
arrow-rs + arrow2
Summary of https://github.com/apache/arrow-rs/issues/1176

Disclaimer: this is a work in progress. Comments / suggestions welcome. Please see
https://github.com/apache/arrow-rs/issues/1176 for full details

https://github.com/apache/arrow-rs/issues/1176
https://github.com/apache/arrow-rs/issues/1176

Background

arrow2 is port/rewrite of arrow-rs by @jorgecarleitao that provided improved type
safety and ergonomic APIs to an Arrow Rust library

arrow-rs is the “official” implementation of Arrow, governed by the Apache
Software Foundation. It has regular biweekly releases, a substantial committer
base, and large featureset

Many of the ideas that arrow2 innovated have since been incorporated into
arrow-rs (e.g. decimals as primitives), and vice versa (e.g. arrow2/1287)

https://github.com/jorgecarleitao/arrow2/
https://github.com/apache/arrow-rs
https://github.com/jorgecarleitao/arrow2/pull/1287

Major users of arrow2/arrow-rs

Arrow2

● Polars
● Databend
● crates.io reverse dependencies (23)

Arrow-rs

● DataFusion and its known users (21)
● crates.io reverse dependencies (65)

https://crates.io/crates/arrow2/reverse_dependencies
https://github.com/apache/arrow-datafusion#known-uses
https://crates.io/crates/arrow/reverse_dependencies

Why Unify

Unify limited maintenance bandwidth on one implementation rather than 2 (e.g. to
get full nested parquet support and late materialization support)

Avoid forcing potential Arrow users to pick between two “similar but different”
implementations of Arrow which are hard to switch between and fragments the
overall Arrow ecosystem

Steps to get us there

1. Common low level code structure (diagrams next)
2. Apache Software Foundation IP Clearance
3. Community continuance (ensure relevant arrow2 contributors are committers

on the ASF project)

Longer term

1. Unify kernels
2. Unify IO
3. Unify documentation
4. Unify tests

https://jorgecarleitao.github.io/arrow2/main/guide/low_level.html

Current structure (arrow-rs)
PrimitiveArray<Int64>
data:
values:

ArrayData
data_type
buffers:

ArrayData is not typed, and points
(eventually) at a [u8] which is cast
(transmuted) for operation

There are specific
types of Array for
each Arrow DataType

[u8]

Buffer
data:

ScalarBuffer<i64>
Previously RawPtrBox<i64>

Arrays store a typed
representation of each
buffer alongside the
underlying ArrayData

ScalarBuffer is a typed
wrapper around a Buffer

Current structure (arrow2)

PrimitiveArray<i64>
values:

There are specific types
of Array for each
Arrow DataType

Buffer is typed and stores data in a
foreign_vec::ForeignVec

Buffer<i64>
data:

ForeignVec<i64>
(...)

ForeignVec: is a Vec<T> with a custom `Drop` and handles unsafe conversions between
(potentially foreign allocations).

https://github.com/DataEngineeringLabs/foreign_vec
https://github.com/DataEngineeringLabs/foreign_vec

Unifying ArrayData

ArrayData becomes an enum of one of several typed variants

enum ArrayData {
 Primitive(ArrayDataPrimitive),
 Bytes(ArrayDataBytes)
 Dictionary(ArrayDataDictionary),
 …
}

enum ArrayDataPrimitive {
 Int8(PrimitiveArrayData<i8>),
 Int16(PrimitiveArrayData<i16>),
 Int32(PrimitiveArrayData<i32>),
 Int64(PrimitiveArrayData<i64>),
 …
}

Proposed new structure of arrow-rs

PrimitiveArray<Int64>
data:

PrimitiveArrayData<i64>
values:
nulls:

ScalarBuffer<i64>

NullBuffer

Proposed new struture of arrow2

PrimitiveArray<i64>
data:

PrimitiveArrayData<i64>
values:
nulls:

Uses same PrimitiveArrayData as arrow-rs

ScalarBuffer<i64>

NullBuffer

Interoperability

PrimitiveArrayData<i64>
values:
nulls:

PrimitiveArray<i64>
data:

PrimitiveArray<Int64>
data:

Both arrow-rs and arrow2
implementations are newtypes around
a common base type

Current Structure: Kernels

cast add gt_eq

arrow-rs arrow2

cast
implementation

add
implementation

gt_eq
implementation

cast add gt_eq

cast
implementation

add
implementation

gt_eq
implementation

Two separate apis with two
separate implementations

Implementation in terms of
arrow2::Arrays / Buffer<T>

Implementation in terms of
arrow-rs::Arrays / ArrayData

Proposed: Kernels
cast add gt_eq cast add gt_eq

Zero cost conversion Zero cost conversion Zero cost conversion

Two separate apis with one implementation, using ArrayData to
convert between one and the other

Do zero cost
conversion in terms of
ArrayData

cast
implementation

add
implementation

gt_eq
implementation

Choose one
implementation to
convert to ArrayData
and maintain within
arrow-rs (specific choice is
example for illustration)

ArrayData

Arrow-rs arrays arrow2 arrays

In arrow2 crate

Current Structure: I/O

CSV API json parquet

csv
implementation

json
implementation

parquet
implementation

csv json parquet2

csv
implementation

json
implementation

parquet
implementation

Two separate apis with two
separate implementations

Implementation in terms of
arrow2::Arrays / Buffer<T>

Implementation in terms of
arrow-rs::Arrays / ArrayData

Proposed: I/O
csv json parquet csv json parquet2

Zero cost conversion Zero cost conversion Zero cost conversion

Two separate apis with one implementation, using ArrayData to
convert between one and the other

Do zero cost
conversion in terms of
ArrayData

csv
implementation

json
implementation

parquet
implementation Choose one

implementation to
convert to ArrayData
and maintain within
arrow-rs (specific choice is
example for illustration)

In arrow2 crate

Deprecation

● Some low-level APIs may not be possible to unify
● Deprecate and remove functionality where unification is not possible

IP clearance

Plan IP clearance on the entire arrow2 repo (any others?)

Not clear how much would be copied in bulk or in parts

Dangers

● Run out of ambition and the projects are left in half way state
● Frustrate downstream users with intrusive breaking changes

