
第三届中国Rust开发者大会

Apache Ballista Introduction
钟阳红 (John Zhong)

Software Engineer @ eBay
nju_yaho@apache.org

Agenda

• Overview

• Cluster Setup

• SQL Execution

• Data Cache

• Future

Apache Ballista is a distributed SQL query
engine powered by the Rust implementation
of Apache Arrow and DataFusion. It’s mainly
for interactive queries of low latency.

• Support DAG and fault tolerance

• Support data exchange

• Support different kinds of object stores, like
HDFS, S3, Azure, etc

• Support data cache and cache aware task
scheduling

Overview

Cluster Setup

The cluster consists of one scheduler and a number of executors. Both of scheduler and
executor can be deployed on K8S. Executors can be added to the cluster flexibly by
registering to the cluster scheduler.

SQL Execution
• SQL -> DAG (Directed Acyclic Graph)

• DAG State Machine

• Task Assignment

• Event Loop based Processing

SQL Execution DAG Generation

SQL Logical Plan Single Machine
Execution Plan

Distributed
Execution Plan DAG

SQL Execution DAG State Machine

Normal Stage State Machine

SQL Execution Fault Tolerance

Stage State Machine
for Executor Lost

SQL Execution Task Assignment

Task: each execution stage for a number of data partitions.
one task for each data partition.

Executor slot: each executor has a number of slots for task execution.

One round task assignment will bind pending tasks
with available executor slots as many as possible.

Two assignment policies:
Policy Result of One Round

Round-robin Job_a: 1 slot from executor_3
 1 slot from executor_2
Job_b: 2 slots from executor_3
 2 slots from executor_2
 3 slots from executor_1

Bias Job_a: 2 slots from executor_3
Job_b: 5 slots from executor_3
 2 slots from executor_2

SQL Execution Event Loop based Processing

Advantages:
• Decoupled

• Efficient processing for batch events

Data Cache

Data cache is a very common feature for the cloud data warehouses for accelerating the
access to the data source.

Snowflake – Multi-Cluster Shared Data Architecture Vertica – Eon Architecture

https://event.cwi.nl/lsde/papers/p215-dageville-snowflake.pdf
https://www.vertica.com/wp-content/uploads/2018/05/Vertica_EON_SIGMOD_Paper.pdf

• Consistent hashing-based assignment
(Snowflake)

• LRU based retirement

• Cache aware scheduling

• Consistent hashing tolerance-based work
stealing

• Currently it’s file-level

Data Cache

Three rounds cache aware task
Scheduling:

• Assign non-map stage tasks(without
scanning files) in a round robin way

• Assign map stage tasks (scanning files)
based on the consistent hashing policy on
the hash value of the file name and the
executor topology

• Assign tasks with scanning files based on
the consistent hashing policy on the hash
value of the file name and the executor
topology with N tolerance

Data Cache

Future

• Scheduler HA

• Shuffle Improvement
- Self-adjustable shuffle partition

number
- Sort-based shuffle writer for pull-

based shuffling
- Push-based shuffling

Reference

• Eon Mode: Bringing the Vertica Columnar Database to the Cloud
https://www.vertica.com/wp-content/uploads/2018/05/Vertica_EON_SIGMOD_Paper.pdf

• The Snowflake Elastic Data Warehouse
https://event.cwi.nl/lsde/papers/p215-dageville-snowflake.pdf

• Apache Arrow
https://arrow.apache.org/

• Apache Arrow DataFusion

https://github.com/apache/arrow-datafusion

• Apache Arrow Ballista
https://github.com/apache/arrow-ballista

https://www.vertica.com/wp-content/uploads/2018/05/Vertica_EON_SIGMOD_Paper.pdf
https://event.cwi.nl/lsde/papers/p215-dageville-snowflake.pdf
https://arrow.apache.org/
https://github.com/apache/arrow-datafusion
https://github.com/apache/arrow-ballista

Thank you！

