Plugin Tools
	Consoles
	Directory
	NMEA
	Message
	Parking
	Diagnostics
	18. Tips
	Examining objects

	19. Trouble-shooting character code issues
	Working with non-7-bit characters such as the degree symbol

	20. Demonstration Scripts
	A. Save script preferences for next script run
	B. Process and edit NMEA sentences
	C. Counting NMEA sentences over time
	D. Locate and edit waypoint, inserting hyperlinks
	E. Build routes from NMEA sentences
	F. Build race courses
	G. Driver
	H. TackAdvisor
	I. SendActiveRoute

	Instructions for making this work with a device running iNavX
	Appendix A. NMEA2000 and canboat analyser
	Appendix B. Plugin version history
	C. Document history

