
冷热分离详细设计​

目标​

支持所有doris功能，只是把部分数据放到对象存储上，以节省成本，不牺牲功能。​

数据冷却​

冷却数据进入S3的整个过程可以分为四个部分：策略、决策、执行、结果；​

策略​

可以依据数据进入之后的过期时间，比如数据进入几小时后。

方式1：继续使用现有模式​

目前可以在创建表时指定数据冷却时间：

SQL

CREATE TABLE example_db.table_hash
(
 k1 BIGINT,
 k2 LARGEINT,
 v1 VARCHAR(2048) REPLACE,
 v2 SMALLINT SUM DEFAULT "10"
)
UNIQUE KEY(k1, k2)
DISTRIBUTED BY HASH (k1, k2) BUCKETS 32
PROPERTIES(
 "storage_medium" = "SSD",
 "storage_cooldown_time" = "2015-06-04 00:00:00"
);

1
2
3
4
5
6
7
8
9
10
11
12
13

也可以使用FE全局配置，这个参数对所有存储在SSD上的表生效​

Nginx

storage_cooldown_second1

通过alter table更改partition和表级别的storage_cooldown_time​

Plain Text

alter table SET("storage_cooldown_time" = "2022-06-10 00:00:00")
alter table modify partition SET("storage_cooldown_time" = "2022-06-10 00:00:0
0")

1
2

Dynamic partition通过hot partition num来计算出storage cooldown time​

冷却远程存储property可以应用到表和partition级别。​

Nginx

remote_storage_cooldown_time1

需要支持绝对时间和cooldown_second，remote和hdd使用不同的配置，也给用户带来了比较繁琐

的使用界面。cooldown_second目前不支持不同的表有不同的配置，比如某些表不cooldown。​

目前的远程存储创建为一种资源，

SQL

 CREATE RESOURCE "remote_s3"
 PROPERTIES
 (
 "type" = "s3",
 "s3_endpoint" = "http://bj.s3.com",
 "s3_region" = "bj",
 "s3_root_path" = "/path/to/root",
 "s3_access_key" = "bbb",
 "s3_secret_key" = "aaaa",
 "s3_max_connections" = "50",
 "s3_request_timeout_ms" = "3000",
 "s3_connection_timeout_ms" = "1000"
);

1
2
3
4
5
6
7
8
9
10
11
12
13

http://bj.s3.com/

Assembly language

// 表和partition增加2个属性：​
remote_storage_resource: {resource_name}
remote_storage_time : {}

 CREATE TABLE example_db.table_hash
 (
 k1 BIGINT,
 k2 LARGEINT,
 v1 VARCHAR(2048) REPLACE,
 v2 SMALLINT SUM DEFAULT "10"
)
 ENGINE=olap
 AGGREGATE KEY(k1, k2)
 DISTRIBUTED BY HASH (k1, k2) BUCKETS 32
 PROPERTIES(
 "storage_medium" = "SSD",
 "storage_cooldown_time" = "2015-06-04 00:00:00",
 "remote_storage_resource" = "remote_s3",
 "remote_storage_cooldown_time" = "2015-12-04 00:00:00"
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

两个属性表示存储介质，storage_medium用来指定本地存储，remote_storage_resource用来指定

远程存储。

方式二：使用"storage policy的概念​

首先创建一个storage_policy，可以指定数据进入几小时后冷却，也可以指定绝对冷却时间，同时包

含S3的属性，比如endpoint，bucket等。​

SQL

CREATE RESOURCE "storage_policy_name"
PROPERTIES(
 "type"="storage_policy",
 "cooldown_datetime" = "2022-06-01", // time when data is transfter to mediu
m
 "cooldown_ttl" = 1h， // data is transfter to medium after 1 hour​
 "s3_*"
);

1
2
3
4

5
6
7

在表或者partition级别使用storage_policy​

Plain Text

CREATE TABLE example_db.table_hash
(
 k1 BIGINT,
 k2 LARGEINT,
 v1 VARCHAR(2048) REPLACE,
 v2 SMALLINT SUM DEFAULT "10"
)
UNIQUE KEY(k1, k2)
DISTRIBUTED BY HASH (k1, k2) BUCKETS 32
PROPERTIES(
 "storage_medium" = "SSD",
 "storage_policy" = "storage_policy_name"
);

1
2
3
4
5
6
7
8
9
10
11
12
13

云上产品使用方式（社区兼容云上使用方式）：

支持默认storage policy，云上产品控制面会先创建一个默认的storage policy，比如名字叫

default_storage_policy，名字做成fe的conf配置，默认storage policy里边有所有S3的信息以及冷

却时间。

1.

创建storage policy可以不带对象信息，只带cooldown_datetime和cooldown_ttl信息，不带对象

信息的时候继承default_storage_policy里的对象信息。实现上不要直接copy，而是每次动态的通

过查找default_storage_policy的方式更新，这样可以实现更改default_storage_policy的aksk之

后，所有集成的都生效。

2.

展示ak，不展示sk，show的时候。​3.

BE获取和更新策略，与获取和更新S3存储信息类似，第一期做成be定时同步，这样简单一些。​

Plain Text

TabletMeta {
+ StoragePolicyName: storage_policy_name // can not alter
}

StoragePolicy {
 CooldownDateTime: //
 CooldownHourse: //
 S3_*:
}

// be向FE发起rpc​
refreshStoragePolicy()

1
2
3
4
5
6
7
8
9
10
11
12

具体代码参考pr https://github.com/apache/incubator-doris/pull/8808/。​

be侧，TabletMeta类增加storage_policy_name​

Nginx

TabletMeta {
+ std::string storage_policy_name;
}

1
2
3

社区实现的创建策略pr测试​

Pr: https://github.com/apache/incubator-doris/pull/9554/files ​

结论：

社区实现的创建策略，存储策略storage_policy和存储资源storage_resource是通过名字关联的。

需要分别create resource。​

1.

具体的storage_policy和storage_resource功能（be部分）怎么使用，社区上的目前还没实现​2.

SQL

CREATE RESOURCE "test"
PROPERTIES(
 "type"="storage_policy",
 "cooldown_datetime" = "2022-06-01",
 "cooldown_ttl" = "1h",
 "storage_resource" = "my_s3"
);

CREATE RESOURCE "my_s3"
PROPERTIES(
 "type" = "s3",
 "s3_endpoint" = "http://bj.s3.com",
 "s3_region" = "bj",
 "s3_root_path" = "/path/to/root",
 "s3_access_key" = "bbb",
 "s3_secret_key" = "aaaa",
 "s3_max_connections" = "50",
 "s3_request_timeout_ms" = "3000",
 "s3_connection_timeout_ms" = "1000"
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

https://github.com/apache/incubator-doris/pull/8808/
https://github.com/apache/incubator-doris/pull/9554/files
http://bj.s3.com/

be策略名storage_policy_name的获取方式：​

fe

be

refreshStoragePolicy

一个周期性task（同
步fe的策略map）

tablet meta

policy_name

create policy resouce

map<policy_name,
policy_info(s3、
cooldown_ttl、
cooldown_date)>

1

create table use storage
policy

2

决策​

目前的cooldown是partition级别，FE来决策并发起数据从SSD到HDD迁移的。如果数据要冷却到

S3，在多副本场景下，就需要确保S3只有一份数据，冷却的基本单位是rowset，目前FE不感知

rowset，可以是BE发起，FE不参与。​

理想来说一份数据只进入对象一次是最优的，常规做法主要包括两类：1. 协调出一个副本来做数据的

上传，其他副本使用结果，分布式系统下这种方法也做不到100%只有一个副本上传数据到S3；2. 各

个副本各自做，做之前询问其他副本情况，各副本通过一定的时间随机以及询问配合，做到大多数情

况下只有一个副本上传数据到S3. 方案2更为简单，因此可以选用方案2.​

方案2细化：​

BE询问其它副本相同版本的数据是否已经上传到S3​1.

如果有BE已经开始任务，则等待10min再询问​a.

如果全部BE没有开始任务，则自己开始上传任务​b.

每个be上的rowset id都不一样，因此并发做会产生垃圾，不会产生数据正确性问题​c.

这里各个副本通过一个30min内的时间随机减少任务冲突，避免复杂的任务协调​d.

同时这个方案也可以用于优化compaction，即compaction前首先尝试从其他副本直接下载

compaction的结果。​

JavaScript

StorageEngine::_cooldown_tasks_producer_callback {
 // generate cooldown task for each tablet
 // 目前一个tablet不允许并发的compaction运行，​
 // 这里可以做到compaction和cooldown都是严格按序单并发​
 // 可以大幅简化rowset更改并发带来的问题​
 submit_task()
}

class CoolDownTask { //这里会考虑把compaction和cooldown做成tabletTask，然后逻辑上就
会很顺利的做串行，他们做工作是替换rowset​
 TabletSharedPtr _tablet;
 execute() {
 // 查询其他副本是否在做cooldown或者是否有结果​
 // 对比返回的version和rowset结果​
 // 如果有结果就使用相关的rowset​
 // 如果没有自己发起cooldown​
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

执行​

单机IO栈：​ IO 支持简单存算分离 ​ ​ IO读路径 ​ ​

数据上传到S3​1.

替换本地rowset，这样结合决策部分，多副本没法保障一个副本只有一份有效数据在S3，可以考

虑BE之间P2P协商，引入随机因素做到99%的情况下只有一个副本上传冷数据。​

2.

https://selectdb.feishu.cn/wiki/wikcnxM8bUhKBF8Ktetw1Pfa40f
https://selectdb.feishu.cn/wiki/wikcnKX46OVwTnb10fMBjcHOYMc

C++

class Tablet {
 cooldown() {
 // 支持传入已经在S3的rowsetid​
 // 持有schema_change_lock​
 // pick oldest rowset and put it into s3
 // 复用migration生成rowset的逻辑，link改为copy到s3.​
 // modify_rowsets // 外围做好compaction和cooldown的单并发​
 }
}

1
2
3
4
5
6
7
8
9

为了清理单个be自身形成的垃圾，每次上传一个文件前向rocksdb写开始日志，完成后写完成日志，

失败后写失败日志，并且清理残留在S3上的数据。​

结果​

数据组织

按照现在本地的结构来组织

版本 / compaction​

目前各个BE独自做compaction，因此每个rowset的版本号是不一致的，不一致就没法替换。有两种

方案，因为上传的数据是冷数据，各个节点使用的是相同的comaction策略，所以上传S3的数据

compaction结果应该是一致的，也可以使用“决策”部分的方案对compaction简单优化。​

目前compaction完成后，老的数据会被删掉，在多副本的环境下，老数据什么时候可以删？理想的来

说meta可以集中同步，云版本考虑单副本暂时不考虑，多副本情况下，compaction需要多机做简单

的协调，以及查询数据不在的时候FE能够容错处理。​

JavaScript

void StorageEngine::start_delete_unused_rowset() {
}

1
2

获取

从上传成功的副本直接获取rowset元信息即可，然后将本地的rowset数据删除即可。​

这部分代码应该是一个不上传数据的cooldown任务。​

副本Clone​

SnapshotManager::_create_snapshot_files使用了link，因为doris的数据不可变更，因此数据部分

直接使用版本即可，可以不做快照，如果相关版本被compaction处理，下载文件失败处理即可？目前

的snapshot包括两部分信息：1. hdr文件，它主要是tablet的meta信息；2. rowset文件，目前是通过

link来实现。目前的clone分为三步：1. 请求上游make snapshot；2. 下载snapshot，包括hdr和

rowset数据文件；3. 将数据加载到tablet，这里又使用了link。​

C++

// 目前：​
AgentService.TAgentResult make_snapshot(1:AgentService.TSnapshotRequest snapshot
_request);

// Types.thrift
const i32 TSNAPSHOT_REQ_VERSION3 = 5; // corresponding to rowset in S3 version

SnapshotManager::_create_snapshot_files
 // 生成一个文件描述文件，比如FILE_LIST，里边记录文件的位置，比如s3:// local:// 文件
大小信息​

EngineCloneTask::_make_and_download_snapshots
 // 目前是通过http获取目录文件列表下载的方式来进行​
 // 修改为如果存在FILE_LIST文件，则通过里边记录的文件位置的方式来下载，并且处理S3里边的
文件​

1
2

3
4
5
6
7
8

9
10
11
12

需要做好兼容性。

副本删除

目前不管是FE全局删除table或者删除BE上某个tablet，都是一样的rpc一样的参数，我们需要加上不

同的参数来让be删除s3中的数据。​

Java

// FE
DropReplicaTask {
+ boolean isEraseTableOrPartition;
}

struct TDropTabletReq {
 1: required Types.TTabletId tablet_id
 2: optional Types.TSchemaHash schema_hash
 3: optional bool isEraseTableOrPartition
}

//这儿为什么要主动发起drop任务，而不是等report处理？​
Catalog::onEraseOlapTable
 new DropReplicaTask with isEraseTableOrPartition = true

ReportHandler::deleteFromBackend
 // 增加判断是否是table和partition的逻辑，对于不存在的设置isEraseTableOrPartition
 = true

// BE
void TaskWorkerPool::_drop_tablet_worker_thread_callback()
 // 处理isEraseTableOrPartition透传到TabletManager::drop_tablet​

TabletManager::start_trash_sweep()
 // 目前只有_shutdown_tablets记录要删除的tablet，需要增加一个新的区分是否删除S3里边
的数据。​
 // S3的trash可以通过记录删除清单实现 TODO 细节​

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24

25
26

垃圾

不可避免会产生垃圾，我们要尽量的避免垃圾回收，从而正向的将垃圾回收掉。因为每个be会通过两

阶段日志来正向清理垃圾，因此每个be不会需要额外的垃圾回收逻辑。如果be永久故障，垃圾怎么清

理？可以定期触发每个tablet级别的垃圾回收，比如对过期一天时间但是没有被引用的数据可以清理

掉？

工作拆解

FE​ BE​

策略（1人

周）​

策略定义​1. 策略同步​1.

Create resource "type" =

"life_cycle"​

a.

Create table / alter table

property "life_cycle" = ""​

b.

策略同步​2.

策略修改，只修改cooldown，已经

cooldown的数据不受影响​

3.

决策（2人

周）​

周期性任务​1.

随机策略以及其他副本交互​2.

执行（3人

周）​

rowset存储S3​1.

写s3 ​ ​ ​a. @程宇轩

读s3 ​ ​ ​b. @芦伟

Schema change冲突，使用schema_change_lock

同步即可​

2.

Compaction冲突，这里需要串行来简化tablet

modify_rowset逻辑。

3.

结果（3人

周）​

FE处理汇总信息，支持S3空间​1.

FE负载均衡相关逻辑更改​2.

向其他副本发布结果 以及 其他副本来获取结果。​

​ 这里细节上主要是实现rpc获取信息，​

​ cooldown方法需要支持已经有了s3数据

的支持，就是传入一个rowset meta就行。​

1.

@芦伟

@程宇轩

clone副本相关改动，主要是S3上的rowset不需要下

载数据。​

2.

向FE汇报空间信息​3.

BE不删除S3上的rowset​4.

效率​ 1. Schema Change优化​1.

对象Cache​2.

第一阶段做到数据能进入S3以及读取，不考虑补副本以及删除表 （3人周）​

rowset存储到S3​•

部分IOstack调整 ​ ​ ​ ​ ​◦ @程宇轩 @芦伟

写S3 ​ ​ ​◦ @程宇轩

读S3 ​ ​ ​◦ @芦伟

周期性任务，冷却时间可以是一个配置的值 ​ ​ ​• @芦伟

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

第二阶段做到补副本以及删除表正常工作 （2人周）​

扩缩容/负载均衡（clone task）​ ​ ​• @邓鑫

compaction串行 ​ ​ 和周期性任务一并考虑下​• @芦伟

BE不删除S3上的rowset ​ ​ ​• @程宇轩

第三阶段策略 （2人周）​

策略定义•

策略同步•

第四阶段 （2人周）​

空间汇报•

负载均衡•

第五阶段 ​

Schema change优化​•

对象cache​•

多副本•

上传结果同步◦

s3上数据compaction删除​◦

从其他副本直接使用s3的结果​◦

待确认​

rowset创建时间，比如compaction，clone的rowset的创建时间是什么规则，设计到数据冷却。​1.

支持表级别clone，可能设计S3上的数据组织​2.

FE 看起来无法直接 restore BE trash，drop partition 暂时考虑直接删除 remote rowset，需要确

认下 be trash/restore 是否真的有需求（感觉主要是应对 bug 导致的 drop replica）(P2)​

3.

Rowset 移到 S3 后 Tablet 负载均衡策略​4.

FE dropPartition 没看到给 BE 发 drop task 的逻辑​5.

BE page cache 的 key 可以改成 tablet_id + version + offset（现在是 filepath + offset）(P3)​6.

Delete from sql 如何处理？Base compaction 在遇到 delete rowset 时放开对远程 rowset base

compaction 的限制？(P2)​

7.

如果 Cooldown 和 drop table/partition 并发会发生什么？(P0)​8.

javascript:void(0)
javascript:void(0)
javascript:void(0)

Drop tablet 调用 remove_all_remote_rowsets 发生在 cooldown 调用 modify_rowsets 前，

upload 的数据变成垃圾数据​

a.

Drop tablet 调用 remove_all_remote_rowsets 发生在 cooldown 调用 modify_rowsets 后，

upload 的数据会被清理​

b.

Drop tablet 完成后 tablet 会被放到 _shutdown_tablets 中，之后所有文件 move 到 trash

下；sweep trash 和 cooldown 并发时 cooldown upload 发现 local rowset 路径不存在会返回

error，不会影响正确性（部分已经上传的 segment 变成垃圾数据）​

c.

以上场景垃圾数据都可以在 cooldown 中被识别，a 场景需要在 modify_rowsets 前判断

TABLET_SHUTDOWN 来决定是否需要清理刚 upload 的数据​

Clone 和 Upload 并发会发生什么？(P0)​9.

Clone dst：​a.

tablet != nullptr，前半段 calc_missed_versions, _make_and_download_snapshots 没

影响，后半段 _finish_clone 有 compaction_lock 互斥不会有并发问题。但是

_finish_full_clone 可能会出现已经 upload 的 rowset 被放到 unused_rowset 中并且无法

知道之后该不该删除 remote 的数据（可能被别的 BE 使用）；目前只会删除

unused_rowset 中的 local rowset​

i.

tablet != nullptr clone 后可能会导致 local rowset 版本不连续，对 compaction 的影响：​ii.

Base compaction 发现 version 不连续不会进行，这里不去管也行​1.

Cumu compaction 会找到最长连续 version 进行 compaction​2.

tablet == nullptr 没影响​iii.

Clone src：​b.

capture_consistent_rowsets 拿到的 local rowset 可能已经 upload 了，虽然不会出现 link

失败的问题，但是 remote 数据会冗余，并且让 cooldown 和 make_snapshot 串行也无法

避免 remote 数据冗余（A make_snapshot, B download from A, A upload, A drop）​

i.

Remote rowset 对 migration 的影响，可能需要更新 migration 的代码(P0)​10.

Cooldown 理论上可以不用和 migration 串行执行，cooldown 和 migration 并发时，rowset

上传后之前的 local rowset 因为被 migration 的 consistent_rowsets 引用所以不会被删除，

_copy_index_and_data_files 可以正常进行，但是这样 migration 后的数据和 remote 就会出

现冗余，个人倾向串行执行（cooldown try migration_lock）​

a.

BeRebalancer 做 replica 调度的时候会根据 tablet data size 判断调度后是否有收益，但是 tablet

data size 目前算上了 remote rowset 的，会导致计算不准确(P0)【done】​

11.

Cooldown 策略拍一下(P0)​12.

