Skip to content
This repository has been archived by the owner. It is now read-only.
Browse files
Merge branch 'CLIMATE-938' of…
  • Loading branch information
lewismc committed Mar 13, 2018
2 parents 5058b38 + 38fedad commit 8e1edc873c9c2bcc68a5f14dd59299c15bdcdb51
Showing 1 changed file with 32 additions and 11 deletions.
@@ -15,20 +15,19 @@
# limitations under the License.

from ocw import dataset as ds
import ocw.utils as utils

import datetime
import logging

import netCDF4
import numpy as np
import as ma
from scipy.interpolate import griddata
import scipy.ndimage
from scipy.stats import rankdata
from scipy.ndimage import map_coordinates
import netCDF4
from matplotlib.path import Path
from scipy.interpolate import griddata
from scipy.ndimage import map_coordinates

import logging
import ocw.utils as utils
from ocw import dataset as ds

logger = logging.getLogger(__name__)

@@ -149,7 +148,7 @@ def temporal_rebin_with_time_index(target_dataset, nt_average):
It is the same as the number of time indicies to be averaged.
length of time dimension in the rebinned dataset) =
(original time dimension length/nt_average)
:type temporal_resolution: integer
:type nt_average: integer
:returns: A new temporally rebinned Dataset
:rtype: :class:`dataset.Dataset`
@@ -505,10 +504,32 @@ def temporal_slice(target_dataset, start_time, end_time):
:raises: ValueError

# netCDF datetimes allow for a variety of calendars while Python has
# only one. This would throw an error about a calendar mismatch when
# comparing a Python datetime object to a netcdf datetime object.
# Cast the date as best we can so the comparison will compare like
# data types This will still throw an excdeption if the start / end date are
# not valid in given calendar. February 29th in a DatetimeNoLeap calendar for example.
slice_start_time = start_time
slice_end_time = end_time

if isinstance(target_dataset.times.item(0), netCDF4.netcdftime._netcdftime.datetime):
slice_start_time =\
type(target_dataset.times.item(0))(start_time.year, start_time.month,,
start_time.hour, start_time.minute, start_time.second)

slice_end_time =\
type(target_dataset.times.item(0))(end_time.year, end_time.month,,
end_time.hour, end_time.minute, end_time.second)

start_time_index = np.where(
target_dataset.times >= start_time)[0][0]
target_dataset.times >= slice_start_time)[0][0]

end_time_index = np.where(
target_dataset.times <= end_time)[0][-1]
target_dataset.times <= slice_end_time)[0][-1]

new_times = target_dataset.times[start_time_index:end_time_index + 1]
new_values = target_dataset.values[start_time_index:end_time_index + 1, :]

0 comments on commit 8e1edc8

Please sign in to comment.