
Dr
aft

Apache Arrow DataFusion: A Fast, Embeddable,
Modular Analytic Query Engine

Andrew Lamb
InfluxData

alamb@influxdata.com

Yijie Shen
Space and Time

yijie.shen@spaceandtime.io

Daniël Heres
Coralogix

daniel.heres@coralogix.com

Jayjeet Chakraborty
InfluxData

jchakraborty@influxdata.com

Mehmet Ozan Kabak
Synnada

ozan@synnada.ai

Chao Sun
Apple Inc.

sunchao@apple.com

Liang-Chi Hsieh
Apple Inc.

liangchi@apple.com

Analytic Application

Domain 
Specific 
Language

Specialized Database

Application LogicCatalog

Analysis Engine

Multiple SQL 
Dialects

Data Flow 
AnalysisCustom 

Operators File System Interface

…

Figure 1. Apache Arrow DataFusion is a fast, embedded query engine that uses Apache Arrow as its in-memory format.
System designers implement domain-specific features via extension APIs (blue), rather than re-implementing standard OLAP
query engine technology (green). Query performance is similar to best-of-breed, tightly integrated systems.

Abstract
Apache Arrow DataFusion[26] is a fast, embeddable, and ex-
tensible query engine written in Rust[71] that uses Apache
Arrow[25] as its memorymodel. Many commercial and open-
source databases, machine learning pipelines, and other data-
intensive systems are built using DataFusion. DataFusion
demonstrates that a rich feature set with state-of-the-art
performance is attainable with a modular and extendable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’24, June 09–15, 2024, Santiago, Chile
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

design based on open technical standards and Apache Soft-
ware Foundation[28] governance. We anticipate that the
accessibility and versatility of DataFusion, along with its
competitive performance, will enable a proliferation of new,
high-performance custom data infrastructures tailored to
specific needs by composing modular components.

CCS Concepts: • Information systems→ Database man-
agement system engines; DBMS engine architectures;
Database query processing; Online analytical process-
ing engines.

Keywords: database systems

ACM Reference Format:
Andrew Lamb, Yijie Shen, Daniël Heres, Jayjeet Chakraborty, Meh-
met Ozan Kabak, Chao Sun, and Liang-Chi Hsieh. 2024. Apache
Arrow DataFusion: A Fast, Embeddable, Modular Analytic Query
Engine. In Proceedings of ACM SIGMOD/PODS International Confer-
ence on Management of Data (SIGMOD ’24). ACM, New York, NY,
USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Dr
aft

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Lamb, Shen, Heres, et al.

1 Introduction
Traditionally, the realm of high-performance analytic query
engines has been dominated by tightly integrated systems
such as Vertica[46], Spark[72], and DuckDB[63]. This ap-
proach was necessary to optimize the interfaces between
the file format, in-memory layout, and processing engine to
reach peak performance. However, building such a system
is expensive and typically requires substantial commercial
and/or research funding, given the extensive software engi-
neering required. As more analytic systems were built over
time, academia and industry have learned how best to draw
boundaries between subsystems such as the file format, cat-
alog, language front-ends, and execution engine [20, 59].
DataFusion continues this trend and enables the assem-

bly of an end-to-end system from high-quality, reusable, and
open components, embracing open standards such as Apache
Parquet[27] and Arrow[25] throughout its architecture, and
permitting extensions at every level. DataFusion’s competi-
tive performance demonstrates that a modern OLAP engine
need not have a tight-knit architecture, and its mere exis-
tence as a permissively licensed open-source project demon-
strates that an open organizational structure, enabled by the
Apache governance model[29], is capable of creating and
maintaining this level of technology.

This paper makes the following technical contributions:

1. Describes the ecosystem of foundational technologies
that power DataFusion and that we believe will power
the majority of successful analytic systems over the
next decade.

2. Describes the types of systems built with DataFusion,
illustrating what is possible with commodity OLAP
engines.

3. Describes DataFusion’s architecture, feature set, and
optimizations, illustrating the breadth of features re-
quired of modern analytic engines and quantifying the
effort necessary to implement one.

4. Defines DataFusion’s extension APIs, outlining key
module boundaries in an analytic stack.

5. Evaluates DataFusion’s performance, demonstrating
that state-of-the-art performance is achievable using
modular components and open standards.

The rest of this paper is organized as follows: Section
2 reviews foundational technologies. Section 3 describes
use cases and examples of real-world adoption. Section 4
explores the trend towards modular databases. Section 5
describes DataFusion’s architecture, detailing its execution
model and key components. Section 6 enumerates many of
the standard query optimizations included in DataFusion.
Section 7 describes the APIs for extending DataFusion. Sec-
tion 8 evaluates DataFusion’s performance. We describe
related work in Section 9 and conclude in Section 10.

2 Foundational Ecosystem
DataFusion is only possible due to the advent of several
lower-level transformative technologies: Apache Arrow’s in-
memory columnar structure and compute kernels, Parquet’s
efficient columnar storage, and the Rust ecosystem that en-
ables a high-performance, yet comprehensible implementa-
tion. Without these technologies, it is unlikely we could have
built DataFusion with the relatively modest resources avail-
able. Additionally, using these technologies, systems built
with DataFusion easily integrate with the broader ecosystem,
directly sharing files and in-memory data streams without
time-consuming and error-prone format transformations.

2.1 Apache Arrow
At its core, Apache Arrow[25] simply standardizes indus-
trial best practices for representing data in memory using
cache-efficient columnar layouts. By standardizing imple-
mentation details such as validity/null representations, en-
dianness, variable length byte and character data, lists, and
nested structures, systems built with Arrow benefit from
well known techniques and easy data interchange between
applications. For example, while it is likely not critical for
most systems if a NULL value is represented by a 0 or 1 in
a bit mask, it is critical that all systems agree on the same
convention for interoperability.
Originally, Arrow was designed as an in-memory inter-

change format and added compute-focused features such
as StringView[22] and high-performance compute kernels
over time. Arrow users can thus avoid re-implementing fea-
tures that are well understood in academia and industry, but
time-consuming to implement.

2.2 Apache Parquet
Apache Parquet[27] is an open-source, column-oriented data
file format, originally designed for the Hadoop ecosystem
and inspired by academic work on columnar storage[69]. It
provides efficient data compression and encoding schemes,
along with support for structured types via record shredding
[53], embedded schema description, zone-map[54] like index
structures and Bloom filters for fast data access.
Unlike Arrow, which is designed for fast random access

and efficient in-memory processing, Parquet is optimized
to store large amounts of data in a space-efficient manner.
Like all formats, Parquet is not perfect, but it has become the
de-facto standard for data storage and interchange in the ana-
lytic ecosystem. Its combination of an open format, excellent
compression across real-world data sets, broad ecosystem
and library support, and embedded self-describing schema
makes it a compelling choice for storing and exchanging
compressed data. In addition to compression and compat-
ibility, the file structure allows query engines to apply ad-
vanced projection and filter push-down techniques, such as



Dr
aft

Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic Query Engine SIGMOD ’24, June 09–15, 2024, Santiago, Chile

late materialization, directly on files, yielding competitive
performance compared with specialized formats[3].

2.3 Rust
Rust[71] is a relatively new system programming language,
featuring a low-level, yet safe memory management ap-
proach and C-like performance. It incorporates an innova-
tive memory ownership model that mitigates many of the
worst memory and thread safety challenges prevalent in
traditional C/C++ programming. Rust programs are easy to
embed in other systems as they do not require a language
run-time and have C ABI compatibility. Rust’s strong em-
phasis on zero-cost abstractions and its rich ecosystem of
performance-centric libraries, along with developer-friendly
documentation and diagnostic tools, make it a compelling
choice for implementing high-performance applications with
a relatively lower engineering investment.

Unlike many C/C++ build systems, which can require sub-
stantial effort to just configure on a particular environment,
Rust’s built-in Cargo Package Manager[14] and crate ecosys-
tem makes adding DataFusion to most projects as simple as
adding a single line to a configuration file.

3 Use Cases
A wide variety of commercial products and open source
projects use DataFusion due to its combination of extensibil-
ity, feature set, fast query performance, and ecosystem com-
patibility. Projects leveraging DataFusion typically spend
most of their time innovating value-adding features rather
than replicating existing analytic engine technologies. While
still early in adoption, DataFusion is already used in:

1. Tailored database systems for domain-specific uses
such as time-series databases (e.g. InfluxDB 3.0[40] and
Coralogix[15]), as well as streaming SQL platforms
(e.g. Synnada[70] and Arroyo[7]).

2. Execution run-times for diverse query front-ends,
such as Apache Spark (Section 3.1), the Vega visual-
ization language[52], and the InfluxQL[38] time series
query language.

3. SQL analysis tools such as dask-sql[60] and SDF[65],
which leverage DataFusion’s SQL parser, planner, and
plan representation to analyze SQL queries.

4. Table formats such as the Rust implementations of
Delta Lake[6] and Lance[47], which use DataFusion ex-
pressions and query plans to fetch and decode remote
data, implement predicate-based delete tombstones,
push predicates to specialized secondary indexes, and
compact files while retaining sort orders.

All these systems inherit the Arrow-native aspects of
Datafusion, and easily integrate with the Python ecosystem
via pyarrow[30]. For example, Lance has many APIs where
users write Python functions that operate on RecordBatches,
which operate directly on the data without any conversion.

3.1 Accelerating Apache Spark
Apache Spark[72] is an open-source analytic engine for large-
scale data processing, widely adopted as a standard tool
for data engineering, data science, and machine learning.
Implemented primarily in JVM languages Scala and Java, its
performance suffers from well-known JVM overheads.
With its high adoption and easy-to-use APIs, Spark will

likely remain a major data infrastructure component in the
near term. Fortunately, Spark’s design allows replacing just
the execution engine with a specialized implementation like
Velox[58] (open-source) or Photon[9] (proprietary).

DataFusion is used by several Spark native runtimes, in-
cluding Blaze[10] and at least one project that is not yet
open-source. In these projects, Spark’s query front-ends
and its parsing, analysis, and optimization steps are used
as is, while its execution plans are converted to DataFu-
sion ExecutionPlans (Section 5.5) that execute through JNI
interfaces where zero-copy data exchange is facilitated by
Apache Arrow. In scenarios where Spark’s semantics dif-
fer from those offered by DataFusion, the latter’s extensible
design (Section 7) permits these projects to override and
implement Spark specific expressions and operators (e.g.,
decimal related operations where Spark semantics deviate
from ANSI SQL).

4 Deconstructed Databases
The rise of DataFusion and similar systems, such as Apache
Calcite[8] and Velox[58], is part of a longer term trend away
from monolithic “one size fits all” general-purpose systems
to “fit for purpose” specialized systems[68]. Given the ex-
pense of building the underlying technology, widespread
proliferation of such specialized systems is only feasible
when they can be assembled from reusable high quality com-
ponents, a trend which has been called the Deconstructed
Database[43][59].
The database systems literature offers a vast array of ad-

vanced and thoroughly studied techniques for most oper-
ations. However, due to economic and architectural con-
straints, these techniques have historically been confined to
tightly integrated, often proprietary databases or analogous
analytic systems. This tight integration limits reuse, leading
to numerous costly re-implementations.
One classic example of a re-implementation is data sci-

ence analysis tools, such as pandas[57]. The data science
community innovated new APIs (DataFrame vs. SQL) and
preferred a different deployment model (local files vs. net-
worked servers), distinct from most contemporary database
offerings. However, these tools initially performed poorly,
and did not incorporate many well-known techniques from
database systems such as query planning/optimization and
parallel vectorized execution. In fact, Apache Arrow was ini-
tially born out of a desire to bring such well-studied database
systems techniques to the data science ecosystem.



Dr
aft

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Lamb, Shen, Heres, et al.

Another example of a missed opportunity for reuse was
the emergence of MapReduce[21] and its open-source imple-
mentation, Hadoop, for parallel distributed processing.While
database researchers pointed out several ways it was techni-
cally inferior[24], the lack of open, standard, and reusable
components inevitably led to the re-implementation of very
similar low-level analytical techniques.

4.1 Parallel with LLVM

The transition from a few monolithic implementations to a
large number of specialized systems that share an underly-
ing open source foundation has happened before in system
software stacks. Modern programming language tooling un-
derwent a similar transformation, enabled by LLVM[48]:

1. Tightly integrated designs where compilers with
hardware-specific code generation and operating sys-
tem-specific libraries were distributed as an integral
part of systems such as IBM System/390, Solaris, AIX,
and HP-UX. Similarly, traditional integrated mono-
lithic database systems such as Oracle[18], SQL Server
[17] and DB2[16] directly manage storage hardware,
client connections, SQL language functions, query ex-
ecution, and on-disk/in-memory formats.

2. Open source, internally integrated compilers such
as gcc work across multiple hardware platforms and
operating systems, and thus were much more widely
adopted. Similarly, cross-platform, open source, but
internally integrated database systems such as MySQL
and PostgreSQL were widely adopted.

3. Open source and modular compilers for program-
ming languages like Rust[71], Swift[5], Zig[32], and
Julia[11] share the same high quality backend, LLVM.
This is similar to how InfluxDB 3.0, GreptimeDB, and
Coralogix are built using the same high quality reusable
query engine, DataFusion.

Just as LLVM’s modular and reusable compiler technol-
ogy catalyzed the new development of advanced, industrial-
strength systems programming languages, DataFusion cat-
alyzes the development of new data systems. For program-
ming languages built on LLVM, authors now concentrate
on enhancing language-specific features and reuse the same
shared code for critical, yet commonplace, low-level details
such as intermediate representations, standard optimizations
(e.g. loop unrolling), architecture-specific code generation,
and auto-vectorization. For databases built on DataFusion,
designers create value-added, domain-specific features in-
stead of re-implementing elements like SQL front-ends, plan
representations, optimizations, storage formats, and execu-
tion operators.

5 DataFusion Features
5.1 Engine Overview
DataFusion is designed to work “out of the box” with very lit-
tle effort while also providing extensive customization APIs,
which we describe in Section 7. This architecture, shown
in Figure 2, allows users to quickly start with a basic, high-
performance engine and specialize the implementation over
time to suit their needs and engineering capacity. The im-
plementation follows industrial best practices informed by
database research literature, with a focus on efficient and
extensible implementations of well known patterns.

5.2 Catalog and Data Sources
5.2.1 Catalog. To plan and execute queries, DataFusion
needs a Catalog to provide metadata such as which tables
exist along with their columns and data types, statistical in-
formation, and storage details. DataFusion includes a simple
in-memory catalog and a Apache Hive[12]-like partitioned
file/directory based catalog. Catalog management, being a
key design element for most data systems, it is unlikely any
general-purpose catalog implementation will work well for
all use cases. Therefore, most implementations use DataFu-
sion’s APIs (Section 7.2) to supply catalog information, e.g.,
directly from a Hive metastore.

5.2.2 Data Sources: Parquet, Avro, JSON, CSV, Arrow.
DataFusion includes five built-in TableProviders for com-
monly used file formats: Apache Parquet, ApacheAvro, JSON,
CSV, and Apache Arrow IPC files – all implemented via the
same API any other custom source would use. The Parquet
reader leverages the Arrow Rust implementation and fea-
tures advanced predicate pushdown and late materialization
(Section 6.8), bloom filters, and nested types. The CSV and
JSON readers automatically infer schema from source files,
and the JSON reader fully supports structs and lists.

5.3 Front Ends
5.3.1 Data Types. DataFusion directly uses the Apache
Arrow type system and inherits its broad range of supported
types, including integral and floating point numerics of var-
ious byte widths, fixed precision decimals, variable length
character and binary strings, dates, times, timestamps, in-
tervals, duration types, nested structs and lists. During exe-
cution, operators exchange data as either Arrow Arrays or
scalar values.

5.3.2 SQL Planner. DataFusion uses the sqlparser-rs
[67] library to parse SQL and generates a LogicalPlan from
the parsed query representation.While it is likely that no SQL
implementation should ever claim to be "complete" given
the amorphous, ever-expanding SQL specification[41]; Data-
Fusion supports a large subset of SQL features including
WHERE, GROUP BY, ORDER BY, LIMIT, DISTINCT, WINDOW /
OVER, UNION / INTERSECT, GROUPING SETS, FULL / INNER



Dr
aft

Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic Query Engine SIGMOD ’24, June 09–15, 2024, Santiago, Chile

SQL

Front Ends

DataFrame

LogicalPlan ExecutionPlan

Plan Representations and Rewrites

Expression Eval

Optimizations / 
Transformations

Optimizations / 
Transformations

HashAggregate

Sort

…

Execution Engine

Join

Catalog and
Data Sources

Parquet

CSV

…

Extension
Catalog / Table

Extension
Frontend

Extension 
Node

Extension 
LogicalPlan Rewrite

Extension 
ExecutionPlan Rewrite

Streams

Extension
Stream 

Extension 
Node

Figure 2. DataFusion’s Architecture. First, a front-end uses catalog and data source information to create a LogicalPlan,
a tree of relational operators. Optimizer passes rewrite the LogicalPlan to a more optimal form, which is then lowered
to an ExecutionPlan that includes additional characteristics of the intermediate results and specific algorithm selections.
A second set of passes rewrite the ExecutionPlan to best match available physical resources and data layout. Finally, the
ExecutionPlan is executed by creating one or more specialized Streams (“operators”) that produce results incrementally. At
each stage, DataFusion can be extended and customized.

/ OUTER JOIN. It also supports more advanced functional-
ity such ROWS / VALUES PRECEDING, FOLLOWING, UNBOUNDED
window bounds and, GROUP BY with per-aggregate FILTER
and ORDER BY.

5.3.3 DataFrame and LogicalPlanBuilder APIs. In ad-
dition to SQL, DataFusion also offers a DataFrame API, mod-
eled after pandas[57], for expressing queries in a proce-
dural style. The DataFrame API generates the same underly-
ing LogicalPlan representation (Section 5.4.1) as the SQL
API, which is optimized and executed the same way. For
more advanced uses, such as custom query languages, the
LogicalPlanBuilder API offers a Rust builder-style inter-
face for constructing plans directly.

5.4 Plan Representations and Rewrites
5.4.1 Plans and Expressions. DataFusion’s API includes:
(1) A full range of structures to represent and evaluate trees
of expressions and relational operators, both at logical (Expr
and LogicalPlan) and physical (PhysicalExpr and Execu-
tionPlan) levels, along with routines to create and manipu-
late them ergonomically; (2) Libraries to (de)serialize these
structures from/to bytes suitable for network transport, both
using Protocol Buffers as well as Substrait[23]; (3) Structures
to describe statistics that may be known at planning time,
such as row counts and minimum/maximum values.

5.4.2 Expression Analysis. In addition to basic expres-
sion evaluation, DataFusion provides libraries for simplifica-
tion, interval analysis[55], and range propagation. Combined
with statistics, these libraries provide predicate cardinality
and selectivity estimates, and plan-time partition elimination
(e.g. Parquet row group pruning, described in Section 6.8).
These features are both usable directly by client systems, and
used to implement DataFusion’s built-in optimizations.

5.4.3 Function Library. DataFusion features a large li-
brary [31] of built-in scalar, window, and aggregate functions,
including string operations, timestamp/date/time manipu-
lations, interval arithmetic, and list/struct/map operations.
These functions are implemented using the same API as user
defined functions by manipulating Arrow Arrays, and can
be invoked via both SQL or DataFrame APIs.

5.4.4 Rewrites. DataFusion includes an extensible plan re-
writing framework, implemented as a series of LogicalPlan
and ExecutionPlan transformations. These passes handle
details such as automatically coercing types to match avail-
able operator and function signatures, and introducing neces-
sary sort and redistribution operations. The same framework
is used for optimizations as well (Section 6.1).

5.5 Execution Engine
DataFusion uses a pull-based streaming execution model and
distributes work across multiple cores using Volcano-style
[34] exchange operators (viz. RepartitionExec).



Dr
aft

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Lamb, Shen, Heres, et al.

5.5.1 Streaming Execution. Whenever possible, all op-
erators produce output incrementally (Figure 3) as Arrow
Arrays grouped into RecordBatches, with a default size of
8192 rows. For pipeline-breaking operations such as a full
sort, final aggregation, or a hash join, the operators buffer
(and spill to disk) tuples as necessary. Data flows through
operators as Arrow Arrays, which allows for seamless inte-
gration of user defined operators (Section 7.7). Within each
operator, non-Arrow representations, such as the Row Format
(Section 6.6) are used when necessary for performance.

impl Stream for MyOperator {

...

// Pull next input (may yield at await)

while let Some(batch) = stream.next().await {

// Calculate, check if output is ready

if Some(output) = self.process(&batch)? {

// "Return" RecordBatch to output

tx.send(batch).await
}

}

...

}

Figure 3. Streaming Execution. Each Stream (operator)
implements the Rust Stream[33] trait, incrementally produc-
ing Apache Arrow RecordBatches that flow through the
plan. Control flow is managed using Rust’s built in await
continuation generation, automatically marshaling the nec-
essary state before yielding control. Each Stream attempts
to output RecordBatches with a target number of tuples.

5.5.2 Multi-Core Execution. Each ExecutionPlan gen-
erates one or more Streams (i.e. operators) that run in par-
allel. Most Streams coordinate only with their input(s), but
some must coordinate with sibling Streams, such as a Hash-
JoinExec when building a shared hash table or a Reparti-
tionExec when redistributing data to different streams. The
number of Streams created for each ExecutionPlan is called
its partitioning, which is determined at plan time (Figure 4).

5.5.3 Thread Scheduling. DataFusion Streams are imple-
mented as Rust async functions and run within a Tokio[64]
runtime leveraging a thread pool. Tokio is one of the most
widely used libraries in the Rust ecosystem, and was initially
designed for asynchronous network I/O. However, its com-
bination of an efficient, work-stealing scheduler, first class
compiler support for automatic continuation generation, and
exceptional performance makes it a compelling choice for
CPU intensive applications as well[45]. While some recent
work[49] describes challenges with the Volcano model on
NUMA architectures, in practice DataFusion achieves similar
scalability as systems that use alternate designs (Section 8.2).

FilterExec (4 partitions)
path = "/api/v2/write"

Filter
Stream

…

…

Partition 3

Filter
Stream

…

…

Partition 1

Filter
Stream

…

…

Partition 2

Input RecordBatches

Output RecordBatches

Filter
Stream

Partition 0

…

…

Figure 4. Partitioned Execution: Each ExecutionPlan is
annotated with a number of partitions chosen by the planner,
and a Stream (operator) is created for each partition. The
Streams run independently on multiple threads. In this fig-
ure, the FilterExec ExecutionPlan (top) has 4 partitions.
Thus, 4 distinct FilterStream operators are created during
execution, and they run in parallel without coordination.

5.5.4 Memory Management. DataFusion manages mem-
ory using a MemoryPool, which is shared across one or more
concurrently running queries. Streams cooperatively record
their memory usage with the MemoryPool consumer APIs.
Stream implementations take a pragmatic approach to mem-
ory management, accurately tracking the largest memory
consumers (e.g., contents of the hash table in a hash aggre-
gate), but not small ephemeral allocations (e.g., memory for
the current output batch).
DataFusion has two built-in memory pool implementa-

tions. The first is GreedyPool, which sets per-process mem-
ory limits but does not attempt to distribute resources fairly
across Streams in a query. The second is a basic FairPool,
designed to distribute resources evenly among all pipeline-
breaking operators. Systems built on DataFusion typically
implement domain specific policies using the same API.

6 Optimizations
Query engines allow users to express their desired results
and the engine handles the many details necessary to com-
pute them efficiently. This section enumerates some of the
techniques used by DataFusion to efficiently execute queries.



Dr
aft

Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic Query Engine SIGMOD ’24, June 09–15, 2024, Santiago, Chile

The techniques are not novel. Each has been extensively
studied and documented in research literature and imple-
mented many times in commercial systems. DataFusion’s
well tested implementations and extensibility allow new sys-
tems to avoid the cost of re-implementing them (yet) again.

6.1 Query Rewrites
DataFusion includes a variety of query rewrites for both
LogicalPlans and ExecutionPlans. LogicalPlan rewrites
include projection pushdown, filter pushdown, limit push-
down, expression simplification, common subexpression elim-
ination, join predicate extraction, correlated subquery flat-
tening, and outer to inner join conversion. ExecutionPlan
rewrites include eliminating unnecessary sorts, maximizing
parallel execution, and determining specific algorithms such
as Hash or Merge joins.

6.2 Sorting
Sorting, along with grouping and joining, is one of the most
expensive operations in an analytic system, and is well stud-
ied in the literature. Most commercial analytic systems in-
clude heavily optimized multi-column sorting implementa-
tions, and DataFusion is no exception. Broadly based on the
techniques described in [35], it incorporates a tree-of-losers,
a RowFormat (Section 6.6), the ability to spill to temporary
disk files when memory is exhausted, and specialized imple-
mentations for LIMIT (aka "Top K").

6.3 Grouping and Aggregation
Similarly to sorting, grouped aggregations are a core part of
any analytic tool, as they create understandable summaries
of large data volumes and are both well studied and highly
optimized in industrial systems. DataFusion contains a two
phase parallel partitioned hash grouping implementation[2],
featuring vectorized execution, the ability to spill to disk
when memory is exhausted, and special handling for no
group keys, partially ordered and fully ordered group keys.

6.4 Joins
When joining multiple relations, DataFusion automatically
identifies equality (equi-join) predicates, heuristically re-
orders joins based on statistics, pushes predicates through
joins (subject to OUTER join restrictions), introduces tran-
sitive join predicates, and picks the optimal physical join
algorithm. It includes parallel in-memory hash join, merge
join, symmetric hash join, nested loops join and cross join
implementations which each support Inner, Left, Right, Full,
LeftSemi, RightSemi, LeftAnti, RightAnti joins, and are opti-
mized for equality predicates. The in-memory hash join is
implemented using vectorized hashing and collision check-
ing used inMonetDB[36].While not implemented at the time
of writing, we are working on additional join performance

such as dynamically applying join filters during scans1 (a
form of sideways information passing[66]).

6.5 Window Functions
DataFusion supports SQL Window Functions (e.g. functions
that have an OVER clause). Like most optimized window func-
tion implementations, DataFusion minimizes resorting by
reusing existing sort orders, sorting only if necessary based
on the PARTITION BY and ORDER BY columns. It evaluates
window functions incrementally[56], producing output once
the required input window is present. We have not yet found
need to implement newer, more sophisticated (and complex)
schemes such as Physical Segment Trees[50] as the process-
ing time of queries with window functions is typically domi-
nated by other operations such as sorting.

6.6 Normalized Sort Keys / RowFormat
Columnar engines like DataFusion perform well on opera-
tions that naturally vectorize. However, query processing
also requires efficient fundamentally row based operations
such as multi-column sorting and multi-column equality
comparisons for grouping and joins, where the per row over-
head can not be amortized by vectorization[42]. Within such
operators, DataFusion uses a RowFormat[4], a form of nor-
malized key[35] which 1) permits byte-wise comparisons
using memcmp and 2) offers predictable memory access pat-
terns. The RowFormat is densely packed, one column after
another, with specialized encoding schemes for each data
type, optionally adjusted for SQL sort options, such as ASC
or DESC order and NULL placement. For example, unsigned
and signed integers are encoded using their big-endian rep-
resentation, whereas floating-point numbers are converted
to a signed integer representation that incorporates the sign
bit.

6.7 Leveraging Sort Order
DataFusion’s Optimizer is aware of, and takes advantage
of, any order that pre-exists in the input or the intermedi-
ate results that flow from Stream to Stream. DataFusion 1)
tracks multiple sort orders2 and 2) includes Streams opti-
mized for sorted or partially sorted input, such as Merge Join
and partially ordered (streaming) Hash Aggregation.

Leveraging sort-order is important for at least two reasons:
1. Physical Clustering: Secondary indexes are often too

expensive to build and maintain at high ingest rates,
and thus the sort order of primary storage is the only
available physical optimization to cluster data.

2. Memory Usage and Streaming Execution: The
sort order defines how the data that flows through
Streams is partitioned in time, defining where values

1https://github.com/apache/arrow-datafusion/issues/7955
2E.g. data is sorted by (A, B) and (A, C) via a order preserving join on B=C



Dr
aft

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Lamb, Shen, Heres, et al.

may change and thus where intermediate results can
be emitted.

6.8 Pushdown and Late Materialization
DataFusion pushes several operations down (towards the
data sources): 1) projection (column selection) which elides
uncessary columns from intermediate results 2) LIMIT and
OFFSET which permits the plan to stop early when results
are no longer needed and 3) predicates which moves filtering
closer (or in) to data sources, minimizing the amount of data
processed by the rest of the plan.

Pushing filters into data source enables implementations
to apply filters during the scan, potentially avoiding signif-
icant work during execution. For example, DataFusions’s
Parquet reader uses pushed down predicates to 1) prune
(skip) entire Row Groups and Data Pages based on metadata
and Bloom filters, and 2) apply predicates after decoding only
a subset of column values, a form of late materialization[1]
which can avoid the effort required to decode values in other
columns that will be filtered out.

To illustrate, consider a query with the condition A > 35
AND B = "F". DataFusion’s Parquet reader:

1. Prunes (skips) all Row Groups such that 𝐴𝑚𝑎𝑥 <= 35
or 𝐵𝑚𝑎𝑥 < ’F’ or 𝐵𝑚𝑖𝑛 > ’F’ using Row Group
metadata.

2. Decodes column B, and evaluates B = "F", captur-
ing all rows which pass as a RowSelection (e.g. row
indexes [100-244])

3. Decodes only pages that contain the relevant rows
from Column A, using the Page Index, and evaluates
𝐴 > 35 further refining the RowSelection (e.g. to row
indexes [100-150])

4. Decodes the pages containing the remaining RowSelection
for any other selected columns (e.g. C)

Together, these techniques are very effective when predi-
cate columns are cluster together such as when they appear
early in the sort order of a sorted file[3].

7 Extensibilities
This section describes the extension points for DataFusion,
which are sufficiently flexible to support a wide variety of
use cases (Section 3). We believe this list of extension APIs
offers a blueprint for future modular query engines as well
as internal boundaries of more tightly integrated systems.
All extension APIs represent data using Arrow Arrays.

Because DataFusion uses Arrow internally, extensions have
equal performance as built in functions, and can use the same
wide range range of existing libraries, knowledge, and tools
(e.g. well documented and optimized computation kernels).

7.1 Scalar, Aggregate and Window Functions
Systems built on DataFusion often add use case specific func-
tions that don’t belong in a general function library. Ex-
amples systems have added include window functions that
compute derivatives, calendar bucketing for timeseries, and
custom binary manipulation for cryptography functions.

Users can register several types of functions with DataFu-
sion dynamically at runtime, which receive Arrow Arrays
as input arguments and produce Arrow Arrays as output:

1. Scalar: a single output row for each input row
2. Aggregate: a single output row for many input rows
3. Window: a single output row for each input row, but

the calculation has access to values in a surrounding
window frame.

DataFusion is not, of course, the first engine to offer user
defined function APIs. However, the utility of such APIs in
other systems is often limited because the performance and
functionality are worse than built-in functions. Even when
similarly performant APIs do exist, they must be tightly
bound to the specifics of how the engine represents and op-
erates on its data. This is especially true for column oriented
engines, which are often more challenging to implement
than one-row-at-a-time interfaces due to vectorization[42] .

7.2 Catalog
Using a combination of the Catalog API and expression eval-
uation (Section 5.4.1), Catalogs built with DataFusion use
file metadata (such as minimum and maximum values) to
avoid reading entire files or parts of files (e.g. Row Groups).
For example the Rust implementation of the Delta Lake table
format uses DataFusion to skip reading Parquet files based
on the query predicates.
The Catalog API consists of 1) TableProvider for indi-

vidual tables (Section 7.3), 2) SchemaProvider, a collection
of TableProviders, and 2) CatalogProvider, a collection
of SchemaProviders, a concept sometimes referred to as
a "catalog" or "database" in other systems. These APIs are
async Rust functions, which makes it straightforward to
implement remote catalogs.

7.3 Data Sources
Using the DataFusion DataSource API, systems can query
in-memory buffers of Arrow Arrays, stream data from re-
mote servers (perhaps via Arrow Flight) or read from custom
file formats, including optimizations such as filtering and
projection.
DataFusion’s built in providers (Section 5.2.2) are imple-

mentedwith the sameAPI exposed to users, the TableProvider
trait, and produces the same Rust async Stream of Arrow
Arrays as ExecutionPlans. The TableProvider API addi-
tionally supports 1) partitioned inputs, 2) pushdown of pro-
jection, filter, and limit, 3) parallel concurrent reads, and 4)
communicating pre-existing sort orders.



Dr
aft

Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic Query Engine SIGMOD ’24, June 09–15, 2024, Santiago, Chile

Similarly to user defined functions, in tightly integrated
engines it is typically challenging to create user defined data-
sources that perform as well as built in formats. Not only
must the implementation produce data in the engine’s native
format, it must also interact with expression representation
to implement predicate pushdown, and interface with asyn-
chronous network I/O to implement incremental (streaming)
output.

7.4 Execution Environment
Execution environments vary widely from system to system.
For example, if fast local NVMe storage is present, caching
metadata in memory might make less sense that it does in en-
vironments where persistent local disk is less available, such
as Kubernetes. Likewise some systems run multiple queries
concurrently, optimistically sharing resources between them,
and others run a mix of queries with predefined resource
budgets. DataFusion can be customized for these different
environments using theMemoryPool trait to control memory
allocations, the DiskManager trait for managing temporary
files (if any), and a CacheManager for caching information
such as directory contents and per-file metadata.

7.5 New Query / Language Frontends
Users extend the SQL supported by DataFusion by rewriting
the AST prior to calling the DataFusion SQL planner (Section
5.3.2). For more substantial extensions or entirely different
languages such as PromQL or Vega, users implement their
own parser and/or planners that create LogicalPlans using
the structures described in Section 5.4.1.

7.6 Query Rewrites / Optimizer Passes
DataFusion users have added domain-specific optimizations
such as input reordering and macro expansions by imple-
menting OptimizerRules and PhysicalOptimizerRules, which
rewrite LogicalPlan and ExecutionPlan trees, respectively,
with the same APIs as the built in rewrites (Section 6.1). Users
can also specify the order in which rewrites are applied, both
provided as well as their own.

7.7 Relational Operators
Domain specific systems often require relational operations
not found in SQL-only systems. For example, InfluxDB IOx
[39] has specialized operators for timeseries gap filling, schema
pivoting operations, and insert order resolution.

Users extend DataFusion by implementing the Execution-
Plan trait, exactly the same as the nodes provided with Data-
Fusion, such as join, filter, group by and windowing. Data-
Fusion does not distinguish between user-defined and built
in plans while optimizing and running plans. While other
systems offer similar functionality in the form of user de-
fined table functions, those APIs both restrict the syntax and
placement of those operators in plans, and are often unable
to perform as well as built-in operators.

Query DataFusion DuckDB Delta
1 1.22 0.18 6.74x slower
2 0.36 0.81 2.25x faster
3 1.11 1.78 1.6x faster
4 1.09 1.5 1.38x faster
5 20.74 8.34 2.49x slower
6 17.81 11.98 1.49x slower
7 0.3 2.08 6.91x faster
8 0.37 0.83 2.24x faster
9 27.91 10.83 2.58x slower
10 25.84 14.11 1.83x slower
11 4.29 3.22 1.33x slower
12 4.67 8.69 1.86x faster
13 11.38 10.27 1.11x slower
14 26.96 14.61 1.84x slower
15 12.7 11.15 1.14x slower
16 13.31 9.12 1.46x slower
17 29.6 21.97 1.35x slower
18 29.09 21.23 1.37x slower
19 92.31 39.1 2.36x slower
20 0.8 1.33 1.65x faster
25 6.01 8.44 1.4x faster
26 5.02 6.11 1.22x faster
27 6.59 8.4 1.28x faster
28 23.62 23.85 1.01x faster
29 107.41 62.99 1.71x slower
30 5.91 69.08 11.7x faster
31 12.59 12.95 1.03x faster
32 14.85 15.93 1.07x faster
33 92.17 57.2 1.61x slower
36 27.89 11.48 2.43x slower
37 0.67 0.52 1.31x slower
38 0.34 0.38 1.12x faster
39 0.34 0.42 1.24x faster
40 2.05 0.83 2.46x slower
41 0.2 0.25 1.28x faster
42 0.17 0.24 1.43x faster
43 0.19 0.27 1.44x faster

Table 1.ClickBench performance on a single core, in seconds,
processing a 14GB dataset partitioned into 100 Parquet files.

8 Performance Evaluation
To quantify the performance penalty of using open stan-
dards and a modular architecture, rather than a tightly in-
tegrated design, we compared DataFusion’s performance to
DuckDB[63], a system we think exemplifies a state of the
art, tightly integrated query engine. DataFusion performs
similarly over a variety of real world usecases. While we
acknowledge the challenges of benchmarking[62], different
target usecases, and the rate of change in both engines, these



Dr
aft

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Lamb, Shen, Heres, et al.

results show there is nothing fundamental about an open
design that requires performance sacrifices.
The most important measurement for a query engine is

the end-to-end query performance that users experience, so
we used a set of standard benchmarks that reflects commonly
encountered data sizes and query patterns:

1. ClickBench[37] models large scale web analytic pro-
cessing, with queries that filter and aggregate a large
denormalized dataset. We used the unmodified 14 GB
athena_partitioned dataset, which consists of 100
Parquet files, each approximately 140 MB in size.

2. TPC-H[19] models classic data warehouse analytics
with 22 queries that join several tables in summary
reports. We used the standard TPC-H data generator
with Scale Factor=10 and converted each of the result-
ing 8 CSV files to a single parquet file, limiting row
groups to 1M records, for a total file size of 2.5 GB.

3. H2O-G[51], models operations commonly found in
data scienceworkloads.We run the groupby task queries
on the G1_1e7_1e2_5_0.csv dataset, a single 488 MB
Comma Separated Value (CSV) file with 10M records.

We run all benchmarks directly on the raw source data
files. While transforming and loading into specialized per-
database formats is typical for previous generations of sys-
tems, we believe it is becoming increasingly impractical as
data flows become more fluid and dynamic. For our target
systems, data is most commonly read and written using open
formats using a diverse ecosystem of tools.

Wemeasured performance of DataFusion 32.0.0 andDuckDB
0.9.1, the most recently released versions as of the time of
this writing, using their respective Python bindings. Our
evaluation scripts are available online 3.

To evaluate end-to-end performance, we measured single
raw per-core efficiency in Section 8.1 and multi-threaded
scalability in Section 8.2. We limited the cores used by Data-
Fusion by setting target_partitions and for DuckDB we
set the threads PRAGMA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query

0

10

20

30

40

50

60

Du
ra

tio
n 

(s
)

engine
duckdb
datafusion

Figure 5. TPC-H SF=10 performance on a single core, one
parquet file per table.

3https://github.com/JayjeetAtGithub/datafusion-duckdb-benchmark

1 2 3 4 5 6 7 8 9 10
Query

0

5

10

15

20

25

Du
ra

tio
n 

(s
)

engine
duckdb
datafusion

Figure 6. H2O-G (grouping) performance on single core
with a single 488MB CSV file.

8.1 Single Core Efficiency
Tomeasure how efficiently each engine uses CPU to compute
query results, we ran each query limited to a single core, on
an e2-standard-8 instance on Google Cloud Platform. This
instance used the Intel Broadwell microarchitecture, had 32
GB of RAM and 8 virtual cores. We ran Ubuntu 22.04.3
LTS and Linux kernel version 6.2.0-1013-gcp.

ClickBench: Table 1 shows query execution time for the
ClickBench queries. DataFusion performs better on queries
that have highly selective predicates such as Q2, Q8, and Q20
likely due to its ability to push predicates into the parquet
scan to skip entire row groups. DataFusion also does well
for queries with a single group such Q4 and Q7 and Q30,
likely due to its vectorized aggregate updates. For queries
with medium selectivity and medium group cardinally, such
as Q15, Q31, Q32, Q41 and Q42 the engines are similar in per-
formance. For queries that have high group cardinally (10M
groups or more) such as Q18, Q19, Q36, DuckDB performs
better, likely due to its highly optimized parallel group by
aggregation[44].
TPC-H: Figure 5 shows query execution time for TPC-

H queries. Unlike ClickBench, most queries in TPC-H join
several tables. DataFusion is faster for some queries such as
Q4 and Q9, with highly selective predicates. There are some
queries where performance is roughly equal such as Q3, Q6
and Q14. There are also several queries where DataFusion is
well over 2x slower, such as Q11, Q17, Q18, and Q21. Much of
this largest differences is due to a suboptimal join order4, and
when we manually force a better join order, the performance
of the two systems is similar.

H2O-G Figure 6 shows query execution time for the H20-
G queries. DataFusion has slightly better performance for
most queries, though is significantly worse for Q9, due to an
inefficient implementation of the corr aggregate function.
The performance of all queries is largely dominated by the
time spent parsing the CSV file, and DataFusion benefits
from the highly optimized CSV parser included in the Rust
implementation of Apache Arrow. Limiting to a single core
may also unfairly penalize DuckDB in this case, which seems

4https://github.com/apache/arrow-datafusion/issues/7949



Dr
aft

Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic Query Engine SIGMOD ’24, June 09–15, 2024, Santiago, Chile

to optimize multi-threaded parsing5, while a similar trade
off doesn’t exist for DataFusion.

Discussion Both engines perform similarly using a single
core, with different strengths and weaknesses depending
on attributes of the particular query. We conclude there is
nothing about using open standards that fundamentally lim-
its DataFusion’s performance. Our intuition and experience
implementing industrial systems is that the determining
factor is instead available engineering investment. DataFu-
sion’s community already has projects underway to improve
performance for query patterns where it lags DuckDB in
these benchmarks, such as join ordering6 and high cardinally
grouping7 and Likewise, we expect that DuckDB’s perfor-
mance will improve in areas where it lags DataFusion such
as low cardinally grouping, parquet predicate pushdown,
and CSV parsing with additional investment.

8.2 Scalability
DataFusion is often used as a single-node engine, or the em-
bedded engine in distributed systems, so its ability to scale
"up" and use the resources of multiple cores is important.
Figure 7 plots how performance varies with increasing core
count. We ran each ClickBench query 5 times, varying the
number of cores from 1 to 192, plotting the final 3 runs to
remove any caching or warm-up effects. We ran this exper-
iment on the highest end CPU available to us on Google
Cloud Platform, a c3-highcpu-176 instance with the Intel
Sapphire Rapids micro-architecture, 176 virtual CPUs (cores),
and 352 GB of memory. We ran all experiments using Ubuntu
22.04 with Linux kernel version 6.2.0-1016-gcp.
Relative performance The absolute value of the y-axis

is important. Some queries like Q10 take seconds to execute
while other queries like Q1 take less than a second. Thus even
while the relative performance difference between the two
engines may appear substantial in some queries, such as Q1-
Q4 or Q37-Q42, the absolute difference is 100s ofmilliseconds,
while the absolute difference in queries such as Q19, Q32
and Q33 is an order of magnitude higher.

1, 2, 3, 8, 16, 34 CoresUp to 32 cores, both DataFusion and
DuckDB show excellent, near-linear decrease in performance
as the core counts increase.
64, 128, 192 cores At higher core counts, both engines

show a mix of better and worse performance. In Q28 and
Q29, performance continues to improve as the core count
increases, close to the ideal curve. These queries contain low
(6000) and medium (3M) cardinality grouping operations
and require significant CPU effort to evaluate LIKE string
matching predicates. In queries such as Q11, Q14, and Q32
both engines show a pronounced increase in query duration
(they slow down) with more cores, likely because as the

5https://github.com/duckdb/duckdb/issues/9136
6https://github.com/apache/arrow-datafusion/issues/7949
7https://github.com/apache/arrow-datafusion/issues/5546

work done by each core decreases, the relative overhead of
coordinating between the cores increases. In queries such as
Q41, Q42 and Q43, the slowdown at high core count is more
pronounced for DataFusion8, and in some queries such as
Q25 and Q26 it is more pronounced for DuckDB.

Discussion DataFusion and DuckDB exhibit similar scal-
ing behavior, and thus we conclude DataFusion’s modular
design and pull based scheduler do not preclude state of the
art multi-core performance. The curves in Figure 7 for both
engines are similar in shape, suggesting performance differ-
ences are largely due to implementation details rather than
any fundamental differences in design.

9 Related Work
The theme of more modular and composable architectures
was observed at least as early as 2000[13], the term “Decon-
structed Database” was initially popularized[43] in 2018, and
there are recent calls to accelerate modular design[59].
The Velox[58], and the Apache Calcite[8] projects both

provide components for assembling new database and ana-
lytic systems. However, building a working end-to-end sys-
tem requires substantial integration (e.g. bridging JVM and
Native code and build systems), while using DataFusion re-
quires a single configuration line. Modular designs allow
swapping components based on usecase, and the Photon[9]
and Gluten[61] (based on Velox) projects replace just one
module, the execution engine, of Apache Spark with a faster
native implementation.
Similarly to DataFusion, DuckDB[63] is an open-source

SQL system that does not require a separate server. DuckDB
is targeted at users who run SQL, while DataFusion is tar-
geted at people building new systems (that may run SQL
as well as other types of processing). DuckDB has a more
limited extension API and its own custom in memory rep-
resentation, storage format, Parquet implementation, and
thread scheduler.

9.1 Future Research
We believe there is a need for modular systems like DataFu-
sion to accelerate other areas of database implementation,
such as transaction processing and distributed key/value
stores. First class support, either as bindings to DataFusion
or separate implementations, for other systems languages
like C/C++ and Swift, are also needed.

10 Conclusion
Since the introduction of LLVM, the necessity to build compil-
ers from scratch has significantly diminished. With the emer-
gence of technologies like DataFusion, the need to construct

8Some of the slowdown in DataFusion is due to a poorly tuned hash table
flushing strategy for high cardinalities https://github.com/apache/arrow-
datafusion/issues/6937



Dr
aft

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Lamb, Shen, Heres, et al.

10 1

Query 1

10 1

Query 2

10 1

100
Query 3

10 1

Query 4

100

Query 5

100

101
Query 6

10 1

100
Query 7

10 1

Query 8

100

101
Query 9

100

101

Query 10

10 1

100

Query 11

100

Query 12

100

Query 13

100

101

Query 14

100

Query 15

100

Query 16

100

101

Query 17

100

101

Query 18

100

101

Query 19

10 1

Query 20

100

Query 25

10 1

100

Query 26

100

Query 27

100

101

Query 28

100

101

Query 29

100

101

Query 30

100

Query 31

100

101
Query 32

101

Query 33

100

101
Query 36

2 × 10 1

3 × 10 1

4 × 10 1

Query 37

10 1

2 × 10 1

Query 38

10 1

2 × 10 1

Query 39

100

3 × 10 1
4 × 10 1

6 × 10 1

Query 40

10 1

4 × 10 2

6 × 10 2

Query 41

10 1

4 × 10 2

6 × 10 2

Query 42

1 2 4 8163264128192

10 1

4 × 10 2

6 × 10 2

Query 43

1 2 4 8163264128192
0.00

0.25

0.50

0.75

1.00

1 2 4 8163264128192
0.00

0.25

0.50

0.75

1.00

1 2 4 8163264128192
0.00

0.25

0.50

0.75

1.00

1 2 4 8163264128192
0.00

0.25

0.50

0.75

1.00

1 2 4 8163264128192
0.00

0.25

0.50

0.75

1.00

1 2 4 8163264128192
0.00

0.25

0.50

0.75

1.00

1 2 4 8163264128192
0.00

0.25

0.50

0.75

1.00

1 2 4 8163264128192
0.00

0.25

0.50

0.75

1.00

Cores

Qu
er

y 
Du

ra
tio

n 
(s

)

datafusion
duckdb

Figure 7. Query duration for ClickBench queries using 1, 2, 4, 8, 16, 32, 64, 128, or 192 threads, respectively.

database systems from the ground up should become simi-
larly rare. Of course, with sufficient engineering investment,
a tightly integrated engine can theoretically outperform a
modular one. However, as the effort to reach state-of-the-art
functionality and performance increases ever more, we be-
lieve that widely used, modular engines such as DataFusion
can attract mass investment from open-source communities
to offer a richer feature set and better performance than all
but the most well-resourced tightly integrated designs.
Modular designs are by no means the only strategy to

building systems, and we continue to see new tightly inte-
grated systems emerge. However, as awareness of systems
such as DataFusion increases, we predict adoption will accel-
erate and an explosion of new analytic systems will emerge
that would previously not have been possible.

11 Acknowledgments
DataFusion is a community-driven project encompassing a
diverse array of individuals over a considerable span of time.
At the time of writing, DataFusion had over 4600 proposed
contributions (Pull Requests) from over 300 distinct members.
The authors thank all community members, who contributed
the ideas, reviews, bug reports, code and tests over the years,
and made DataFusion possible.

References
[1] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel R. Mad-

den. 2007. Materialization Strategies in a Column-Oriented DBMS. In
2007 IEEE 23rd International Conference on Data Engineering. 466–475.
https://doi.org/10.1109/ICDE.2007.367892

[2] Daniël Heres Andrew Lamb, Raphael Taylor-Davies. 2023. Ag-
gregating Millions of Groups Fast in Apache Arrow DataFu-
sion. https://www.influxdata.com/blog/aggregating-millions-groups-
fast-apache-arrow-datafusion

[3] Raphael Taylor-Davies Andrew Lamb. 2022. Querying Parquet withMil-
lisecond Latency. https://arrow.apache.org/blog/2022/12/26/querying-
parquet-with-millisecond-latency/

[4] Raphael Taylor-Davies Andrew Lamb. 2023. Fast and Memory Efficient
Multi-Column Sorts in Apache Arrow Rust. https://arrow.apache.org/
blog/2022/11/07/multi-column-sorts-in-arrow-rust-part-1/

[5] Inc Apple. 2023. The Swift programming language. https://developer.
apple.com/swift/

[6] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shix-
iong Zhu, Mukul Murthy, Joseph Torres, Herman van Hovell,
Adrian Ionescu, Alicja Łuszczak, Michał undefinedwitakowski, Michał
Szafrański, Xiao Li, Takuya Ueshin, Mostafa Mokhtar, Peter Boncz,
Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold Xin, and Matei
Zaharia. 2020. Delta Lake: High-Performance ACID Table Storage over
Cloud Object Stores. Proc. VLDB Endow. 13, 12 (aug 2020), 3411–3424.
https://doi.org/10.14778/3415478.3415560

[7] Arroyo. 2023. Arroyo - Serverless Stream Processing. https://www.
arroyo.dev/

[8] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior,
and Daniel Lemire. 2018. Apache Calcite: A Foundational Framework
for Optimized Query Processing Over Heterogeneous Data Sources.
In Proceedings of the 2018 International Conference on Management of

https://doi.org/10.1109/ICDE.2007.367892
https://www.influxdata.com/blog/aggregating-millions-groups-fast-apache-arrow-datafusion
https://www.influxdata.com/blog/aggregating-millions-groups-fast-apache-arrow-datafusion
https://arrow.apache.org/blog/2022/12/26/querying-parquet-with-millisecond-latency/
https://arrow.apache.org/blog/2022/12/26/querying-parquet-with-millisecond-latency/
https://arrow.apache.org/blog/2022/11/07/multi-column-sorts-in-arrow-rust-part-1/
https://arrow.apache.org/blog/2022/11/07/multi-column-sorts-in-arrow-rust-part-1/
https://developer.apple.com/swift/
https://developer.apple.com/swift/
https://doi.org/10.14778/3415478.3415560
https://www.arroyo.dev/
https://www.arroyo.dev/


Dr
aft

Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic Query Engine SIGMOD ’24, June 09–15, 2024, Santiago, Chile

Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing
Machinery, New York, NY, USA, 221–230. https://doi.org/10.1145/
3183713.3190662

[9] Alexander Behm and Shoumik Palkar et al. 2022. Photon: A Fast
Query Engine for Lakehouse Systems. In SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 -
17, 2022. ACM, 2326–2339. https://doi.org/10.1145/3514221.3526054

[10] The Blaze. 2023. The Blaze accelerator for Apache Spark. https://github.
com/blaze-init/blaze

[11] Tyler A. Cabutto, Sean P. Heeney, Shaun V. Ault, Guifen Mao, and
Jin Wang. 2018. An Overview of the Julia Programming Language.
In Proceedings of the 2018 International Conference on Computing and
Big Data (Charleston, SC, USA) (ICCBD ’18). Association for Comput-
ing Machinery, New York, NY, USA, 87–91. https://doi.org/10.1145/
3277104.3277119

[12] Jesús Camacho-Rodríguez, Ashutosh Chauhan, Alan Gates, Eugene
Koifman, Owen O’Malley, Vineet Garg, Zoltan Haindrich, Sergey
Shelukhin, Prasanth Jayachandran, Siddharth Seth, Deepak Jaiswal,
Slim Bouguerra, Nishant Bangarwa, Sankar Hariappan, Anishek Agar-
wal, Jason Dere, Daniel Dai, Thejas Nair, Nita Dembla, Gopal Vija-
yaraghavan, and Günther Hagleitner. 2019. Apache Hive: FromMapRe-
duce to Enterprise-Grade Big Data Warehousing. In Proceedings of
the 2019 International Conference on Management of Data (Amster-
dam, Netherlands) (SIGMOD ’19). Association for Computing Machin-
ery, New York, NY, USA, 1773–1786. https://doi.org/10.1145/3299869.
3314045

[13] Surajit Chaudhuri and Gerhard Weikum. 2000. Rethinking Database
System Architecture: Towards a Self-Tuning RISC-Style Database Sys-
tem. In Proceedings of the 26th International Conference on Very Large
Data Bases (VLDB ’00). Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1–10.

[14] The Rust community. 2023. Cargo: Rust’s built-in package manager.
https://crates.io/

[15] Coralogix. 2023. Coralogix - Full-Stack Observability Platform with
In-Stream Data Analytics. https://coralogix.com

[16] IBM Corporation. 2023. IBM DB2. https://www.ibm.com/products/db2
[17] Microsoft Corporation. 2023. Microsoft SQL Server. https://www.

microsoft.com/en-us/sql-server
[18] Oracle Corporation. 2023. The Oracle Database Server. https://www.

oracle.com/database/
[19] The Transaction Processing Council. 2023. The TPC-H Benchmark.

https://www.tpc.org/tpch/
[20] Voltron Data. 2023. The Composable Codex. https://voltrondata.com/

codex
[21] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified

Data Processing on Large Clusters. Commun. ACM 51, 1 (jan 2008),
107–113. https://doi.org/10.1145/1327452.1327492

[22] Arrow developers. 2023. Mailing list: [DISCUSS][Format] Starting the
draft implementation of the ArrayView array format. https://lists.
apache.org/thread/r28rw5n39jwtvn08oljl09d4q2c1ysvb

[23] Substrait Developers. 2023. Substrait: Cross-Language Serialization for
Relational Algebra. https://substrait.io/

[24] David J. DeWitt and Michael Stonebraker. 2008. MapReduce: A
major step backwards. https://homes.cs.washington.edu/~billhowe/
mapreduce_a_major_step_backwards.html

[25] Apache Software Foundation. 2023. Apache Arrow. https://arrow.
apache.org

[26] Apache Software Foundation. 2023. Apache Arrow DataFusion. https:
//arrow.apache.org/datafusion/

[27] Apache Software Foundation. 2023. Apache Parquet. https://parquet.
apache.org

[28] Apache Software Foundation. 2023. How the ASF Works. https://www.
apache.org/foundation/how-it-works/

[29] Apache Software Foundation. 2023. A Primer on ASF Governance.
https://www.apache.org/foundation/governance/

[30] Apache Software Foundation. 2023. PyArrow - Apache Arrow Python
bindings. https://arrow.apache.org/docs/python/index.html

[31] The Apache Software Foundation. 2023. Apache DataFusion SQL refer-
ence. https://arrow.apache.org/datafusion/user-guide/sql/index.html

[32] The Zig Software Foundation. 2023. The Zig programming language.
https://ziglang.org/

[33] Rust futures crate. 2023. Stream trait. https://docs.rs/futures/0.3.28/
futures/prelude/stream/trait.Stream.html

[34] Goetz Graefe. 1990. Encapsulation of Parallelism in the Volcano Query
Processing System. In Proceedings of the 1990 ACM SIGMOD Interna-
tional Conference on Management of Data (Atlantic City, New Jersey,
USA) (SIGMOD ’90). Association for Computing Machinery, New York,
NY, USA, 102–111. https://doi.org/10.1145/93597.98720

[35] Goetz Graefe. 2006. Implementing Sorting in Database Systems. ACM
Comput. Surv. 38, 3 (sep 2006), 10–es. https://doi.org/10.1145/1132960.
1132964

[36] Stratos Idreos, F. Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullen-
der, and Martin Kersten. 2012. MonetDB: Two Decades of Research in
Column-oriented Database Architectures. IEEE Data Eng. Bull. 35 (01
2012).

[37] ClickHouse Inc. 2023. ClickBench — a Benchmark For Analytical DBMS.
https://benchmark.clickhouse.com/

[38] InfluxData Inc. 2023. The Influx Query Language Specification. https:
//github.com/influxdata/influxql

[39] Inc. InfluxData. 2023. Announcing InfluxDB IOx - The Future Core of
InfluxDB Built with Rust and Arrow. https://www.influxdata.com/blog/
announcing-influxdb-iox/

[40] Inc. InfluxData. 2023. InfluxDB — open source time series, metrics, and
analytics database. https://influxdata.com/

[41] ISO/IEC 9075:2023 2023. Information technology - Database languages
- SQL. Standard. International Organization for Standardization.

[42] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew
Pavlo, and Peter Boncz. 2018. Everything You AlwaysWanted to Know
about Compiled and Vectorized Queries but Were Afraid to Ask. Proc.
VLDB Endow. 11, 13 (sep 2018), 2209–2222. https://doi.org/10.14778/
3275366.3284966

[43] Amandeep Khurana and Julien Le Dem. 2018. The Modern Data
Architecture: The Deconstructed Database. login Usenix Mag. 43, 4
(2018). https://www.usenix.org/publications/login/winter-2018-vol-
43-no-4/khurana

[44] DuckDB Labs. 2023. Parallel Grouped Aggregation in DuckDB. https:
//duckdb.org/2022/03/07/aggregate-hashtable.html

[45] Andrew Lamb. 2022. Using Rustlang’s Async Tokio Runtime for CPU-
Bound Tasks. https://thenewstack.io/using-rustlangs-async-tokio-
runtime-for-cpu-bound-tasks/

[46] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben
Vandiver, Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic
Database: C-Store 7 Years Later. Proc. VLDB Endow. 5, 12 (aug 2012),
1790–1801. https://doi.org/10.14778/2367502.2367518

[47] Lance. 2023. Lance: modern columnar data format for ML. https:
//lancedb.github.io/lance/

[48] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization (Palo Alto, California)
(CGO ’04). IEEE Computer Society, USA, 75.

[49] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014.
Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Frame-
work for the Many-Core Age. In Proceedings of the 2014 ACM SIGMOD
International Conference onManagement of Data (Snowbird, Utah, USA)
(SIGMOD ’14). Association for Computing Machinery, New York, NY,
USA, 743–754. https://doi.org/10.1145/2588555.2610507

https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/3514221.3526054
https://github.com/blaze-init/blaze
https://github.com/blaze-init/blaze
https://doi.org/10.1145/3277104.3277119
https://doi.org/10.1145/3277104.3277119
https://doi.org/10.1145/3299869.3314045
https://doi.org/10.1145/3299869.3314045
https://crates.io/
https://coralogix.com
https://www.ibm.com/products/db2
https://www.microsoft.com/en-us/sql-server
https://www.microsoft.com/en-us/sql-server
https://www.oracle.com/database/
https://www.oracle.com/database/
https://www.tpc.org/tpch/
https://voltrondata.com/codex
https://voltrondata.com/codex
https://doi.org/10.1145/1327452.1327492
https://lists.apache.org/thread/r28rw5n39jwtvn08oljl09d4q2c1ysvb
https://lists.apache.org/thread/r28rw5n39jwtvn08oljl09d4q2c1ysvb
https://substrait.io/
https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
https://arrow.apache.org
https://arrow.apache.org
https://arrow.apache.org/datafusion/
https://arrow.apache.org/datafusion/
https://parquet.apache.org
https://parquet.apache.org
https://www.apache.org/foundation/how-it-works/
https://www.apache.org/foundation/how-it-works/
https://www.apache.org/foundation/governance/
https://arrow.apache.org/docs/python/index.html
https://arrow.apache.org/datafusion/user-guide/sql/index.html
https://ziglang.org/
https://docs.rs/futures/0.3.28/futures/prelude/stream/trait.Stream.html
https://docs.rs/futures/0.3.28/futures/prelude/stream/trait.Stream.html
https://doi.org/10.1145/93597.98720
https://doi.org/10.1145/1132960.1132964
https://doi.org/10.1145/1132960.1132964
https://benchmark.clickhouse.com/
https://github.com/influxdata/influxql
https://github.com/influxdata/influxql
https://www.influxdata.com/blog/announcing-influxdb-iox/
https://www.influxdata.com/blog/announcing-influxdb-iox/
https://influxdata.com/
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.14778/3275366.3284966
https://www.usenix.org/publications/login/winter-2018-vol-43-no-4/khurana
https://www.usenix.org/publications/login/winter-2018-vol-43-no-4/khurana
https://duckdb.org/2022/03/07/aggregate-hashtable.html
https://duckdb.org/2022/03/07/aggregate-hashtable.html
https://thenewstack.io/using-rustlangs-async-tokio-runtime-for-cpu-bound-tasks/
https://thenewstack.io/using-rustlangs-async-tokio-runtime-for-cpu-bound-tasks/
https://doi.org/10.14778/2367502.2367518
https://lancedb.github.io/lance/
https://lancedb.github.io/lance/
https://doi.org/10.1145/2588555.2610507


Dr
aft

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Lamb, Shen, Heres, et al.

[50] Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas Neu-
mann. 2015. Efficient Processing of Window Functions in Analyt-
ical SQL Queries. Proc. VLDB Endow. 8, 10 (jun 2015), 1058–1069.
https://doi.org/10.14778/2794367.2794375

[51] Database like ops benchmark. 2023. H2O.ai. https://h2oai.github.io/db-
benchmark/

[52] JonMease. 2023. VegaFusion: serverside scaling for the Vega visualization
library. https://vegafusion.io/

[53] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interac-
tive Analysis of Web-Scale Datasets. Proc. VLDB Endow. 3, 1–2 (sep
2010), 330–339. https://doi.org/10.14778/1920841.1920886

[54] GuidoMoerkotte. 1998. Small Materialized Aggregates: A LightWeight
Index Structure for Data Warehousing. In Proceedings of the 24rd In-
ternational Conference on Very Large Data Bases (VLDB ’98). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 476–487.

[55] Ramon E Moore. 1966. Interval analysis. Vol. 4. Prentice-Hall Engle-
wood Cliffs.

[56] Mehmet Ozan Kabak Mustafa Akur. 2023. Running Windowing Queries
in Stream Processing. https://www.synnada.ai/blog/running-window-
query-in-stream-processing

[57] The pandas development team. 2020. pandas-dev/pandas: Pandas. https:
//doi.org/10.5281/zenodo.3509134

[58] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith
Sakka, Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022.
Velox: Meta’s Unified Execution Engine. Proc. VLDB Endow. 15, 12 (aug
2022), 3372–3384. https://doi.org/10.14778/3554821.3554829

[59] Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider,
Wes McKinney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau.
2023. The Composable Data Management System Manifesto. Proc.
VLDB Endow. 16, 10 (aug 2023), 2679–2685. https://doi.org/10.14778/
3603581.3603604

[60] The Dask project. 2023. The dask-sql project. https://dask-sql.
readthedocs.io/en/latest/

[61] The OAP project. 2023. Gluten: Plugin to Double SparkSQL’s Perfor-
mance. https://h2oai.github.io/db-benchmark/

[62] Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Mühleisen.
2018. Fair Benchmarking Considered Difficult: Common Pitfalls In
Database Performance Testing. In Proceedings of the Workshop on
Testing Database Systems (Houston, TX, USA) (DBTest’18). Association
for Computing Machinery, New York, NY, USA, Article 2, 6 pages.
https://doi.org/10.1145/3209950.3209955

[63] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embed-
dable Analytical Database. In Proceedings of the 2019 International
Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA,
1981–1984. https://doi.org/10.1145/3299869.3320212

[64] Tokio rs Developers. 2023. Tokio: As asynchronous Rust runtime. https:
//tokio.rs/

[65] SDF. 2023. SDF. https://www.sdf.com/engine
[66] L. Shrinivas, S. Bodagala, R. Varadarajan, A. Cary, V. Bharathan, and C.

Bear. 2013. Materialization strategies in the Vertica analytic database:
Lessons learned. In 2013 29th IEEE International Conference on Data
Engineering (ICDE 2013). IEEE Computer Society, Los Alamitos, CA,
USA, 1196–1207. https://doi.org/10.1109/ICDE.2013.6544909

[67] The sqlparser-rs authors. 2023. sqlparser-rs: Extensible SQL Lexer and
Parser for Rust. https://github.com/sqlparser-rs/sqlparser-rs

[68] Michael Stonebraker. 2008. Technical perspective - One size fits all:
an idea whose time has come and gone. Commun. ACM 51, 12 (2008),
76. https://doi.org/10.1145/1409360.1409379

[69] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,
Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik.

2005. C-Store: A Column-Oriented DBMS. In Proceedings of the 31st In-
ternational Conference on Very Large Data Bases (Trondheim, Norway)
(VLDB ’05). VLDB Endowment, 553–564.

[70] Synnada. 2023. Synnada realtime data platform. https://www.synnada.
ai/

[71] The Rust team. 2023. The Rust programming language. https://www.
rust-lang.org/

[72] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. 2016. Apache Spark: A Unified En-
gine for Big Data Processing. Commun. ACM 59, 11 (oct 2016), 56–65.
https://doi.org/10.1145/2934664

https://doi.org/10.14778/2794367.2794375
https://h2oai.github.io/db-benchmark/
https://h2oai.github.io/db-benchmark/
https://vegafusion.io/
https://doi.org/10.14778/1920841.1920886
https://www.synnada.ai/blog/running-window-query-in-stream-processing
https://www.synnada.ai/blog/running-window-query-in-stream-processing
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/3603581.3603604
https://doi.org/10.14778/3603581.3603604
https://dask-sql.readthedocs.io/en/latest/
https://dask-sql.readthedocs.io/en/latest/
https://h2oai.github.io/db-benchmark/
https://doi.org/10.1145/3209950.3209955
https://doi.org/10.1145/3299869.3320212
https://tokio.rs/
https://tokio.rs/
https://www.sdf.com/engine
https://doi.org/10.1109/ICDE.2013.6544909
https://github.com/sqlparser-rs/sqlparser-rs
https://doi.org/10.1145/1409360.1409379
https://www.synnada.ai/
https://www.synnada.ai/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://doi.org/10.1145/2934664

	Abstract
	1 Introduction
	2 Foundational Ecosystem
	2.1 Apache Arrow
	2.2 Apache Parquet
	2.3 Rust

	3 Use Cases
	3.1 Accelerating Apache Spark

	4 Deconstructed Databases
	4.1 Parallel with LLVM

	5 DataFusion Features
	5.1 Engine Overview
	5.2 Catalog and Data Sources
	5.3 Front Ends
	5.4 Plan Representations and Rewrites
	5.5 Execution Engine

	6 Optimizations
	6.1 Query Rewrites
	6.2 Sorting
	6.3 Grouping and Aggregation
	6.4 Joins
	6.5 Window Functions
	6.6 Normalized Sort Keys / RowFormat
	6.7 Leveraging Sort Order
	6.8 Pushdown and Late Materialization

	7 Extensibilities
	7.1 Scalar, Aggregate and Window Functions
	7.2 Catalog
	7.3 Data Sources
	7.4 Execution Environment
	7.5 New Query / Language Frontends
	7.6 Query Rewrites / Optimizer Passes
	7.7 Relational Operators

	8 Performance Evaluation
	8.1 Single Core Efficiency
	8.2 Scalability

	9 Related Work
	9.1 Future Research

	10 Conclusion
	11 Acknowledgments
	References

