
JavaScript Plugin
Tony Voss

Version 0.4 3 October 2021 - plugin history here

Contents		 	 	 	 	 	 	 	 	 	 Page 
1. Introduction and summary	 5

The basics	 5

JavaScript and the embedded engine	 6

File strings	 6

Multiple consoles	 6

2. JavaScript plugin extensions	 7

print(arg1, arg2…)	 7

print<colour>(arg1, arg2…)	 7

alert(arg1, arg2…)	 7

printLog(arg1, arg2…)	 7

readTextFile(fileNameString)	 7

writeTextFile(text, fileNameString, mode)	 8

require(moduleName)	 8

timeAlloc(milliseconds)	 8

consoleHide() or consoleHide(name)	 8

consoleShow() or consoleShow(name)	 8

stopScript() or stopScript(string)	 8

Event handling	 8

onSeconds(functionName, seconds[, parameter])	 8

onDialogue(function, dialogue)	 9

Understanding the result	 9

Implicit result	 9

Explicit result	 10

scriptResult(arg1, arg2…)	 10

3. OpenCPN APIs	 10

OCPNpushNMEA(sentence)	 10

OCPNgetMessageNames()	 10

OCPNsendMessage(messageName[, message])	 10

Page of 1 41

OCPNonNMEAsentence(functionName)	 10

OCPNonMessageName(functionName, messageName)	 11

OCPNgetNavigation()	 11

OCPNgetARPgpx()	 11

OCPNgetNewGUID()	 12

OCPNgetWaypointGUIDs()	 12

OCPNgetPluginConfig()	 12

config = OCPNgetOCPNconfig()	 12

OCPNrefreshCanvas()	 12

OCPNgetAISTargets()	 13

APIs for positions	 15

OCPNgetVectorPP(fromPosition, toPosition)	 15

OCPNgetPositionPV(fromPosition, vector)	 15

OCPNgetGCdistance(Pos1, pos2)	 15

APIs for waypoints	 15

OCPNgetSingleWaypoint(GUID)	 15

OCPNdeleteSingleWaypoint(GUID)	 15

GUID = OCPNaddSingleWaypoint(waypoint)	 16

OCPNupdateSingleWaypoint(waypoint)	 16

APIs for routes	 17

OCPNgetRoute(GUID)	 17

OCPNdeleteRoute(GUID)	 17

GUID = OCPNaddRoute(route)	 17

OCPNupdateRoute(route)	 17

4. Error handling	 18

5. Objects and methods	 18

Position(lat, lon) or	 18

Position({latitude:lat, longitude:lon})	 18

Waypoint() constructs empty waypoint with its methods	19

Waypoint(lat,lon) constructs waypoint for the given latitude and longitude	19

Waypoint(position) constructs waypoint for the given position	 19

Waypoint(waypoint) constructs copy of the given waypoint	 19

About hyperlinks	 20

Page of 2 41

Route() constructs a route object with its methods	 21

Route(route) constructs a copy of the given route adding methods	 21

About JavaScript objects and OpenCPN objects	 22

6. Modules	 23

Loading your own functions	 23

Writing and loading your own object constructors	 23

7. Working with Date Time	 24

8. Execution time limit	 24

9. Dialogues	 25

onDialogue(function, dialogue)	 25

Styling	 27

Example with styling	 28

10. Automatically running scripts	 29

11. Working with multiple scripts	 29

chainScript(fileString [, brief]);	 29

brief = getBrief();	 29

12. Working with multiple consoles	 29

Communicating between scripts	 30

Working with multiple consoles in scripts	 30

consoleAdd(consoleName)	 30

consoleExists(consoleName)	 30

consoleClose(consoleName)	 30

consoleBusy(consoleName)	 30

13. Tidying up	 31

onExit(functionName)	 31

14. Trouble-shooting character code issues	 31

Working with non-7-bit characters such as the degree symbol	 32

15. Demonstration Scripts	 33

A. Process and edit NMEA sentences	 33

B. Counting NMEA sentences over time	 33

C. Locate and edit waypoint, inserting hyperlinks	 34

D. Build routes from NMEA sentences	 34

E. Build race courses	 35

Page of 3 41

F. Driver	 36

G. TackAdvisor	 36

H. SendActiveRoute	 37

A. Plugin version history	 38

B. Document history	 41

Page of 4 41

1. Introduction and summary
This document is a user guide and reference manual for the JavaScript plugin for
OpenCPN.

The plugin allows you to run JavaScript and to interact with OpenCPN. You can use it to
build your own enhancements to standard OpenCPN functionality.

There is a separate technical guide covering the inner workings of the plugin and
instructions for building it from sources.

Changes since version 0.3 are highlighted in yellow.

Change in documentation only are highlighted in pale yellow.

The basics
Once the plugin has been enabled, its icon appears in the control strip.

Click on the icon to open the plugin console(s). The console comprises a script
pane, an output pane and various buttons. You can write your JavaScript in the
script pane and click on the Run button. The script will be compiled and executed. Any
output is displayed in the output pane. You can adjust the boundary between the two
panes by dragging the dot up or down - but you need to release before the change
comes into effect.

As a trivial example, enter

(4+8)/3

and the result 4 is displayed. But you could also enter, say

function fibonacci(n) {  

function fib(n) {  
if (n == 0) return 0;  
if (n == 1) return 1;  
return fib(n-1) + fib(n-2);  
}  

var res = [];  
for (i = 0; i < n; i++) res.push(fib(i));  
return(res.join(' '));  
}

print("Fibonacci says: ", fibonacci(20), "\n");

Get code

The script displays

Fibonacci says: 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
2584 4181

This illustrates how functions can be defined and called, including recursively. So we have a
super calculator!

This guide includes many JavaScript code examples. You can copy them and paste into the
script window to try them or use as a starting point but the formatting does not survive this. For
the non-trivial ones, a Get code link is given whereby you can access the code which you can
copy. If the code is too long to copy from that displayed, you can use the Raw button to view it in
a copyable form.

Note that the script pane displays line numbers - useful for understanding any syntax error
messages. It also supports indent tabbing, which you should use to indent your script as in the
above example. It colours the script to aid understanding as follows:

Page of 5 41

https://gist.github.com/antipole2/e5b3a0b88e566f72046d4b08b99b2c16

• Comments

• Strings

• JavaScript key words supported

• Plugin extensions to JavaScript documented in this guide

• JavaScript key words not supported - do not use these words

You can use the Load button to load JavaScript from a .js file. The file name string is displayed
above the script. The Save button saves the script back to the named file and the Save As
button allows you to save it to a different chosen file.

If a file name string is displayed when OpenCPN is closed down, that script will be reloaded when
OpenCPN is re-opened.

You can also paste a script in from somewhere else. You might choose to prepare a non-trivial
script in a JavaScript-aware editor. I use BBEdit on my Mac.

While a script is running, the Run button changes to Stop. This is relevant when a script is
awaiting a call-back from OpenCPN (see later). Pressing Stop will cancel outstanding call-backs.

JavaScript and the embedded engine
A useful guide/tutorial on JavaScript can be found here. The engine fully supports ECMAScript
E5.1 with partial support for E6 and E7.

Note that the embedded engine does not support:

• for-of loops

• classes

• arrow functions

The tutorial also covers JavaScript’s use in web pages which is not relevant at this time.

File strings
Some functions files on your computer are accessed not by a dialogue window but by a
file string, e.g. my_projects/JavaScript/usefull_script.js

A file string can be absolute - it identifies the location of the file explicitly. Sometimes, like
the example above, it is relative to the plugin's current directory.

You can change the current directory in the Directory tab of the tools window, accessed
via the tools button top-right in the console or via the plugin preferences button in the
plugin's entry in OpenCPN options.

Multiple consoles
Since plugin version 0.4, you can have multiple consoles, each of which can run separate
scripts. You can add extra consoles using the Consoles tab of the tools window.

You can delete a console using its close button. The console script must be cleared first
as a precaution against accidental deletion and at least one console must remain.

The later section Working with multiple consoles covers some of the many things you can
do using multiple consoles.

Page of 6 41

https://www.w3schools.com/js/default.asp

2. JavaScript plugin extensions
As the JavaScript engine is intended for embedding, it does not contain any input/output
functionality, which is inevitably environment dependent.

I have implemented extensions to provide some output capability.

print(arg1, arg2…)
The print function displays a series of arguments in the results pane. Each argument can be of
type string, number, boolean, array or object. If an argument is an array, the elements will be
listed. If it is an object, it will be displayed as its JSON string. Example:

print("Hello world ", 10*10, " times over\n");

Displays Hello world 100 times over. It is often useful to include the string "\n" as the
last character to deliver a newline. If the console has been hidden, it will be shown so that the
output can be seen.

print<colour>(arg1, arg2…)
Where <colour> is one of Red, Orange, Green or Blue.

As for print but prints in the specified colour. Example:

printGreen("This line will print in green\n");

alert(arg1, arg2…)
This is similar to print but the output is displayed in an alert box. The final newline is less
necessary here.

While the box is displayed, other screen functions are not available.

This function returns immediately, leaving the alert displayed so as not to hold up OpenCPN. The
alert window has a button with which the user can dismiss the alert once read.

Because of the immediate return, it is possible to raise a subsequent alert before the previous one
has been dismissed. In this case, the subsequent alert text will be added to the existing alert.

If you call alert with a single argument of false, any existing alert will be dismissed.

If you call alert with no argument, it just returns the existing status.

The function returns true or false indicating whether the alert is being displayed, so you can
test whether the alert has been dismissed by calling it without any arguments.

Example:

alert("This is the first alert");
alert("\nThis text will be added to the first alert");
[… other script steps]
if (alert()) print("The alert has not yet been dismissed\n");
alert(false); // dismisses alert

The script will not complete until any alert has been dismissed, although you can use the
stopScript() function or the Stop button to force script termination.

The alert box can be dragged where you wish and this repositioning will be remembered for
subsequent alerts, including across OpenCPN relaunches.

printLog(arg1, arg2…)
Prints to the OpenCPN log file. No final newline is needed. Use sparingly.

readTextFile(fileNameString)
Reads the text file fileNameString and returns the text as a string. Example:

input = readTextFile("/Users/Tony/myfile");  
print("File contains: ", input, "\n");

Page of 7 41

If the given fileNameString is not absolute, it will be looked for in the current directory as currently
set for the plugin.

writeTextFile(text, fileNameString, mode)
Writes the text to the file fileNameString.
If mode = 0, the file must not exist.

If mode = 1, any existing file will be overwritten.

If mode = 2, the text will be appended to any existing lines in the file.

Example:

writeTextFile("/Users/Tony/myfile.txt");  

If the given fileString is not absolute, it will be looked for or created in the current directory as
currently set for the plugin.

require(moduleName)
Loads and compiles the given module. See the Modules section.

timeAlloc(milliseconds)
If a script takes too long to run, it will time out. This function grants more time and returns the
time remaining at the time of the call. See the Execution time limit section.

consoleHide() or consoleHide(name)
Hides the console.

If a console name is given, that console will be hidden.

If hidden, the console will reappear when any output is added to the output window and on script
termination.

NB Prior to plugin version 0.4, this function took a value of true or false. This use is deprecated.

consoleShow() or consoleShow(name)
Shows the console.

If a console name is given, that console will be shown.

stopScript() or stopScript(string)
Causes the script to stop. If a string argument is supplied, it becomes the result.

Event handling
Often it is necessary to set up a response to an event. Many functions set up a call-back to a
function you supply and their function names include on. The first argument is the name of the
function to be called on the event (not in quote marks). These calls set up one call-back only. If
you want the function to be called repeatedly, it needs set up the next call within it. When the 'on'
function is executed, a check is made that the nominated function exists within your main code.
Usually any error will be reported on compilation. However, where a call is made within a called-
back function, the error can only be discovered at that time.

onSeconds(functionName, seconds[, parameter])
Sets up a call to functionName after a time of seconds have elapsed. Optionally, you may
include a third parameter, which will be used as the argument for the call-back. Example:

Page of 8 41

onSeconds(timesUp, 15, "15 seconds gone");
function timesUp(what){  

print(what, "\n");  
}

After 15 seconds, this would display the message 15 seconds gone.

Unlike other call-backs, you may set up up to 10 timed call-backs to different functions or the
same function but each call-back is fulfilled only once. If multiple call-backs are due at the same
time, they are fulfilled in the order they were set up.

Calling onSeconds with no parameters onSeconds() cancels all timers and their callbacks.

onDialogue(function, dialogue)
Opens a dialogue window as defined in the dialogue argument which must be an array of
structures each describing an element of the dialogue.

This function returns immediately to avoid holding up OpenCPN while you respond to the
dialogue.

When you select one of the action buttons, the specified function is called with a modified copy
of the dialogue structure as its argument. Example:

onDialogue(process, [{type:"field", label:"name"}]);  

function process(dialogue){  
print("Name is ", dialogue[0].value, "\n");  
}

This script displays a dialogue with a single field labelled name together with an OK button. When
the button is selected, the entered name is printed.

Complex dialogues with multiple components can be constructed and processed. This is
described in the separate section Dialogues.

The script will not complete while a dialogue remains open, although you can use the Stop button
or exitScript() to force script termination.

The dialogue box can be dragged where you wish and this repositioning will be remembered for
subsequent dialogues, including across OpenCPN re-launches.

Understanding the result
After a script has completed, the result is displayed in blue in the output window after any
other output, such as from print statements.

Implicit result

The result is usually the result of the last executed statement, so for

3+4;  
3 == 4;

the result is false. The 3+4 is not the last statement. The last statement has a boolean value of
false.

For

print("Hi there!\n");

this will display Hi there! and the result is undefined as the print function does not return a
result.

If there are callbacks, the display of the result will be held over until the last callback has been
completed or the script is stopped or an error has been thrown.

Page of 9 41

Explicit result
Instead of the implicit result, you can make it explicit using the scriptResult function:

scriptResult(arg1, arg2…)
The arguments are the same as for print. This sets the result to what would be printed and it is
displayed as the result later.

If scriptResult() is called more than once, the last call overrides previous calls.

The function returns the result that will be displayed, so you can manipulate previous results.

scriptResult("My result");  
...  
scriptResult("Previous result was: ", scriptResult());

This would leave a result of Previous result was: My result

If the scriptResult is set to the empty string "", the result is suppressed entirely.

3. OpenCPN APIs
I have developed a number of APIs to access the functionality of OpenCPN.

These are all functions with names starting with OCPN.

OCPNpushNMEA(sentence)
Sentence is an NMEA sentence. It will be truncated at the first * character, thus dropping any
existing checksum. A new checksum is appended and the sentence pushed out over the
OpenCPN connections. Example:

OCPNpushNMEA("$OCRMB,A,0.000,L,,Yarmouth," +
"5030.530,N,00120.030,W,15.386,82.924,0.000,5030.530,S,00120.030,E,V");

OCPNgetMessageNames()
Returns a list of the message names seen since the console was created. The list is one name
per line. If a call-back is outstanding for that message, the name of the function is also displayed.
Example:

print(OCPNgetMessageNames());

This is primarily used to determine what messages are being received and their precise names.

OCPNsendMessage(messageName[, message])
Sends an OpenCPN message. messageName is a text string being the name of the message to
be sent, as reported by OCPNgetMessageNames. Optionally, you may include a second
parameter being the JSON string of the message to be sent. Example:

routeGUID = "48cf3bc5-3abb-4f73-8ad2-994e796289eb";  
OCPNsendMessage("OCPN_ROUTE_REQUEST",JSON.stringify({"GUID":routeGUID}));

Before making this call, you should have set up a call-back function using OCPNonMessageName.

OCPNonNMEAsentence(functionName)
Sets up a function to process the next NMEA sentence received by the plugin. The function
returns a structure containing OK -a boolean value concerning the validity of the checksum - and
value - the sentence itself. Example:

OCPNonNMEAsentence(processNMEA);  
 
function processNMEA(result){  

if (result.OK) print("Sentence received: ", result.value, "\n");  
else print("Got bad NMEA checksum\n");  
}

Page of 10 41

OCPNonMessageName(functionName, messageName)
Sets up a call-back to functionName next time a message with the name messageName is
received. The function is passed the message, which is in JSON format. Example:

routeGUID alert "48cf3bc5-3abb-4f73-8ad2-994e796289eb";  
OCPNonMessageName(handleRT, "OCPN_ROUTE_RESPONSE");  
OCPNsendMessage("OCPN_ROUTE_REQUEST",JSON.stringify({"GUID":routeGUID}));  
 
function handleRT(routeJS){  

route = JSON.parse(routeJS);  
try {print("RouteGUID ", routeGUID, " has the name ",  

route.name, "\n");}  
catch(err){print("No such route\n");}  
};

Notes:

• I have here set up the call-back before sending the request to be sure the call-back is in place

when the message arrives.

• If the route GUID does not exist, the print will fail, so I am using JavaScript's try & catch to

handle this.

OCPNgetNavigation()
This function returns the latest OpenCPN navigation data as a structure as shown:

Example use:

fix = OCPNgetNavigation();  
print("Last fix had ", fix.nSats, "satellites\n");

While developing this API, I experimented with making it Signal K friendly and returned a Signal K
style structure, which is much more complicated. That version remains available as

OCPNgetNavigationK();

If you want to explore this, you can print the structure.

OCPNgetARPgpx()
This function returns the active route point as a GPX string or an empty string if there is no active
route point. You need to parse the GPX string as required. Example:

Attributes .fixTime Time of fix in seconds since 1st January 1970

.position
.latitude latitude in degrees

.longitude longitude in degrees

.SOG Speed Over Ground

.COG Course Over Ground

.HDM Heading Magnetic

.HDT Heading True

.variation Magnetic variation

.nSats Number of satellites

Page of 11 41

APRgpx = OCPNgetARPgpx(); // get Active Route Point as GPX  
if (APRgpx.length > 0){  

waypointPart = /<name>.*<\/name>/.exec(APRgpx);  
waypointName = waypointPart[0].slice(6, -7);  
print("Active waypoint is ", waypointName, "\n");  
}  

else print("No active waypoint\n");

OCPNgetNewGUID()
This function returns a new GUID string as generated by OpenCPN.

OCPNgetWaypointGUIDs()
Returns an array of the waypoint GUIDs. Example:

var GUIDs;  
GUIDs = OCPNgetWaypointGUIDs();  
print("There are ", GUIDs.length,  

" waypoints and number 3 has the GUID ", GUIDs[3], "\n");  
// prints in my case There are 236 waypoints and number 3 has the GUID  
// 5caa0922-3e7c-432d-b075-afe34fbb19b1

OCPNgetPluginConfig()
This function returns a structure detailing the plugin configuration with the following attributes:

config = OCPNgetOCPNconfig()
Returns the OCPN configuration as a JSON string.

You could print this to see what information is available.

By default this is the configuration at the time the plugin was activated. If the configuration might
have changes, you can get an updated version through the OCPNsendMessage and
OCPNonMessageName mechanism.

OCPNrefreshCanvas()
Refreshes the canvas window. If your script has made changes to displayed information such as
waypoints or routes, this will update the display accordingly. 

.versionMajor
Plugin version

.versionMinor

.comment Any comment about the version

.APIMajor
API version being used

.APIMinor

.inHarness True if plugin running in the test harness, else false

Page of 12 41

OCPNgetAISTargets()
Returns an array of the AIS objects each with the following attributes:

.MMSI The target's MMSI number

.shipName Ship name (if received)

.class 0 if Class A; 1 if Class B

.callSign Radio callsign

.IMO Ship identification number

.shipType Number representing the ship type, including:

19	 pleasure vessel

34	 vessel diving

36	 sailing vessel

37	 pleasure craft

40	 high speed craft

50	 pilot vessel

52	 tug

70	 cargo ship

Fuller list here.

.navStatus Number representing the navigational status. The following values are
believed to have the meaning ascribed:

0	 underway 
1	 at anchor

5	 moored

14	 AIS SART

15	 AIS SART test

Fuller list here.

.position.latitude 

.position.longitude
Position

.range Range in nm

Page of 13 41

.GUID

.markName The waypoint mark name

.position .latitude

.longitude

.iconName

.isVisible True if waypoint is displayed

.description

.hyperlinkList Array of hyperlinks, each containing

.description text to be linked

.link

.type

.creationDataTime Creation date/time in seconds since 1st January 1970

https://api.vtexplorer.com/docs/ref-aistypes.html
https://help.marinetraffic.com/hc/en-us/articles/203990998-What-is-the-significance-of-the-AIS-Navigational-Status-Values-

.bearing Bearing ºT

.CPAvalid if true, CPA details valid

.CPAminutes Time to CPA in minutes

.CPAnm Nautical miles distance at CPA

.alarmState 0 no alarm 
1 alarm set 
2 alarm acknowledged

Page of 14 41

APIs for positions
A position is a latitude and longitude pair. Th difference between two positions is a vector
comprising a bearing and distance pair.

OCPNgetVectorPP(fromPosition, toPosition)
Returns the vector to move from the first position to the second position. Example:

move = OCPNgetVector({latitude:61,longitude:2},
 {latitude:60,longitude:2});  
print(move, "\n");
// prints {"bearing":180,"distance":60}

OCPNgetPositionPV(fromPosition, vector)
Given a position and a vector, returns the position after applying the vector. Example:

start = {latitude:55, longitude:-1};  
vector = {bearing:180, distance:60};  
end = OCPNgetPositionPV(start, vector);  
print("end position ", end, "\n");  
// prints end position {"latitude":54.001, "longitude":-1}

Note: any methods in the start position are not inherited in the returned position - only the latitude
and longitude are returned. See Objects and Methods for instructions on how to create a new
position with methods.

OCPNgetGCdistance(Pos1, pos2)
Returns the great circle distance between two positions.

APIs for waypoints
Later in this guide in Objects and methods I describe the position, waypoint and route objects,
which are the most convenient way of handling these concepts in JavaScript. These objects
come with methods to perform actions on them and I recommend that approach.

This section documents the underlying APIs used to implement them. You can call these APIs
directly, if you wish, but the returned objects will not include any methods.

A waypoint object has he following attributes:

OCPNgetSingleWaypoint(GUID)
Returns a waypoint object for the given GUID. Throws an error if the GUID does not exist.

Example:

GUID = "137eecdd-e3e0-4eea-9d72-6cec0e500dbe";  
myWaypoint = OCPNgetSingleWaypoint(GUID);  
print("Waypoint name is ", myWaypoint.markName, "\n");

OCPNdeleteSingleWaypoint(GUID)
Deletes a single waypoint, given the GUID.

Example:

OCPNdeleteSingleWaypoint("6aaded39-8163-43ff-9b6d-13ad729c7bb1");

Throws an error if there is no existing waypoint with the given GUID.GUID =
OCPNaddSingleWaypoint(waypoint)

Adds a single waypoint into OpenCPN. The argument must be a waypoint object, such as
created by the Waypoint constructor.

If waypoint.GUID contains a GUID, that will be used. If that GUID already exists, an error is
thrown. If no GUID is provided, a new GUID will be obtained for you. This function returned the
GUID used. If you do not supply a GUID, you need to save the returned one if needed.

Page of 15 41

Example:

Waypoint = require("Waypoint");  
newWaypoint = new Waypoint(50.33, -1.3);  
newWaypoint.markName = "Demo Waypoint";  
newWaypoint.iconName = "anchor";  
newWaypoint.isVisible = true;  
newWaypoint.description = "Good pub close by ashore";  
newWaypoint.hyperlinkList.push({description:"Pub website", link:

"https://coachandhorses.co.uk"});  
GUID = OCPNaddSingleWaypoint(newWaypoint);  
newWaypoint.GUID = GUID;

GUID = OCPNaddSingleWaypoint(waypoint)
Adds a new waypoint into OpenCPN. The argument must be a waypoint. If the waypoint has no
GUID, a new one will be allocated. If a GUID is provide, no existing waypoint with that GUID is
allowed. In any case, the GUID used is returned.

OCPNupdateSingleWaypoint(waypoint)
Updates a single waypoint into OpenCPN. The argument must be a waypoint object with an
exiting GUID.

Throws an error if there is no existing waypoint with the given GUID.

Page of 16 41

https://coachand

APIs for routes
A route object has the following attributes:

OCPNgetRoute(GUID)
Returns a route object for the given GUID, complete with an array of the waypoints. Throws an
error if route does not exist.

Example:

myRoute = OCPNgetroute("137eecdd-e3e0-4eea-9d72-6cec0e500abc");  
print("Route name is ", myRoute.name, "\n");

OCPNdeleteRoute(GUID)
Deletes a route, given the GUID.

Example:

OCPNdeleteRoute("6aaded39-8163-43ff-9b6d-13ad729c7abc");

Thows an error if the route does not exist.

GUID = OCPNaddRoute(route)
Adds a route into OpenCPN. The argument must be a route object, such as created by the Route
constructer and should contain an array of waypoints.

If route.GUID contains a GUID, that will be used. Otherwise a new GUID will be obtained for
you. This function returned the GUID used. If you do not supply a GUID, you need to save the
returned one if needed. If you supply a GUID and it is already in use, an error is thrown.

Example:

Route = require("Route");  
myRoute = new Route;  
myRoute.name = "My created route";  
waypoint1 = new Waypoint(50.33, -1.3); // create some waypoints  
waypoint1.markName = "First Waypoint";  
waypoint1.iconName = "diamond";  
waypoint2 = new Waypoint(51, -2);  
waypoint2.markName = "Second Waypoint";  
waypoint2.iconName = "diamond";  
myRoute.waypoints.push(waypoint1); // add waypoints into route  
myRoute.waypoints.push(waypoint2);  
GUID = OCPNaddRoute(myRoute); // add route into OpenCPN  
myRoute.GUID = GUID;

 
OCPNupdateRoute(route)
Updates a route into OpenCPN. The argument must be a route object with an exiting GUID.

Throws an error if there is no existing route with the included GUID.

Page of 17 41

.GUID

.name Route name

.to To text

.waypoints Array of waypoints in route

4. Error handling
Many of the extensions 'throw' an error when an error situation is encountered. The script
will be terminated with an error message. This makes for simple scripting - you do not
need to test for errors in these cases.

If you wish to handle the error yourself and continue with the script, you can catch it using
the try/catch JavaScript construct:

try {  

OCPNdeleteWaypoint("non-existent GUID");  
}  

catch(error) {  
print("Caught error ", error.message, "\n");  
// corrective action here  
}

Catch is passed the error object of which error.message is the most useful. The attributes are:

5. Objects and methods
JavaScript supports the use of objects. These can be a convenient way of representing complex
data structures. You can create your own objects and these may have associated methods. The
require function can load an object constructor. By convention, constructors have an initial
capital letter as a reminder that they are constructors.

Position(lat, lon) or

Position({latitude:lat, longitude:lon})
This constructs a position object as follows:

.message The error message.

.fileName Name of file where error was thrown.

.lineNumber Line number within file. If an error is thrown from your script, this will
show the line number. However, errors are often thrown from within
the plugin and the fileName and lineNumber are for the plugin code
rather than your script.

.stack Stack trace back from the throw.

To load constructor require("Position") Note: the constructor can take optional latitude &
longitude values

myposition = new Position(60, -1.5);

or it can take a latitude & longitude pair

myposition = new Position({latitude:60,longitude:-1.5});

Attributes .latitude latitude in degrees

.longitude longitude in degrees

.fixTime time of position fix if recorded, else 0

Properties .formatted Is the position formatted for the human eye

.nmea Is the position formatted as used in NMEA sentences.
You need to add the comma before and after, if
required.

Page of 18 41

Example 1:

Position = require("Position"); // loads the constructor  
myPosition = new Position(58.5, -1.5);// constructs a position  
myPosition.longitude = 0.5;// change the longitude
print(myPosition.formatted, "\n"); // displays 58° 30.000'N 000° 30.000'E  
print(myPosition.NMEA, "\n"); // displays 5830.000,N,0030.000,E

Example 2:

The Position constructor can also be given a latitude & longitude pair structure. Extending the
code in Example 1, we could write:

shiftedPosition = new Position(OCPNgetPositionPV(myPosition,
 {bearing:180,distance:30}));  
print(shiftedPosition.formatted, "\n");  
// prints 58° 00.071’N 000° 30.000’W

Example 3: Decode an NMEA string and print the second position for the human eye:

Position = require("Position");  
thisPos = new Position;  
sentence =  
"$OCRMB,A,0.000,L,,UK-
S:Y,5030.530,N,00121.020,W,0021.506,82.924,0.000,5030.530,S,00120.030,E,V,A*69"; 
thisPos.NMEAdecode(sentence,2);  
print(thisPos.formatted, "\n"); // displays 50° 30.530’N 001° 20.030’W

Waypoint() constructs empty waypoint with its methods

Waypoint(lat,lon) constructs waypoint for the given latitude and longitude

Waypoint(position) constructs waypoint for the given position

Waypoint(waypoint) constructs copy of the given waypoint
The constructed waypoint object is as follows:

Methods .NMEAdeode(sentence, n) decodes the NMEA sentence and sets the position to
the nth position in the sentence

.latest() Sets the position to the latest position available from
OpenCPN and .fixTime to the time of that fix. If no fix
has been obtained since OpenCPN was started, the
time will be zero.

To load constructor require("Waypoint")

Attributes .postion As described for Position

.GUID

.markName

.iconName

.isVisible true if the mark is visibly displayed, else false

.creationDateTime A timestamp from when the waypoint was first created
in OpenCPN recorded as seconds since 1st January
1970.

.description Free text description

.hyperlinkList Array of hyperlinks (see Hyperlinks)

Page of 19 41

 A waypoint returned from OpenCPN is 'bare' - just containing the attributes and no
methods. To add the methods to a bare waypoint, construct a copy using, say

bareWaypoint = OCPNgetWaypoint(GUID);  
fullWaypoint = new Waypoint(bareWaypoint);

 // now you can use...
 print(fullWaypoint.summary(), "\n");

About hyperlinks
Waypoints and routes can have a description attribute. They can also have one or more
hyperlinks - attributes which load a web link or a local file. A hyperlink is itself an object thus:

In a waypoint object, the hyperlinks exist as an array of objects in the .hyperlinks attribute.
Herewith an example of adding hyperlinks to a a waypoint:

myWaypoint = newWaypoint;  
var link1 = {description:"OpenCPN", link: "https://opencpn.org"};  
var link2 = {description:"OpenCPN team", link:  

"https://opencpn.org/OpenCPN/info/team.html"};  
// push the hyperlinks onto the array  
myWaypoint.hyperlinkList.push(link1);
myWaypoint.hyperlinkList.push(link2);

Methods .add(GUID) Adds the waypoint into OpenCPN using the optional
GUID, which must not already exist. If GUID is omitted,
a new GUID will be obtained.

Returns the GUID if successful, else an error is thrown.

You must save the GUID if needed.

If .creationDateTime is undefined, it is set to the
present time.

OpenCPN bug: as of v5.2, the .creationDateTime
attribute is ignored when adding a waypoint.

.get(GUID) Gets the waypoint from OpenCPN and sets the object
to it.

If GUID is supplied, that is the waypoint loaded. If
GUID is omitted, the GUID in waypoint.GUID is
used.

Returns the GUID if successful, else an error is thrown.

You must save the GUID if there is any doubt which
one was used.

.update() Updates the waypoint in OpenCPN to match the
contents of this object. The GUID in 
waypoint.GUID must already exist else an error is
thrown.

.delete(GUID) Deletes the waypoint in OpenCPN with GUID. If GUID
is omitted, uses the GUID in waypoint.GUID.
An error will be thrown if a waypoint with
the GUID does not exist.

.summary() Returns a brief readable summary of the waypoint
markName and position.

Page of 20 41

Hint

Route() constructs a route object with its methods

Route(route) constructs a copy of the given route adding methods

The constructed route object is as follows:

 A route returned from OpenCPN is 'bare' - just containing the attributes and no
methods. To add the methods to a bare route, construct a copy using, say

 bareRoute = OCPNgetRoute(GUID);  
 fullRoute = new Route(bareRoute);

 // now you can use, for example, ...
 fullRoute.update();

To load constructor require("Route")

Attributes .name The route name

.GUID

.from The from text

.to The to text

.waypoints An array of the waypoints in the route, each being a
waypoint object.

Methods .add(GUID) Adds the route into OpenCPN using the optional GUID,
which must not already exist. If GUID is omitted, a new
GUID will be obtained.

Returns the GUID which you may need to save.

An error is thrown if the GUID is already in use.

.get(GUID) Gets the route from OpenCPN and sets the object to it.

If GUID is supplied, that is the waypoint loaded. If
GUID is omitted, the GUID in waypoint.GUID is
used.

Returns the GUID if successful, else an error is thrown.

You must save the GUID if there is any doubt which
one was used.

route.waypoints will be an array of the route’s
waypoints.

.update() Updates the route in OpenCPN to match the contents
of this object. The GUID in 
route.GUID must already exist otherwise an error is
thrown.

.delete(GUID) Deletes the route in OpenCPN with GUID. If GUID is
omitted, uses the GUID in route.
If a route with the GUID does not exist, an error is
thrown.

.purgeWaypoints() Deletes all waypoints within the route object, including
the waypoint’s hyperlinks.

Page of 21 41

Hint

About JavaScript objects and OpenCPN objects
It is important to understand the difference between objects in OpenCPN and the objects in a
JavaScript representing them. Consider the following:

JavaScript What changes in JavaScript What changes in OpenCPN

myRoute = new Route() New JavaScript route object
created

Nothing

myRoute.add() Nothing Route is added

myRoute.purgeWaypoints() Waypoints are purged from the
JavaScript object

Nothing

myRoute.delete() Nothing OpenCPN route is deleted

delete myRoute JavaScript object is deleted Nothing

Page of 22 41

6. Modules
Above, you learnt how to load a constructor from the built-in library.

You can also load code from your own file space using the require function. If the
require argument is a simple name without a suffix or file path separator, require looks
for a built-in component. Otherwise it uses the require parameter to look for a file. If the
parameter is a relative file string, it looks relative to the current directory set for the plugin.
If it is an absolute file path, then it loads that file.

Loading your own functions
As an example of how to write your own functions to load with require, consider the fibonacci
function shown above.

You could save this into a file, load it with a require statement and call it, e.g.:

require("myJavaScipts/fibby.js");  
print("Fibonacci said: ", fibonacci(10), "\n");

Writing and loading your own object constructors
Constructors work similarly to functions but construct an object . Here is a trivial constructor for
an object which includes a method

function Boat(_name, _make, _model, _length){  

this.name = _name;  
this.make = _make  
this.model = _model  
this.length = _length;  
this.summary = function(){return(this.name + " is an " +  

this.make + " " + this.model + " of length " +  
this.length +"m\n");}  

}

Note how the attributes are set when the constructor is called. As this is a constructor, an object
must be created from it, once loaded. Example:

Boat = require("myjavascripts/Boat.js");  
myBoat = new Boat("Antipole", "Ovni", 395, 12);  
myBoat.length = 12.2; // correction  
print(myBoat.summary(), "\n");  
// prints Antipole is an Ovni 395 of length 12.2m

Page of 23 41

7. Working with Date Time
OpenCPN counts the time in seconds since 1st January 1970.

The JavaScript Date object uses milliseconds since the same epoch, so it is necessary to
convert as required. The following script illustrates this:

Position = require("Position");  
latestPos = new Position();  
latestPos.latest(); // sets to latest position  
presentTime = new Date()/1000; // convert to seconds  
print("Latest position ", latestPos.formatted);  
print("was acquired ", (presentTime - latestPos.time).toFixed(1),  

"s ago");  
print(" at ", Date(latestPos.time*1000), "\n"); // time to msecs

When I tested the above, it displayed:

Latest position 50° 41.054’N 002° 5.307’W was acquired 2.7s ago at 2020-08-12 09:47:34.762+01:00

8. Execution time limit
Your script could get into a continuous loop and never end. This might be because of a simple
scripting error or because some condition for ending the script was not being met. As simple
example, the following script never ends because true is always true:

while(true) ;

This would lead to OpenCPN being locked up with the only way out to force-quit OpenCPN - not
something you want to happen during navigation!

To protect against this, the plugin places a time limit on script execution and will terminate it if the
limit is exceeded. By default this is set at 1000ms. Each callback gets its own 1000ms limit.

The timeAlloc function extends the time limit and returns the number of milliseconds remaining
at the time of the call before it is extended. Optionally you may provide a new time allocation in
place of the default. This new allocation will be used at the call and all subsequent calls not
specifying a different one. Subsequent call-backs will be given this allocation.

For a long script, you might use timeAlloc to grant extra time once you have reached a point
where time might be exhausted.

Beware of using timeAlloc in a loop. If the script gets stuck in the loop, it might repeatedly
allocate more time thus defeating the timeout mechanism.

[long script steps reach a point where further time will be needed]  
print("At this point ", timeAlloc(2000), "ms remain\n");  
[more script steps for which 2000ms have been granted]

There is a detailed time-out tester available.

Get code

Page of 24 41

https://github.com/antipole2/JavaScripts-shared/blob/main/timeout_tester.js

9. Dialogues
The onDialogue API provides a way of creating and completing dialogues in a way that does not
prevent other functioning of OpenCPN. It is possible to build quite complex dialogues with
multiple buttons and this is described in this section.

The basic call is:

onDialogue(function, dialogue)
where function is the function to be called when a button is selected and dialogue is a
descriptor of the dialogue to be presented. This function returns immediately so that functioning
of OpenCPN is not suspended while the user responds to the dialogue.

dialogue is an array of one or more structures each describing an element of the dialogue to be
displayed. Each element of the dialogue array must include its type attribute. Which other
attributes are applicable depends on the type.

The specified function is given a copy of the dialogue array, in which certain elements will be
changed to reflect the action taken with the dialogue, as described in the table in purple. An
additional element will have been added identifying the button used to dismiss the dialogue.
type Purpose Other attributes

Grey items are
optional

Explanation

"caption" Specify caption in
dialogue bar

value:"caption" If value is omitted, the caption will be
blank.

If no caption element is provided, the
caption defaults to "JavaScript
dialogue".

"text" Places text in the
dialogue

value:"text" The text from the value attribute in
placed in the dialogue.

Multiple text elements can be used to
place information as required.

"field" Provide an input
field.

label:"text" Text to form label for field.

value:"text" This attribute will always be included
in the returned structure and will be
set to the value of the field on
completion of the dialogue.

If this attribute is included in the call, it
will be displayed in the field as place
holder text which can be edited/
replaced while the dialogue is open.

width:number Width of field. Default is width:100.

height:number Height of field. Default is 22 or
whatever is needed for larger text set
by style.

multiLine:boolean If true, the field will be be multi-line.

sufix:"text" Suffix text to be displayed after the
field, e.g. "ºT"

fieldStyle See below on styling

Page of 25 41

"tick" Provide a tick box value:"text" The text against the tick box.

If the value starts with "*" that
character will not be displayed but the
box will be pre-ticked.

In the returned structure value will be
true or false.

"tickList" Provide a list of
items to tick

value:["A", "B"…] In the returned structure, value is an
array of the ticked items only. If none,
it will be an empty array.

"choice" Choose one from
a list of items.

value:["A", "B"…] The first item is the default value.

In the returned structure, value is the
selected value.

"radio" Provide a set of
radio buttons, of
which just one
can be selected.

No more than 50
buttons will be
displayed.

label:"text" Text to form label for the buttons.
Omit to suppress label.

value:["one","two"…] Array of texts specifying the button
choices.

In the returned structure, this attribute
will be set to the single button
selected on completion of the
dialogue (not in an array).

"slider" Provides a
horizontal slider
allowing selection
of an integer
value

range:[start, end] Numeric values for the start and end
of the slider range

value:number Initial value of slider

width:number Width of slider (not a string). Default
is width:200.

label:"text" Text to form label for the slider. Omit
to suppress label.

"spinner" Provides a
numerical field
that can be spun
up or down

range:[start, end] Numeric values for the start and end
of the spinner range

value:number Initial value of spinner. Defaults to
zero.

label:"text" Text to form label for the spinner. Omit
to suppress label.

"hLine" Horizontal line None Adds a horizontal line as a separator.

type Purpose Other attributes
Grey items are
optional

Explanation

Page of 26 41

Simple example:

myDialogue = [

{type:"text", value:"Complete this field"},
{type:"field"},
{type:"button", label:["Cancel", "*OK"]}
];

onDialogue(action, myDialogue);

function action(dialogue){
if (dialogue[dialogue.length-1].label == "OK")

print("Completed field is: ", dialogue[1].value, "\n");
else print("Cancelled\n");
}

Styling
You may want to adjust the style of text in a dialogue. You can include the style attribute with
any of the above but it will not have any effect on some dialogue components.

For the field type the style operates on the label, field and any suffix. You can override the style
for the field itself with fieldStyle

Styling is not included in the returned version of the dialogue array.

"button" Add one or more
action buttons

label:"button"

or

label:["one","two"…]

The label for the button. If more than
one, these are specified in an array.

If the button starts with '*', it will
become the default button, which can
be acted on using the enter key. The
'*' is not displayed. Example: "*Done"

In the returned structure, this attribute
will be set to the single button
selected on completion of the
dialogue (not in an array) and without
any *.

If there is no element of type button, a
default button "OK" will be added by
the plugin. No corresponding element
will be added to the returned structure
as OK will be the only action choice.

type Purpose Other attributes
Grey items are
optional

Explanation

Page of 27 41

style:{style attributes} Available with
fieldStyle?

size:<number> Font size e.g. size:20

font:<string> Font name e.g. font:"courier"

If the font name does not match one in your system, it may
prevent other style components from working.

✔

italic:<bool> e.g. italic:true ✔

bold:<bool> e.g. bold:true ✔

underline:<bool> e.g. underline:true

Example with styling
Here is an example showing various types and including some
styling.

Get code.

In the demonstration scripts, there is practical application which
builds race routes through a series of dialogues.

Page of 28 41

https://github.com/antipole2/JavaScripts-shared/blob/main/dialogue_demo.js

10. Automatically running scripts
It is possible to arrange for a script to be automatically loaded and run when OpenCPN starts up,
without the need to load the script and run it manually.

Your script needs to be stored in a .js file. Test it before attempting to run it automatically.

When a script has been loaded from a file or saved to one, the auto run button will be shown at
the top of the console. If this is ticked before OpenCPN closes normally, then when the plugin is
activated, that script will be loaded and run automatically.

If the script hides the console, the console will not be seen until it is unhidden or the script
produces output in the output pane or the script terminates.

If a script is running while hidden and you need to stop it, you can make the console appear by
toggling the tool bar icon. You could then stop the script if required.

To stop a script running automatically, untick the option before quitting OpenCPN.

In the unlikely event that a script were to crash OpenCPN and that script were being run
automatically, OpenCPN might crash immediately on launch before you could stop it running. To
get out of this situation, open the opencpn.ini file and in the JavaScript section change
AutoRun=1 to AutoRun=0. This will stop the script running automatically on launch.

11. Working with multiple scripts
You can link scripts in a chain to be run successively. This can be used to break up long scripts
into successive 'chapters'. A script can pass a brief to its successor.

chainScript(fileString [, brief]);
Loads the script in the file fileString into the script window, gives it a brief if supplied and runs
it.

The successor script can collect its brief with

brief = getBrief();
Example:

Let a file successor.js contain the script

print("Found brief ", getBrief(), "\n");

And run the script

chainScript("successor.js", "Brief text", true);

This last will load and run successor.js, which will print

Found brief Brief text

Although the brief is limited to a text string, an array or structure could be passed as a JSON
string.

12. Working with multiple consoles
You can have more than one console. Each console has its own script, which runs independently,
apart from interactions detailed later.

To create an additional console, use the Consoles tab in JavaScript tools to give it an
alphanumeric name and create it. You can also access the tools through the Preferences button
in the plugin entry in the list of plugins in the OpenCPN Options panel.

To delete a console, use its close button. As a precaution against accidental loss of a script, the
script window must be cleared before being closed. You cannot delete the last and only console.

Page of 29 41

Communicating between scripts
The OpenCPN messaging system can be used to send messages between scripts. The
receiving script must be waiting for the message when it is sent.

Working with multiple consoles in scripts
It is possible to create and use multiple consoles from within a script.

To use the facilities described in this section, you need to load the optional Console
extensions with

require("Consoles");

consoleAdd(consoleName)
Adds the console specified, the same as adding via the tools.

An error will be thrown if the console already exists.

consoleExists(consoleName)
Returns true if the console exists, else false.

consoleClose(consoleName)
Closes the console.

An error will be thrown if the console is busy. You cannot close the console running this script
step.

consoleGetOutput(consoleName)
Returns the contents of the output pane of the console.

consoleClearOutput(consoleName)
Clears the contents of the output pane of the console.

consoleLoad(consoleName, scriptFile)
Loads the script into the script window.

consoleRun(consoleName [,brief])
Runs the script in the console, optionally giving a brief.

consoleBusy(consoleName)
Returns true of the console is busy running a script or waiting for callbacks, else false;

onConsoleResult(consoleName, function [, brief])
Runs the script in the console and sets up a call-back to the specified function on completion.
The other script is given the brief, if supplied.

On completion, the function is invoked and given an argument being the outcome from the other
as a structure with attributes:

.type The type of outcome as an integer

0	 other script threw an error

1	 other script completed normally

2	 other script executed a scriptStop() step

.value If an error, the error reason.

Otherwise, the script result

Page of 30 41

Example

require("Consoles");

name = "TestConsole";
if (!consoleExists(name)) consoleAdd(name);
consoleLoad(name, "myJavaScript.js");
onConsoleResult(name, allDone, "Go well");

function allDone(result){
if (result.type == 1)

throw("myJavaScript threw error " + result.value);
print("Result from myJavaScript was ", result.value, "\n");
}

This script creates the console if it does not already exist, loads it with a script and runs it giving it
a brief. On completion, the callback to function allDone checks for an error and throws an error in
itself and otherwise prints the result.

13. Tidying up
Sometimes you may need to tidy up after a script terminates, a console is closed or is terminated
because OpenCPN has quit. As an example, the Tack Advisor script creates a temporary two-
point route to suggest where to tack. If OpenCPN were to quit with Tack Advisor displaying this
route, the route would still exist when OpenCPN is next run although it would then be
meaningless.

onExit(functionName)
This call specifies a function to be called after the script has completed, including when a console
is closed or when OpenCPN quits. This can be used to clean up. In the above example, any
route created to advise where to tack is deleted.

The function is called at the end of the wrapping up process and so some actions within such a
function are meaningless. For example, if call-backs are set up they will have no effect. If the
function throws an error, it will be displayed in the output window but if the window is being
closed, it would vanish along with the console. It would be prudent to test the function in a
situation where the console remains visible.

14. Trouble-shooting character code issues
The JavaScript engine uses the ECMA-6 7-bit character set, corresponding to the ASCII set. In
broad terms, this excludes the extended characters available by use of the Option key and
accented characters.

If you prepare or edit your script in an external program, it may introduce characters not
compatible with the JavaScript engine. Examples

• smart quotes around "Hello" like this: “Hello”

• Smart single quotes around 'goodbye' like this: ‘goodbye’

• The apostrophe can be useful as itself or as an alternative string delimiter, as in 
'This string includes a quote character "'  
The apostrophe ' might get entered as any of ‘ ’ ‛ ′ ´ `

• wxWidgets uses Unicode characters and copying text from OpenCPN could introduce
characters which would throw the JavaScript engine.

Page of 31 41

The plugin tried to fix up unacceptable characters in scripts before compiling. If your
script fails with the engine tripping over bad characters, narrow it down to which
characters are causing the problem with a simple script as short as possible thus:

"º’\€". Running this script should return a result of the contents of the quoted string.

In the diagnostics tab of the utilities window is a facility to examine characters and their
translation. Please submit the dumped code analysis with a problem report.

Under Windows, the plugin is unable to convert the prime character ′ and it will likely cause a
JavaScript error.

Working with non-7-bit characters such as the degree symbol
If you use characters not included in the 7-bit set, it may or may not work and you may have
compatibility issues across different platforms. It is safest to generate these characters within a
script using the String.fromCharCode() function that return the required character.

A relevant case is the degree symbol º which has the decimal code 176 and is not in the 7-bit set.
If you display a bearing with, say,

print("Bearing is " , bearing, "ºT\n");

this works under MacOS but not under Windows.

Instead you could use

print("Bearing is ", bearing, String.fromCharCode(176), "T\n");

Page of 32 41

15. Demonstration Scripts
In this section, you will find a number of scripts that demonstrate aspects of in the plug-
in. They are chosen for their ability to demonstrate the capabilities of the plugin and
perhaps act as starters for creating your own applications. You can copy the scripts and
paste them into the script window. In many cases they do things that can be done in
OpenCPN itself but aim to show how these things can be done programatically.

There is now a library of contributed scripts available here.

A. Process and edit NMEA sentences
This script addresses an issue someone had whereby their RMC sentences did not include
magnetic variation, which was available in their HDG sentences. This script captures variation
from the HDG sentences and inserts it into any RMC sentences that do not already have the
variation.

(Hint to help you understand this: the .split method splits a string at each of the specified
character into an array, here called splut. .join does the reverse.)

// insert magnetic variation into RMC sentence
var vardegs = "";
var varEW = "";

OCPNonNMEAsentence(processNMEA);

function processNMEA(input){
if (input.OK){

sentence = input.value;
if (sentence.slice(3,6) == "HDG")

{
splut = sentence.split(",");
vardegs = splut[4]; varEW = splut[5];
}

else if (sentence.slice(3,6) == "RMC")
{
splut = sentence.split(",");
if ((splut[10] == "") && (vardegs != ""))

{ // only if no existing variation and
 // we have var to insert
splut[10] = vardegs; splut[11] = varEW;
splut[0] = "$JSRMC";
result = splut.join(",");
OCPNpushNMEA(result);
}

}
}

OCPNonNMEAsentence(processNMEA);
};

B. Counting NMEA sentences over time
This script NMEA-counter.js counts down for 30 seconds and then lists the OpenCPN
messages and NMEA sentences it has seen. The NMEA sentences are sorted by count
and then alphabetically.

Get code

Page of 33 41

https://github.com/antipole2/JavaScripts-shared/blob/main/library/library_index.adoc
https://github.com/antipole2/JavaScripts-shared/blob/main/NMEA-counter.js

C. Locate and edit waypoint, inserting hyperlinks
This script locates a waypoint called "lunch stop" and changes its icon name to "Anchor". It
nudges the waypoint slightly north, adds a description and adds some hyperlinks referencing the
nearby pub.

Waypoint = require("Waypoint"); // loads the constructor  
allWaypoints = OCPNgetWaypointGUIDs(); // get array of all waypoints  
for (i = 0; i < allWaypoints.length; i++){  

// look for our waypoint  
if (allWaypoints[i].markName == "lunch stop"){  

lunchWaypoint = new Waypoint;  
lunchWaypoint.get(allWaypoints[i].GUID);  
break;  
}  

}  
if (typeof lunchWaypoint == "undefined") throw("Waypoint not found");  
// we have our waypoint - now update it  
lunchWaypoint.iconName = "Anchor";  
// nudge the position north towards shore  
lunchWaypoint.position.latitude += 0.001;  
lunchWaypoint.description = "Great anchorage with pub close ashore";  
lunchWaypoint.hyperlinkList.push({description:"Pub website",  

link:"https://goldenanchor.co.uk"});  
lunchWaypoint.hyperlinkList.push({description:"Menu",  

link:"https://goldenanchor.co.uk/menu"});  
lunchWaypoint.update(); // update OpenCPN waypoint

D. Build routes from NMEA sentences
This script listens for routes being received over NMEA in the form of WPL and RTE sentences
and creates OpenCPN routes from them.

There is an option to match received routes with any existing route of the same name and replace
it. In this case a check is made that the existing routes have unique route names.

There is an internal simulator. In simulation mode, the script does not listen for real NMEA
sentences but generates simulated ones which are passed to the sentence processor.

As a JavaScript example, this script is interesting because it:

• it has a built-in simulator allowing testing without having incoming NMEA data

• makes full use of the Position, Waypoint and Route constructors

• has to deal with the complication that RTE sentences may be sent in instalments, as

necessitated by the 80 character length limit

• It makes good use of JavaScript arrays, including:

- pushing items onto an array

- pulling (shift) items off the front

- joining items into a string

This script was written as a demonstrator for researchers at the Technical University of Denmark.

Get code

Page of 34 41

https://github.com/antipole2/JavaScripts-shared/blob/main/Build_routes_fom_NMEA.js

E. Build race courses
This script was inspired by bobgarrett's wish to be able to create race course routes from
a list of waypoint names rather than hunt for them on the chart.

The script allows the user to
specify a regular expression
pattern by which to select those
waypoints which are race marks.

 In the eastern Solent, the race
mark names all start with the digit
5 followed by another character
and a space. In this example
there is also a waypoint Line
placed on the start line and we
are going to build a route for
Race 1. When you click on Build
route, you are presented with the Race mark
selector.

In this dialogue you select the course marks in
order adding them to the course. You can
indicate whether they are to be left to port or
starboard.

In this example, the finish is through the start
line, so the final selection is Line and the button
to finish.

The script then builds the route in OpenCPN and
also displays the route with the list of waypoints
indicating the bearing and distance to each and
which side to pass. The caption includes the
course length.

Get code

This script makes extensive use of the onDialogue function and is a useful example to work from. 

Page of 35 41

https://www.cruisersforum.com/forums/f134/create-route-from-waypoint-names-240341.html
https://www.cruisersforum.com/forums/f134/create-route-from-waypoint-names-240341.html
https://github.com/antipole2/JavaScripts-shared/blob/4913b215ba5b4b4ac2b7fa288ec1b2276871a0b2/BuildRaceCourses/BuildRaceCourses.js

F. Driver
This is a simulator that can be used to drive the ship in the absence of actual NMEA
inputs. It is an alternative to the ShipDriver plugin but does not use steering to gradually
change course. It generates GLL, VTG and WML NMEA sentences. You could add
others as required.

You can set Speed Over Ground (SOG), Course Over Ground (COG), Wind angle and
wind speed. Selecting Compass course will then drive the boat along the selected
course. The angle to the wind is displayed.

You can instead specify an angle to the wind and port or starboard tack. It will then
calculate the required COG. Selecting the opposite tack will tack the boat.

Driver can be run in its own console and used, for example, to experiment with or test the
TackAdvisor and SendActiveRoute scripts running in their own consoles.

Get code

G. TackAdvisor
This script monitors for when you have an active waypoint and will need to tack to reach
it. It then displays the two tack legs required.

If you are running off the wind to an active waypoint, and will need to gybe to reach it, it
displays the two legs and hence the recommended point to gybe.

TackAdvisor does not take cross-current offsets into account and will not give an
accurate tack point if the cross-current is significant.

Page of 36 41

https://github.com/antipole2/JavaScripts-shared/blob/4913b215ba5b4b4ac2b7fa288ec1b2276871a0b2/Driver/Driver.js

If TackAdvisor is standing by and not displaying your tacks when you are expecting it to,
check for the following. It will not display tacks under any of these conditions:

• No active waypoint

• You are off the wind by more than the configured amount, i.e. reaching

• You are heading too close to the wind to be sailing

• You are running close to straight for the waypoint

You can exercise TackAdvisor without being underway by running Driver in a separate
console. When you set Driver to a beat or near run, TackAdvisor will display the
necessary tacks.

Get code

H. SendActiveRoute
This script monitors for when you have an active route and sends a series of NMEA
sentences so that another device such as a chart plotter or a device running iNavX will
follow the route itself. Any updates to the route, such as modifying a route point or
advancing from one route point to the next will be updated within the receiving device.

See here for details. 

Page of 37 41

https://github.com/antipole2/JavaScripts-shared/blob/4913b215ba5b4b4ac2b7fa288ec1b2276871a0b2/TackAdvisor/TackAdvisor.js
https://github.com/antipole2/JavaScripts-shared/blob/main/SendActiveRoute/SendActiveRoute.adoc

A. Plugin version history
Version Date

0.1 20 Jul 2020 Initial alpha release for feedback

0.2 • Error reporting regularised

• Added various APIs including those to access GUIDs, waypoints & routes

• Script window greatly enhanced for writing JavaScript

• Output window brought into line with script window

• Dealing with spurious characters such as accents improved

• User and technical guides developed

• Builds for Windows and Linux added

• Established on GitHub

Version

Page of 38 41

0.3 • The script window now highlights plugin extensions and unsupported
keywords by colourising them.

• The result is now displayed last after any callbacks have completed rather
than at the end of the main script. The scriptResult() function can be called
to set the result.

• Error handling has been improved and makes proper use of the Dukcode
error object.

• Various APIs now throw an error rather than returning a boolean result,
namely

✦OCPNgetSingleWaypoint()

✦OCPNdeleteSingleWaypoint()

✦OCPNaddSingleWaypoint()

✦OCPNupdateSingleWaypoint()

✦OCPNgetRoute()

✦OCPNdeleteRoute()

✦OCPNaddRoute()

✦OCPNupdateRoute()

• Print & alert now accept arrays and objects as arguments

• Alert no longer holds up OpenCPN

• Scripts will now timeout if they take too long, such as if in a loop.

• timeAlloc() allows management of the time limit.

• Extensive support for creating and responding to dialogue windows.

• OCPNonSeconds() has been renamed to onSeconds()

• New JavaScript extensions

✦print<colour>()

✦printLog()

✦ timeAlloc()

✦scriptResult()

✦consoleHide()

✦onDialogue()

✦exitScript()

• New APIs added

✦OCPNgetPluginConfig()

✦OCPNrefreshCanvas()

✦OCPNgetAISTargets()

✦OCPNgetVectorPP()

✦OCPNgetPositionPV()

✦OCPNgetGCdistance()

DateVersion

Page of 39 41

0.4 3 Oct 2021 00:00• Added support for multiple consoles

• Added support for inter-console calls

• Added script auto-start ability

• Added chainScript

• Added JavaScript tools panel and current directory concept

• Console Hide & Show now separate calls

• Added onExit() function

• Added writeTextFile

• Position.NMEA precision increased from 3 to 5 decimal places

• Errors thrown from within the plugin APIs now show the line number and

trace-back where applicable

• Bug fix: hidden console was reappearing if OCPNdeleteRoute failed

• Extra example scripts

DateVersion

Page of 40 41

B. Document history
Version Date

0.1 19 Jul 2020 Initial version to accompany the plugin v0.1

0.2 20 Aug 2020 Update to accompany plugin release v0.2

0.2.1 3 Sep 2020 Code source links now to to gist itself rather than the raw window. They no
longer need to be changed if gist is updated.

0.3 16 Nov 2020 To accompany plugin v0.3

0.3.1 22 Dec 2020 Correction to demo script Process and edit NMEA sentences

0.4 20 Apr 2021 To accompany plugin v0.4

0.4.1 3 Oct/2021 Section on character sets expanded to assist with the degree symbol.

Adjustments to incorporate the script library.

Page of 41 41

	1. Introduction and summary
	The basics
	JavaScript and the embedded engine
	File strings
	Multiple consoles

	2. JavaScript plugin extensions
	print(arg1, arg2…)
	print<colour>(arg1, arg2…)
	alert(arg1, arg2…)
	printLog(arg1, arg2…)
	readTextFile(fileNameString)
	writeTextFile(text, fileNameString, mode)
	require(moduleName)
	timeAlloc(milliseconds)
	consoleHide() or consoleHide(name)
	consoleShow() or consoleShow(name)
	stopScript() or stopScript(string)
	Event handling

	onSeconds(functionName, seconds[, parameter])
	onDialogue(function, dialogue)
	Understanding the result

	Implicit result
	Explicit result
	scriptResult(arg1, arg2…)
	3. OpenCPN APIs
	OCPNpushNMEA(sentence)
	OCPNgetMessageNames()
	OCPNsendMessage(messageName[, message])
	OCPNonNMEAsentence(functionName)
	OCPNonMessageName(functionName, messageName)
	OCPNgetNavigation()
	OCPNgetARPgpx()
	OCPNgetNewGUID()
	OCPNgetWaypointGUIDs()
	OCPNgetPluginConfig()
	config = OCPNgetOCPNconfig()
	OCPNrefreshCanvas()
	OCPNgetAISTargets()
	APIs for positions
	OCPNgetVectorPP(fromPosition, toPosition)
	OCPNgetPositionPV(fromPosition, vector)
	OCPNgetGCdistance(Pos1, pos2)
	APIs for waypoints
	OCPNgetSingleWaypoint(GUID)
	OCPNdeleteSingleWaypoint(GUID)
	GUID = OCPNaddSingleWaypoint(waypoint)
	OCPNupdateSingleWaypoint(waypoint)
	APIs for routes
	OCPNgetRoute(GUID)
	OCPNdeleteRoute(GUID)
	GUID = OCPNaddRoute(route)
	OCPNupdateRoute(route)
	4. Error handling
	5. Objects and methods
	Position(lat, lon) or
	Position({latitude:lat, longitude:lon})
	Waypoint() constructs empty waypoint with its methods
	Waypoint(lat,lon) constructs waypoint for the given latitude and longitude
	Waypoint(position) constructs waypoint for the given position
	Waypoint(waypoint) constructs copy of the given waypoint
	About hyperlinks

	Route() constructs a route object with its methods
	Route(route) constructs a copy of the given route adding methods
	About JavaScript objects and OpenCPN objects

	6. Modules
	Loading your own functions
	Writing and loading your own object constructors

	7. Working with Date Time
	8. Execution time limit
	9. Dialogues
	onDialogue(function, dialogue)
	Styling
	Example with styling
	10. Automatically running scripts
	11. Working with multiple scripts
	chainScript(fileString [, brief]);
	brief = getBrief();
	12. Working with multiple consoles
	Communicating between scripts
	Working with multiple consoles in scripts

	consoleAdd(consoleName)
	consoleExists(consoleName)
	consoleClose(consoleName)
	consoleBusy(consoleName)
	13. Tidying up
	onExit(functionName)
	14. Trouble-shooting character code issues
	Working with non-7-bit characters such as the degree symbol

	15. Demonstration Scripts
	A. Process and edit NMEA sentences
	B. Counting NMEA sentences over time
	C. Locate and edit waypoint, inserting hyperlinks
	D. Build routes from NMEA sentences
	E. Build race courses
	F. Driver
	G. TackAdvisor
	H. SendActiveRoute

	A. Plugin version history
	B. Document history

