This repository has been archived by the owner. It is now read-only.
Permalink
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
233 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@@ -0,0 +1,233 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
|
||
# http://www.apache.org/licenses/LICENSE-2.0.html | ||
|
||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
import math | ||
import pickle | ||
import statistics | ||
import yaml | ||
import argparse | ||
import re | ||
import hashlib | ||
|
||
import pyspark.sql.functions as fn | ||
import numpy as np | ||
|
||
from pyspark import SparkContext | ||
from pyspark.sql import SparkSession, HiveContext | ||
from pyspark.sql.types import IntegerType, StringType, MapType | ||
from datetime import datetime, timedelta | ||
|
||
''' | ||
How to run? | ||
spark-submit --master yarn --num-executors 5 --executor-cores 5 --executor-memory 16G --driver-memory 16G --conf spark.hadoop.hive.exec.dynamic.partition=true --conf spark.hadoop.hive.exec.dynamic.partition.mode=nonstrict troubleshooting/check_pipeline.py | ||
test_pipeline.py >> check_pipeline_output.txt | ||
Note, the file uses config.yml | ||
''' | ||
|
||
|
||
def resolve_placeholder(in_dict): | ||
stack = [] | ||
for key in in_dict.keys(): | ||
stack.append((in_dict, key)) | ||
while len(stack) > 0: | ||
(_dict, key) = stack.pop() | ||
value = _dict[key] | ||
if type(value) == dict: | ||
for _key in value.keys(): | ||
stack.append((value, _key)) | ||
elif type(value) == str: | ||
z = re.findall('\{(.*?)\}', value) | ||
if len(z) > 0: | ||
new_value = value | ||
for item in z: | ||
if item in in_dict and type(in_dict[item]) == str: | ||
new_value = new_value.replace('{'+item+'}', in_dict[item]) | ||
_dict[key] = new_value | ||
|
||
|
||
def get_bucket_id(bucket_size, uckey): | ||
def __hash_sha256(s): | ||
hex_value = hashlib.sha256(s.encode('utf-8')).hexdigest() | ||
return int(hex_value, 16) | ||
return __hash_sha256(uckey) % bucket_size | ||
|
||
|
||
def get_training_days(yesterday, past_days): | ||
day = datetime.strptime(yesterday, '%Y-%m-%d') | ||
day_list = [] | ||
for _ in range(0, past_days): | ||
day_list.append(datetime.strftime(day, '%Y-%m-%d')) | ||
day = day + timedelta(days=-1) | ||
day_list.sort() | ||
return day_list | ||
|
||
|
||
def build_ts_from_factdata(hive_context, days, uckey, price_cat): | ||
bucket_id = get_bucket_id(g_factdata_bucket_size, uckey) | ||
command = """ | ||
SELECT count_array, day, hour, uckey FROM {} WHERE bucket_id='{}' AND uckey='{}' | ||
""".format(factdata_table, str(bucket_id), uckey) | ||
df = hive_context.sql(command) | ||
l = df.collect() | ||
day_count = {} | ||
for record in l: | ||
count_array = record['count_array'] | ||
day = record['day'] | ||
if day not in day_count: | ||
day_count[day] = 0 | ||
|
||
for item in count_array: | ||
key_value = item.split(':') | ||
if key_value[0] == str(price_cat): | ||
day_count[day] += int(key_value[1]) | ||
|
||
result = [] | ||
for day in days: | ||
if day in day_count: | ||
result.append(day_count[day]) | ||
else: | ||
result.append(0) | ||
|
||
return result | ||
|
||
|
||
def calculate_factdata_traffic(hive_context, factdata_table, bucket_id, day): | ||
|
||
def _list_to_map(count_array): | ||
count_map = {} | ||
for item in count_array: | ||
key_value = item.split(':') | ||
count_map[key_value[0]] = key_value[1] | ||
return count_map | ||
|
||
command = """ | ||
SELECT | ||
FACTDATA.count_array, | ||
FACTDATA.day, | ||
FACTDATA.hour, | ||
FACTDATA.uckey | ||
FROM {} AS FACTDATA | ||
WHERE FACTDATA.bucket_id='{}' AND day='{}' | ||
""".format(factdata_table, str(bucket_id), str(day)) | ||
|
||
df = hive_context.sql(command) | ||
list_to_map_udf = fn.udf(_list_to_map, MapType(StringType(), StringType(), False)) | ||
df = df.withColumn('count_map', list_to_map_udf(df.count_array)) | ||
df = df.select('uckey', 'day', 'hour', fn.explode(df.count_map)).withColumnRenamed("key", "price_cat").withColumnRenamed("value", "count") | ||
# [Row(uckey='native,72bcd2720e5011e79bc8fa163e05184e,WIFI,g_m,5,CPM,15,76', day='2019-11-02', hour=19, price_cat='3', count='4')] | ||
|
||
return df.groupby().agg(fn.sum('count').alias('count')).take(1)[0]['count'] | ||
|
||
|
||
class TestMainClean(unittest.TestCase): | ||
|
||
def setUp(self): | ||
# Set the log level. | ||
sc = SparkContext.getOrCreate() | ||
sc.setLogLevel('ERROR') | ||
|
||
# Initialize the Spark session | ||
self.spark = SparkSession.builder.appName('unit test').enableHiveSupport().getOrCreate() | ||
self.hive_context = HiveContext(sc) | ||
|
||
command = 'SELECT * FROM {}'.format(distribution_details_table) | ||
self.df_dist_details = self.hive_context.sql(command) | ||
self.df_dist_details.cache() | ||
|
||
command = 'SELECT * FROM {}'.format(trainready_table) | ||
self.df_trainready = self.hive_context.sql(command) | ||
self.df_trainready.cache() | ||
|
||
command = 'SELECT * FROM {}'.format(model_stat_table) | ||
df_model_stat = self.hive_context.sql(command) | ||
self.model_stat = df_model_stat.collect()[0] | ||
|
||
command = 'SELECT * FROM {} WHERE bucket_id=0'.format(factdata_table) | ||
self.df_factdata = self.hive_context.sql(command) | ||
|
||
def test_dense_over_total_traffic(self): | ||
df = self.df_dist_details | ||
dense_traffic = df.where('ratio=1').agg(fn.sum('imp')).take(1)[0]['sum(imp)'] | ||
total_traffic = df.agg(fn.sum('imp')).take(1)[0]['sum(imp)'] | ||
dense_over_total = dense_traffic * 100 / total_traffic | ||
print('dense/total traffic:{}'.format(dense_over_total)) | ||
self.assertTrue(dense_over_total > DENSE_OVER_TOTAL_TRAFFIC_PERCENAGE_TH) | ||
|
||
def test_get_traffic_statistic(self): | ||
print('number of uckeys in trainready : {:,}'.format(self.df_trainready.count())) | ||
print('total traffic in distribution deatils : {:,}'.format(self.df_dist_details.agg(fn.sum('imp')).take(1)[0]['sum(imp)'])) | ||
ts_days = self.model_stat['model_info']['days'] | ||
print('todatl traffic in one factdata bucket : {:,}'.format(1000 * len(ts_days) * calculate_factdata_traffic(self.hive_context, factdata_table, 0, g_days[-1]))) | ||
|
||
def test_get_model_info(self): | ||
print('days from config {}'.format(str(g_days))) | ||
print('model info {}'.format(str(self.model_stat))) | ||
|
||
def test_get_trainready_statistics(self): | ||
df = self.df_trainready | ||
|
||
v = df.select('p','ts').orderBy(fn.col('p').asc()).head(1) | ||
print('min trainready P {}:'.format(v)) | ||
|
||
v = v = df.select('p','ts').orderBy(fn.col('p').desc()).head(1) | ||
print('max trainready P {}:'.format(v)) | ||
|
||
def test_training_days_length(self): | ||
l = self.df_trainready.take(NUMBER_OF_CHECK_UCKEYS) | ||
for _ in l: | ||
ts_days = self.model_stat['model_info']['days'] | ||
if len(_['ts']) != len(ts_days): | ||
print('len ts is {}'.format(str(len(_['ts'])))) | ||
self.assertTrue(len(_['ts']) == len(ts_days)) | ||
|
||
def __test_ts_against_log(self): | ||
df = self.df_trainready.join(self.df_dist_details, on=['uckey', 'price_cat'], how='inner') | ||
l = df.where('ratio=1').take(NUMBER_OF_CHECK_UCKEYS) | ||
uckeys = [(_['uckey'], _['price_cat'], _['ts']) for _ in l] | ||
|
||
ts_days = self.model_stat['model_info']['days'] | ||
for uckey, price_cat, ts in uckeys: | ||
factdata_ts = build_ts_from_factdata(self.hive_context, ts_days, uckey, price_cat) | ||
diff = np.array(factdata_ts)-np.array(ts) | ||
print(diff, uckey, price_cat) | ||
self.assertTrue(abs(np.sum(diff)) < TS_DIFF_SUM_TH) | ||
|
||
|
||
# Runs the tests. | ||
if __name__ == '__main__': | ||
|
||
DENSE_OVER_TOTAL_TRAFFIC_PERCENAGE_TH = 90 | ||
TS_DIFF_SUM_TH = 10 | ||
NUMBER_OF_CHECK_UCKEYS = 1 | ||
|
||
with open('predictor_dl_model/config.yml', 'r') as ymlfile: | ||
cfg = yaml.load(ymlfile, Loader=yaml.FullLoader) | ||
resolve_placeholder(cfg) | ||
|
||
distribution_details_table = cfg['pipeline']['distribution']['output_detail_table_name'] | ||
trainready_table = cfg['pipeline']['normalization']['output_table_name'] | ||
factdata_table = cfg['factdata_table_name'] | ||
model_stat_table = cfg['save_model']['table'] | ||
g_factdata_bucket_size = cfg['pipeline']['filter']['bucket_size'] | ||
g_past_days = cfg['pipeline']['time_series']['prepare_past_days'] | ||
g_yesterday = cfg['pipeline']['time_series']['yesterday'] | ||
g_days = get_training_days(g_yesterday, g_past_days) | ||
|
||
# Run the unit tests. | ||
unittest.main() |