
JavaScript Plugin Technical Guide
Tony Voss

Version 0.4 6 April 2021 - document history here

Contents Page 
1. Introduction	 3

2. The JavaScript Engine	 3

3. Compiling and building	 3

Windows	 3

Linux	 3

MacOS	 3

Building from terminal	 3

Building using Xcode	 4

The Xcode test harness	 4

Duktape test	 7

4. Duktape extensions	 7

5. Duktape OpenCPN APIs	 7

6. The script window	 7

7. The require function	 8

8. How the plugin works	 8

Major changes in version 0.4	 8

General description	 8

exitScript()	 9

Time ticks	 9

Timing out	 9

Closing consoles	 10

Keeping the right console on top	 10

Programmatically starting scripts	 10

Inter-script communication	 10

9. Error handling	 11

Error in the plugin code when no JavaScript is running	 11

Error in the main script	 11

Page of 1 16

Error detected in C++ extension or OpenCPN API code.	 11

On call-back, the plugin detects error before invoking function	 11

Function invoked during call-back throws an error	 12

10. Testing	 12

11. Trouble-shooting and debugging	 12

Preferences panel diagnostics tab	 12

Dump	 12

Clean and dump string	 12

Obtaining dumps from with code	 13

From within C++ code	 13

From within JavaScript	 13

Throwing an error with C++ code	 13

Re-entrancy and checking for the wx_widgets main thread	 13

Tracing	 13

Appendices	 15

Road map for future development	 15

Document history	 16

Page of 2 16

1. Introduction
This document is a technical guide for the JavaScript plugin for OpenCPN. It is intended
for those maintaining the plugin and building it from source.

This plugin started life with a cloning of the DR_pi as described here. This is noted
because this is where the Cmake files originated.

I developed this plugin on MacOSX using Xcode extensively and have not compiled it
otherwise. Many thanks to Mike Rossiter for fixing up the Cmake files, testing it under
Windows and Linux and providing the builds.

Changes since the last release are highlighted in yellow.

2. The JavaScript Engine
The JavaScript engine used is Duktape, which is optimised for being built into an
application such as this. It implements ECMAScript E5/E5.1 with partial support for later
developments. The web site provides full details of the Duktape API - the interface
between the engine and the host application. This is not to be confused with the
OpenCPN API through which the plugin interacts with OpenCPN.

A more detailed explanation is provided in How the plugin works

3. Compiling and building
Location of the build folder
It is traditional to create the build folder inside the plugin folder and hence the following
instructions locate the scripts one level up with two . . The following instructions follow this.

For my purposes, I prefer to keep the build folder out of the plugin folder so that it does not get
included in the github presence. I replace the . . with the file string of the JavaScript_pi folder.
The package builder looks for the data folder (and its included scripts folder) to be installed with
the plugin one level up from the build folder. You therefore need to have a copy of that folder in
place. I insert into these folders links to the copies of the files in the plugin folder.

Windows
Consult the OpenCPN instructions here.

Linux
$ mkdir build
$ cd build
$ cmake ../ (note the two dots and forward slash)
$ make
$ sudo make package

You will find the package in the '_CPack_Packages' folder.

MacOS
The developer tools and, notably, wxWidgets were installed as described here.

Building from terminal
$ mkdir build
$ cd build

Page of 3 16

https://opencpn.org/wiki/dokuwiki/doku.php?id=opencpn:developer_manual:plugins:learning:fork_build_windows
https://duktape.org/index.html
https://opencpn.org/wiki/dokuwiki/doku.php?id=opencpn:developer_manual:developer_guide:compiling_windows:compiling_external_plugins_and_building_install_packages
https://opencpn.org/wiki/dokuwiki/doku.php?id=opencpn:developer_manual:developer_guide:compiling_mac_osx

$ export MACOSX_DEPLOYMENT_TARGET=10.09
$ cmake .. (note the two dots)
$ make
$ make create-pkg

Building using Xcode
You will need a working Xcode IDE on your Mac, which you can establish using the guide
here.

You do not need a build of wxWidgets as the necessary files are provided in the
JavaScript_pi/buildosx folder.

Within your copy of the JavaScript_pi folder, create a directory for the build, called, say,
build-Xcode. In terminal:

$ cd build-Xcode  
$ export MACOSX_DEPLOYMENT_TARGET=10.14  
$ cmake -G Xcode ..

If this runs without issue, you will then find in this folder your Xcode project package
JavaScript_pi.xcodeproj. Launch this to open it in Xcode.

When you select the JavaScript_pi target in Xcode and run it, it compiles and
produces the dylib JavaScript_pi.dylib, which you will find in the Debug folder
within your build. To create the installer package, you first need to move the dylib up one
level so that it is directly with your build folder. You can then run create-pkg to create
the installer.

You can avoid this tediousness by automating it thus:

1. Select the JavaScript_pi target and then the Build Phases setting

2. Disclose the CMake PostBuild Rules. You will see just one line of shell script starting
make -C

3. Add the following three shell steps where ‘mybuild’ is replaced by the name of your build
directory:

1. cd mybuild
2. cp Debug/libJavaScript_pi.dylib libJavaScript_pi.dylib
3. make -C . -f CMakeScripts/create-pkg_cmakeRulesBuildPhase.make$CONFIGURATION

OBJDIR=$(basename "$OBJECT_FILE_DIR_normal") all

With this addition, when you run the build of JavaScript-pi, it will carry on and build the installer
automatically.

The Xcode test harness

Building with the Test-harness target compiles the plugin together with the
Test_harness.cpp main program, which allows the plugin to be run from Xcode
without OpenCPN. Most of the development work was done this way and only after all
was working in the test harness was it built as a plugin and installed into OpenCPN.

Running the test harness from Xcode provides full debugging tools including break
points, step-by-step execution and examination of variables.

To make this possible, Test_harness.cpp includes dummy stubs for what is missing in
the absence of OpenCPN. In a few cases it contains code to return sample data as if
from OpenCPN so that subsequent processing can be developed within the debugging
environment. An example is GetActiveRoutepointGPX().

Page of 4 16

https://opencpn.org/wiki/dokuwiki/doku.php?id=opencpn:developer_manual:developer_guide:compiling_mac_osx
https://opencpn.org/wiki/dokuwiki/doku.php?id=opencpn:developer_manual:developer_guide:compiling_mac_osx

I found no way to dummy out the building of icons and so that code is not compiled if the
macro IN_HARNESS is defined, as it is when building the test harness.

Building the test harness in Xcode (verified for Xcode v11.6 & wxWidgets 3.2)
To establish the test harness in Xcode

1. Select File-> New > Target…

2. Select target type of Command line tool and click on Next

3. Enter Test-harness as the product name and Finish. This creates a target of Test-harness

and a yellow group called Test-harness, which will contain a dummy main.cpp

4. Control-click on this group to add files and choose Test-harness.cpp, which is located in the

Test_harness folder. Delete and remove to the trash the provided dummy main.cpp

5. Select target Test-harness

6. For the next steps it is best to open a second window (File>New>Window), so you can have

both the settings for building the plugin and the test harness side-by-side.

7. In Build settings, select the All tab to disclose what is needed

8. Copy the following settings from the JavaScript-pi target Build Settings and paste them into

the equivalent setting in the Test_harness settings. To copy all the settings, click on them once
so they are selected and copyable without opening them as a list - otherwise you would have
to move them one at a time.

1. Within Search Paths, the Header search paths
2. Add to the search paths the folder JavaScript_pi/buildosx/wx_includes which contains

wxWidgets headers. You can add an empty line using + and then in Finder drag the folder
into this space.

3. Copy across within Apple Clang - Preprocessing, the Preprocessor Macros
4. To the Preprocessor macros add an extra line to define: IN_HARNESS

9. In Build phase settings

A. add Compile sources using the + button to add the following files from the group Source

Files:

1. JavaScript_pi.cpp

2. JavaScriptgui.cpp

3. JavaScriptgui_impl.cpp

4. JSExtensions.cpp

5. OPCNapis.cpp

6. optional.cpp

7. duktape.cpp

8. icons.cpp

9. JSlexer.cpp

10. JSdialog.cpp

11. functions.cpp

12. toolsDialogGui.cpp

13. toolsDialogImp.cpp

14. and from the Test_harness group, Test_harness.cpp

B. Add Dependencies selecting

1. JavaScript-i18n

2. ZERO_CHECK

Page of 5 16

10. To build the test harness, you will need to link it to the required wxWidgets libraries normally
provided through OpenCPN. They are available in JavaScript_pi/buildosx

1. In the Build Phase tab, disclose the Link Binaries With Libraries list and drag all the

libraries from buildosx/wx_libs (8 files as of now) into this list.

2. In Build Settings within Search Paths, open Library search paths
3. Drag the icon for JavaScript_pi/buildosx/wx_libs into the field. It may insert the full file

path or something like $(PROJECT_DIR)/for_MacOS/wx_libs
NB When the plugin is built as a dylib, we have to include in the compile list all 145 source files for
scintilla as we cannot link its library into the installer. For the test harness, we can link them from
the stc library, so it is only necessary to compile the plugin code files plus the test harness itself.

It should now look something like this:

You can now build the test harness and the console window should open. While running the test
harness, the full riches of Xcode are available to insert break points and inspect variables, etc.

When the require function is given a simple module name, it looks for the scripts library
build into the plugin. When running the test harness, it attempt to load the module from

Page of 6 16

the library in the OpenCPN application. So it is necessary that the plugin has been
installed in the application first and that it is located within the applications folder.

Duktape test

There is a folder JavaScript_pi/Duktape which contains a command-line utility for testing
Duktape stnd-alone. You could build a separate Xcode target Duktape test for it. I
have not used this after an initial check, preferring to do testing in the test harness as
described above.

4. Duktape extensions
The JavaScript embedded engine has little access to its environment and performs no
input or output. I have, therefore built in various extensions as functions.

The basic technique is that when setting up the Duktape context, an initialisation function
is called, which loads into the global object the details of the C++ functions to be called
when JavaScript executes the function.

The code to provide non-OpenCPN-specific extensions (such as the print function) are
included in JSExtensions.cpp.

5. Duktape OpenCPN APIs
The extensions that provide the OCPN APIs work similarly and are to be found in the file
OPCNapis.cpp. The file opcpn_duk.h contains the definitions of the classes and methods
used to implement many of the APIs.

It takes some understanding of how to work with the Duktape context stack, especially
when constructing objects such as that returned by the OCPNgetNavigation function.

6. The script window
The console has been created with wxFormBuilder as usual.

The script and output windows are of type wxStyledTextCtrl. This requires the Scintilla package,
which is an optional extra part of wxWidgets not included in OpenCPN.

For Windows and Linux builds, it is sufficient to search the stc library to include the
required parts.

For the MacOS test harness it is necessary to search the stc dylibs. For the Mac OSX
OpenCPN plugin, I have found no way of including the extra libraries as the plugin loader
only looks for the one plugin dylib. To resolve this, we include the source code files (all
148) and compile them together with the plugin.

The following macros need to be defined:

#define TIXML_USE_STL  
#define SCI_LEXER

The script window uses 'lexing' of the script to aid understanding. Various words are
coloured, as described in the user guide. This is set up in the function JSlexit() inlucuded
in the file JSlexit.cpp. I had help learning how to use multiple keyword lists through this
post.

The JavaScript plugin now has a decent scripting window.

Page of 7 16

https://forums.wxwidgets.org/viewtopic.php?f=1&t=47519&p=200900#p200900
https://forums.wxwidgets.org/viewtopic.php?f=1&t=47519&p=200900#p200900

It is to be note that the Scintilla package is comprehensive. It includes support for
numerous languages including the likes of Cobol and Fortran. It is large and increased
the size of the plugin from 527KB (including the JavaScript engine) to 2MB. It should be
possible to drastically reduce the size overhead by dummying out unused code.

If this increase in size were a problem for installations with limited memory, it would be
possible to revert to making the script window of type wxTextCntl but it is much less
satisfactory. I favour reducing the size of Scintilla.

7. The require function
Duktape provides a framework in which to implement a JavaScript require function. In
that framework, the included script is automatically compiled in a separate context and
then exported to the user’s context.

Despite two weeks of experimenting and testing, I found no way of exporting an object
method. It was not recognised as callable. Eventually, I abandoned this approach and
implemented a require function from scratch in which I compile the script as a function
within the user’s context.

8. How the plugin works
This section provides a description of how the plugin works in relation to the JavaScript engine. It
does not cover standard OpenCPN plugin matters.

Major changes in version 0.4
Version on 0.4 introduced the ability to have any number consoles, each with their own instance
of the JavaScript engine. This required a very major re-write of the code and much tidying up was
undertaken in this process.

All code that relates to a console is now a method of the Console class. Data used to control the
execution of the JavaScript were previously in a single structure of class JS_control. These have
now been included in the Console class so a separate instance exists for each console. The few
variables which apply in all instances have been moved into the JavaScript class.

General description
It is often necessary to find the JavaScript_pi instance. Its constructor places a pointer to itself in
a global variable

JavaScript_pi* pJavaScript_pi;

Each console is implemented as an instance of the Console class. The consoles are chained in a
linked list with the first one found at

Console* pConsole = pJavaScript_pi->mpFirstConsole;

And the next in the chain at pConsole->mpNextConsole.

Each instance of the engine uses a heap. For us, the most important aspect of the heap is the
context which contains the Duktape stack - not to be confused with the C++ stack. All our
actions are stack-based and care is needed to pop off the correct number of items at the right
moment.

All communication with the JavaScript engine is by calls to the Duktape API, which all start with
duk_ and reference the relevant context declared as

duk_context *ctx;

When the user clicks on the Run button, the plugin calls the run(wxString script) method, which, in
summary, does does the following:

1. Initialises the attributes that will be used during the run of Duktape

2. Creates a Duktape heap and records a pointer to the context

Page of 8 16

https://duktape.org/api.html#duk_get_prop_string

3. Initialises the JS_control structure, which is where the plugin stores information about the
state of operations

4. Starts a timer in case of loops etc

5. Invokes the Duktape engine to compile and run the script. During execution of the script, API

calls to plugin functions may be called. These may set up timers or other call-backs. These
are noted in the Console.

6. On completion of the main script it cancels the timer and a check is made for errors, which are
reported.

7. A check is also made using the isWaiting() method to determine whether a callback is
outstanding. If not, the clearAndDestroyCtx() method is used to clean up and release
the Duktape heap.

8. When the JavaScript plugin receives an action from OpenCPN, it searches the consoles to see
whether it satisfies an outstanding call-back. If so, it will

a. Load the global object (the previously compiled script) onto the stack

b. check that it contains the required function

c. Call JS_exec, which

i. Starts the timer

ii. Calls the function using duk_pcall

iii. Cancels the timer

iv. Checks for an error return

d. If there are no outstanding call-backs or action, we clean up, which includes restoring
the Run/Stop button to Run

When the Duktape engine calls an API or returns an error, the Duktape context is available but it
does not indicate which console this is for. The function

Console *findConsole(duk_context *ctx)

is used to search each console for a matching context and return it.

exitScript()
When a Duktape process completely successfully, it returns DUK_EXEC_SUCCESS. If this is not
true, an error has been encountered. To get out of the script when exitScript() has been called, we
have to throw an error but we don't want an error message. To avoid this, we look for a flag
mStopScriptCalled and, if set, return STOPPED. Only after this do we check for a real
Duktape error.

Time ticks
A wxTimer is run at one second intervals and used to check for timer events due.

Timing out
The code for this. Is to be found in the file duktape_timeout.cpp. The duktape engine is set
up to call the C++ function JSduk_timeout_check at regular intervals. If the allowed time has
been exceeded, this function returns 1 else 0. It has to do this repeatedly while the stack
unwinds. It clears down only on the first timed-out call, using a flag pConsole->m_backingOut
to manage this.

When the Duktape engine calls JSduk_timeout_check, there is no context nor indication which
script instance it is for. We make the assumption that only one instance will be running at a time
and have planted a pointer to the console in the global Console* pConsoleBeingTimed. This
is a safe assumption as I have no evidence that OpenCPN multithreads calls to plugins and a
given console's actions are single threaded. If the plugin was compiled with DUK_DUMP defined,
the JavaScript extension JS_mainThread() allows a script to check whether it is running in the
main thread. I have never seen it otherwise.

Page of 9 16

Closing consoles
Closing a console window turns out to be tricky. It is a bit like cutting off the branch of a
tree you are sitting on. The solution adopted is to unhook the console from the chain of
consoles and then add it to a bin of closed consoles. Then on the regular timer tick, a
check is made to delete consoles from the bin. Check is also made during plugin deist to
delete any consoles in the bin.

Keeping the right console on top
The consoles are instantiated as wxDialogs but not modal. This is necessary to ensure
they stay on top of the main canvas frame. An initial problem was that the dialogues
overlapped each other in order of creation. When a console is activated, the
wxSTAY_ON_TOP bit is turned off for the deactivating console and turned on for the
newly active console. This provides the expected behaviour.

Programmatically starting scripts
When a script is chained or a script in another console is to be run, simple calls to this
process could lead to a build up of call nesting and running for long periods without
yielding. To avoid the CallAfter() method is used, which schedules the call later. The call
needs to be to a method and methods doRunCommand and doExecuteFunction handle
these, invoking the underlying method to do the work.

Inter-script communication
Scripts can communicate using OpenCPN messaging. However, the recipient must be
listening when a message is sent. This plugin has another method of inter-script
communication, described here.

When a script runs, it is passed a brief, which it stores in its console structure. When a
stir script is initially run through the console Run command, it is given a null brief. A brief
contains the following:

bool .fresh If true, this brief has not yet been seen by a script.

A brief can be read multiple times by the first script it is passed to
but the same brief may not be used by any successor script it
might chain to. Just before the script runs, this is set to false.

During wrapUp(), run at the end of every script, if .fresh is still
false, we know that no new brief was set during this script
and .hasBrief is set to false, making the script unavailable to any
successor script.

bool .hasBrief If true, theBrief contains a string, being the actual brief for the
script.

wxString .theBrief The brief itself. If not a string, it should be represented as its JSON
string.

bool .callback If true, a different briefing script is to be called back when this
script or chain of scripts ends.

wxString .briefingConsoleName If .callback is true, this is the name of a different console that is to
be called-back.

Page of 10 16

When a script terminates, the wrapup() method examines the brief and, if it finds .callback true,
will attempt to invoke the specified function running the specified console. It does this by calling
its onExecute() method, passing to it a ConsoleCallbackResult structure, which is as follows:

If a scriptChain() statement, this preempts any callback and the brief is passed to the successor
script - perhaps with the brief itself updated by the call. The callback details are thus inherited by
the chained-to script. Thus when a console sets up a callback from another console, the callback
is made from the last script of any chain of scripts that run in it.

When a console callback is to be made, the calling back console has to check that the console to
be called still exists and that it is busy - hopefully awaiting the callback. If the specified function
is no longer available, the call-back console will throw an error.

9. Error handling
How an error is handled depends on where it occurs.

Error in the plugin code when no JavaScript is running
This is the simplest situation and the error can be displayed in the output window using

pConsole->message(int style, wxString messageAttribute, wxString message)

The style is one of

enum {
 STYLE_BLACK,
 STYLE_RED,
 STYLE_BLUE,
 STYLE_ORANGE,
 STYLE_GREEN
 };

Two strings follow being the message to be displayed and a newline is appended by the function.

Error in the main script
run(wxString script) checks for an error return and displays the accompanying message
which has been left on the stack, using using message as above.

Error detected in C++ extension or OpenCPN API code.
The C++ code should push an error object onto the Duktape stack and then throw a
Duktape error with duk_throw(). Do not use the C++ throw() - that will kill OpenCPN!

On call-back, the plugin detects error before invoking function
The plugin can display a message using message as above. It must then clean up using
clearAndDestroyCtx(ERROR).

wxString .function The function to be invoked during the callback.

Completions .resultType The type of the result. This might be one of ERROR, DONE or
STOPPED,

wxString .result The result from the script, except that if .resultType is ERROR then
the error message.

wxString .function The function to be invoked during the callback.

Page of 11 16

Function invoked during call-back throws an error
A called-back function is executed with the executeFunction() method. If an error is
thrown during execution of the function, it returns ERROR (-1) indicating the plugin should
clean up.

This is also the route taken if C++ code invoked by the called-back function throws an
error.

10. Testing
There is a set of test scripts in the folder Test_scripts. Within this folder is a script 00_main.js
which is a test manager through which you can run the tests individually or all of them as a
sequence.

To use this, set the current directory to be this folder using the plugin tools, load 00_main.js
and run it.

The test manager requires that many aspects of the plugin are working sufficiently, especially
timers, dialogues and console calls. If it is not working sufficiently well, you will need to run the
relevant script directly from its file.

The test manager running all the tests is a thorough check on the functioning of the plugin.

11. Trouble-shooting and debugging
Preferences panel diagnostics tab
There are presently two diagnostic functions available.

Dump

This opens a new window and dumps selected diagnostic information

1. Environment and version information

2. For each console, selected attributes, including the addresses used to chain the
consoles together.

3. If a console has a Duktape context, the Duktape stack is dumped. In this can be seen
global JavaScript variables, names of functions and the stack stacking.

Clean and dump string

During development we encountered several problems with difficult character codes. The
Duktape engine only accepts 16 bit characters as defined in the ECMA standard.
wxWidgets as used by OpenCPN, on the other hand, uses an extended character set.
Further, if scripts have been prepared or edited in word processors, they may include
many esoteric characters such as ‟smart quotes”. These all throw Duktape. To deal with
this, a script is cleaned using the function

wxString JScleanString(wxString given)

which translates know unacceptable charrs into the most likely acceptable to Duktape. But we
have had problems, especially with the Windows environment.

If you encounter a problematic character, this tab lets you examine the character coding
before and after cleaning and should help identify any character not being translated
satisfactorily.

Page of 12 16

Obtaining dumps from with code
It is also possible to obtain dumps at an individual console level if the plugin has been compiled
with

#define DUK_DUMP true

From within C++ code
The console method dukDump() returns the current Duktape stack dumped into a string.

The console method consoleDump() returns a string being a dump of the console, including the
Duktape stack.

You can display these as you will, perhaps using TRACE such as

TRACE(3, pConsole->dukDump());

From within JavaScript
The Duktape stack can be returned as a string using duktapeDump() and consoleDump().
Example:

print("Near end of script ", duktapeDump());

Throwing an error with C++ code
There is a function JS_throw_test(int1, int2) which returns the sum of the two
arguments except that if the two arguments are equal, it throws an error within the C++
code. This can be used to check correct functioning of this process.

Re-entrancy and checking for the wx_widgets main thread
To avoid re-entrance issues, it is assumed the plugin is always running on the main wx_widgets
thread. There is a JavaScript function JS_mainThread() which returns true if this is the case.

I have never seen anything other than main thread but, if in doubt, this function could be used to
check.

However, it seems that if the main script sets up a call-back, such as by
OCPNonMessageName(), that may be called before the manuscript has completed. A
flag mRunningMain is set until the main script has completed to prevent calls to
clearAndDestroy() taking everything down too soon.

Similarly, a flag mTimerActionBusy is used to guard against timer actions piling up on
each other.

Descriptions of the above JavaScript functions are omitted from the user guide. The script
window lexer colours them orange to warn users off.

Tracing
There are many trace statements in the code of the form

TRACE(int level, wxString message);

These have been extremely useful to observe what is going on.

Level is the level of tracing with 1 for key points that should always be traced and a higher
number such as 5 for detailed tracing within loops etc.

The header file trace.h sets this up with the macro TRACE_LEVEL set to the required level. All
trace statements whose level does not exceed TRACE_LEVEL will output their message. Set
TRACE_LEVEL to 1 for key points only and to a higher number for detailed tracing of iterating
loops etc.

Page of 13 16

If you want to trace just a point or two, use a level of 1 so this will avoid the other numerous
TRACE statements.

When TRACE_LEVEL is set to zero, there is no tracing and the tracing is omitted entirely from the
compiled code. This should be the case for releases.

When TRACE_TO_WINDOW is false, tracing output is sent to the OpenCPN log file, so avoid over
filling it. When running in the harness, output is sent to stdout. However, neither of these are
desirable when long tracing is occurring. When TRACE_TO_WINDOW is true, a separate window
will be opened to receive the trace. Be aware that this window is lost if OpenCPN quits or
crashes.

Page of 14 16

Appendices
Road map for future development
I am interested in working with others to develop ideas for this plugin. I set up a Slack
workspace to liaise with Mike. If you would like to join in, please contact me by private
message.

I anticipate developments will include:

• Addition of further APIs as need identified

• Documentation and a user guide ✔

• Making the scripting window more programmer friendly. At present it knows nothing of
tabs, indents and braces. For other than the simplest script, I presently use a
JavaScript-aware editor (BBEdit in my case) and paste the scripts into the script
window. ✔

• Better resilience. At present there is no protection against a script loop. while(1);
hangs OpenCPN! ✔

• Implementing the JavaScript require() function, which is like a C++ #include to
allow loading of pre-defined functions, objects, and methods. ✔

• Running without the console window visible ✔

• Tidier and more consistent error reporting, even when the console is hidden ✔

• ‘Canned’ scripts that start automatically ✔

• At present, if you want to do separate tasks, you would need to combine them into a
single script. I have ideas about running multiple independent scripts. ✔

• I do not use SignalK but note its potential. I am interested in input from SignalK users
to keep developments SignalK friendly.

• Other suggestions? 

Page of 15 16

Document history
Version Date

0.1 19 Jul 2020 Initial version to accompany the plugin v0.1

0.2 20 Aug 2020 Update to accompany plugin release v0.2

0.3 14 Nov 2020 Update to accompany plugin release v0.3

0.4 7 Feb 2021 Update to accompany plugin release v0.4

Page of 16 16

	1. Introduction
	2. The JavaScript Engine
	3. Compiling and building
	Location of the build folder
	Windows
	Linux
	MacOS
	Building from terminal
	Building using Xcode

	The Xcode test harness
	Building the test harness in Xcode (verified for Xcode v11.6 & wxWidgets 3.2)
	Duktape test
	4. Duktape extensions
	5. Duktape OpenCPN APIs
	6. The script window
	7. The require function
	8. How the plugin works
	Major changes in version 0.4
	General description
	exitScript()
	Time ticks
	Timing out
	Closing consoles
	Keeping the right console on top
	Programmatically starting scripts
	Inter-script communication

	9. Error handling
	Error in the plugin code when no JavaScript is running
	Error in the main script
	Error detected in C++ extension or OpenCPN API code.
	On call-back, the plugin detects error before invoking function
	Function invoked during call-back throws an error

	10. Testing
	11. Trouble-shooting and debugging
	Preferences panel diagnostics tab

	Dump
	Clean and dump string
	Obtaining dumps from with code

	From within C++ code
	From within JavaScript
	Throwing an error with C++ code
	Re-entrancy and checking for the wx_widgets main thread
	Tracing

	Appendices
	Road map for future development
	Document history

