Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hudi;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.hudi.common.model.HoodieAvroRecord;
import org.apache.hudi.common.model.HoodieKey;
import org.apache.hudi.common.model.HoodieRecord;
import org.apache.hudi.common.model.OverwriteWithLatestAvroPayload;
import org.apache.hudi.common.util.Option;
import org.apache.hudi.exception.HoodieException;
import org.apache.hudi.exception.HoodieIOException;
import org.apache.spark.sql.Row;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.UUID;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.util.stream.Stream;
/**
* Class to be used in quickstart guide for generating inserts and updates against a corpus. Test data uses a toy Uber
* trips, data model.
*/
public class QuickstartUtils {
public static class DataGenerator {
private static final String DEFAULT_FIRST_PARTITION_PATH = "americas/united_states/san_francisco";
private static final String DEFAULT_SECOND_PARTITION_PATH = "americas/brazil/sao_paulo";
private static final String DEFAULT_THIRD_PARTITION_PATH = "asia/india/chennai";
private static final String[] DEFAULT_PARTITION_PATHS =
{DEFAULT_FIRST_PARTITION_PATH, DEFAULT_SECOND_PARTITION_PATH, DEFAULT_THIRD_PARTITION_PATH};
static String TRIP_EXAMPLE_SCHEMA = "{\"type\": \"record\",\"name\": \"triprec\",\"fields\": [ "
+ "{\"name\": \"ts\",\"type\": \"long\"},{\"name\": \"uuid\", \"type\": \"string\"},"
+ "{\"name\": \"rider\", \"type\": \"string\"},{\"name\": \"driver\", \"type\": \"string\"},"
+ "{\"name\": \"begin_lat\", \"type\": \"double\"},{\"name\": \"begin_lon\", \"type\": \"double\"},"
+ "{\"name\": \"end_lat\", \"type\": \"double\"},{\"name\": \"end_lon\", \"type\": \"double\"},"
+ "{\"name\":\"fare\",\"type\": \"double\"}]}";
static Schema avroSchema = new Schema.Parser().parse(TRIP_EXAMPLE_SCHEMA);
private static Random rand = new Random(46474747);
private final Map<Integer, HoodieKey> existingKeys;
private final String[] partitionPaths;
private int numExistingKeys;
public DataGenerator() {
this(DEFAULT_PARTITION_PATHS, new HashMap<>());
}
public DataGenerator(String[] partitionPaths) {
this(partitionPaths, new HashMap<>());
}
private DataGenerator(String[] partitionPaths, Map<Integer, HoodieKey> keyPartitionMap) {
this.partitionPaths = Arrays.copyOf(partitionPaths, partitionPaths.length);
this.existingKeys = keyPartitionMap;
}
private static String generateRandomString() {
int leftLimit = 48; // ascii for 0
int rightLimit = 57; // ascii for 9
int stringLength = 3;
StringBuilder buffer = new StringBuilder(stringLength);
for (int i = 0; i < stringLength; i++) {
int randomLimitedInt = leftLimit + (int) (rand.nextFloat() * (rightLimit - leftLimit + 1));
buffer.append((char) randomLimitedInt);
}
return buffer.toString();
}
public int getNumExistingKeys() {
return numExistingKeys;
}
public static GenericRecord generateGenericRecord(String rowKey, String riderName, String driverName,
long timestamp) {
GenericRecord rec = new GenericData.Record(avroSchema);
rec.put("uuid", rowKey);
rec.put("ts", timestamp);
rec.put("rider", riderName);
rec.put("driver", driverName);
rec.put("begin_lat", rand.nextDouble());
rec.put("begin_lon", rand.nextDouble());
rec.put("end_lat", rand.nextDouble());
rec.put("end_lon", rand.nextDouble());
rec.put("fare", rand.nextDouble() * 100);
return rec;
}
/**
* Generates a new avro record of the above schema format, retaining the key if optionally provided. The
* riderDriverSuffix string is a random String to simulate updates by changing the rider driver fields for records
* belonging to the same commit. It is purely used for demo purposes. In real world, the actual updates are assumed
* to be provided based on the application requirements.
*/
public static OverwriteWithLatestAvroPayload generateRandomValue(HoodieKey key, String riderDriverSuffix)
throws IOException {
// The timestamp generated is limited to range from 7 days before to now, to avoid generating too many
// partitionPaths when user use timestamp as partitionPath filed.
GenericRecord rec =
generateGenericRecord(key.getRecordKey(), "rider-" + riderDriverSuffix, "driver-"
+ riderDriverSuffix, generateRangeRandomTimestamp(7));
return new OverwriteWithLatestAvroPayload(Option.of(rec));
}
/**
* Generate timestamp range from {@param daysTillNow} before to now.
*/
private static long generateRangeRandomTimestamp(int daysTillNow) {
long maxIntervalMillis = daysTillNow * 24 * 60 * 60 * 1000L;
return System.currentTimeMillis() - (long) (Math.random() * maxIntervalMillis);
}
/**
* Generates new inserts, uniformly across the partition paths above. It also updates the list of existing keys.
*/
public Stream<HoodieRecord> generateInsertsStream(String randomString, Integer n) {
int currSize = getNumExistingKeys();
return IntStream.range(0, n).boxed().map(i -> {
String partitionPath = partitionPaths[rand.nextInt(partitionPaths.length)];
HoodieKey key = new HoodieKey(UUID.randomUUID().toString(), partitionPath);
existingKeys.put(currSize + i, key);
numExistingKeys++;
try {
return new HoodieAvroRecord(key, generateRandomValue(key, randomString));
} catch (IOException e) {
throw new HoodieIOException(e.getMessage(), e);
}
});
}
/**
* Generates new inserts, uniformly across the partition paths above. It also updates the list of existing keys.
*/
public List<HoodieRecord> generateInserts(Integer n) throws IOException {
String randomString = generateRandomString();
return generateInsertsStream(randomString, n).collect(Collectors.toList());
}
public HoodieRecord generateUpdateRecord(HoodieKey key, String randomString) throws IOException {
return new HoodieAvroRecord(key, generateRandomValue(key, randomString));
}
/**
* Generates new updates, randomly distributed across the keys above. There can be duplicates within the returned
* list
*
* @param n Number of updates (including dups)
* @return list of hoodie record updates
*/
public List<HoodieRecord> generateUpdates(Integer n) {
if (numExistingKeys == 0) {
throw new HoodieException("Data must have been written before performing the update operation");
}
String randomString = generateRandomString();
return IntStream.range(0, n).boxed().map(x -> {
try {
return generateUpdateRecord(existingKeys.get(rand.nextInt(numExistingKeys)), randomString);
} catch (IOException e) {
throw new HoodieIOException(e.getMessage(), e);
}
}).collect(Collectors.toList());
}
/**
* Generates new updates, one for each of the keys above
* list
*
* @param n Number of updates (must be no more than number of existing keys)
* @return list of hoodie record updates
*/
public List<HoodieRecord> generateUniqueUpdates(Integer n) {
if (numExistingKeys < n) {
throw new HoodieException("Data must have been written before performing the update operation");
}
List<Integer> keys = IntStream.range(0, numExistingKeys).boxed()
.collect(Collectors.toCollection(ArrayList::new));
Collections.shuffle(keys);
String randomString = generateRandomString();
return IntStream.range(0, n).boxed().map(x -> {
try {
return generateUpdateRecord(existingKeys.get(keys.get(x)), randomString);
} catch (IOException e) {
throw new HoodieIOException(e.getMessage(), e);
}
}).collect(Collectors.toList());
}
/**
* Generates delete records for the passed in rows.
*
* @param rows List of {@link Row}s for which delete record need to be generated
* @return list of hoodie records to delete
*/
public List<String> generateDeletes(List<Row> rows) {
// if row.length() == 2, then the record contains "uuid" and "partitionpath" fields, otherwise,
// another field "ts" is available
return rows.stream().map(row -> row.length() == 2
? convertToString(row.getAs("uuid"), row.getAs("partitionpath"), null) :
convertToString(row.getAs("uuid"), row.getAs("partitionpath"), row.getAs("ts"))
).filter(os -> os.isPresent()).map(os -> os.get())
.collect(Collectors.toList());
}
public void close() {
existingKeys.clear();
}
}
private static Option<String> convertToString(HoodieRecord record) {
try {
String str = ((OverwriteWithLatestAvroPayload) record.getData())
.getInsertValue(DataGenerator.avroSchema)
.toString();
str = "{" + str.substring(str.indexOf("\"ts\":"));
return Option.of(str.replaceAll("}", ", \"partitionpath\": \"" + record.getPartitionPath() + "\"}"));
} catch (IOException e) {
return Option.empty();
}
}
private static Option<String> convertToString(String uuid, String partitionPath, Long ts) {
StringBuffer stringBuffer = new StringBuffer();
stringBuffer.append("{");
stringBuffer.append("\"ts\": \"" + (ts == null ? "0.0" : ts) + "\",");
stringBuffer.append("\"uuid\": \"" + uuid + "\",");
stringBuffer.append("\"partitionpath\": \"" + partitionPath + "\"");
stringBuffer.append("}");
return Option.of(stringBuffer.toString());
}
public static List<String> convertToStringList(List<HoodieRecord> records) {
return records.stream().map(hr -> convertToString(hr)).filter(os -> os.isPresent()).map(os -> os.get())
.collect(Collectors.toList());
}
public static Map<String, String> getQuickstartWriteConfigs() {
Map<String, String> demoConfigs = new HashMap<>();
demoConfigs.put("hoodie.insert.shuffle.parallelism", "2");
demoConfigs.put("hoodie.upsert.shuffle.parallelism", "2");
demoConfigs.put("hoodie.bulkinsert.shuffle.parallelism", "2");
demoConfigs.put("hoodie.delete.shuffle.parallelism", "2");
return demoConfigs;
}
}