
Kafka uses key-value pairs in the property file format for configuration. These values can be supplied either from a file or programmatically.

3.1 Broker Configs

The essential configurations are the following:

broker.id
log.dirs
zookeeper.connect

Topic-level configurations and defaults are discussed in more detail below.
Name Description Type Default

zookeeper.connect Zookeeper host string string

advertised.host.name

DEPRECATED: only used when
`advertised.listeners` or `listeners` are not set.
Use `advertised.listeners` instead. Hostname to
publish to ZooKeeper for clients to use. In IaaS
environments, this may need to be different
from the interface to which the broker binds. If
this is not set, it will use the value for
`host.name` if configured. Otherwise it will use
the value returned from
java.net.InetAddress.getCanonicalHostName().

string null

advertised.listeners

Listeners to publish to ZooKeeper for clients to
use, if different than the listeners above. In
IaaS environments, this may need to be
different from the interface to which the broker
binds. If this is not set, the value for `listeners`
will be used.

string null

advertised.port

DEPRECATED: only used when
`advertised.listeners` or `listeners` are not set.
Use `advertised.listeners` instead. The port to
publish to ZooKeeper for clients to use. In IaaS
environments, this may need to be different
from the port to which the broker binds. If this
is not set, it will publish the same port that the
broker binds to.

int null

auto.create.topics.enable Enable auto creation of topic on the server boolean true

auto.leader.rebalance.enable
Enables auto leader balancing. A background
thread checks and triggers leader balance if
required at regular intervals

boolean true

background.threads The number of threads to use for various
background processing tasks int 10 [1,...]

broker.id

The broker id for this server. If unset, a unique
broker id will be generated.To avoid conflicts
between zookeeper generated broker id's and
user configured broker id's, generated broker
idsstart from reserved.broker.max.id + 1.

int -1

compression.type

Specify the final compression type for a given
topic. This configuration accepts the standard
compression codecs ('gzip', 'snappy', 'lz4'). It
additionally accepts 'uncompressed' which is
equivalent to no compression; and 'producer'
which means retain the original compression
codec set by the producer.

string producer

delete.topic.enable
Enables delete topic. Delete topic through the
admin tool will have no effect if this config is
turned off

boolean false

host.name

DEPRECATED: only used when `listeners` is
not set. Use `listeners` instead. hostname of
broker. If this is set, it will only bind to this
address. If this is not set, it will bind to all
interfaces

string ""

leader.imbalance.check.interval.seconds The frequency with which the partition
rebalance check is triggered by the controller long 300

leader.imbalance.per.broker.percentage
The ratio of leader imbalance allowed per
broker. The controller would trigger a leader
balance if it goes above this value per broker.
The value is specified in percentage.

int 10

listeners

Listener List - Comma-separated list of URIs
we will listen on and their protocols. Specify
hostname as 0.0.0.0 to bind to all interfaces.
Leave hostname empty to bind to default
interface. Examples of legal listener lists:
PLAINTEXT://myhost:9092,TRACE://:9091
PLAINTEXT://0.0.0.0:9092,
TRACE://localhost:9093

string null

log.dir The directory in which the log data is kept

(supplemental for log.dirs property)

string /tmp/kafka-logs

log.dirs
The directories in which the log data is kept. If

not set, the value in log.dir is used
string null

log.flush.interval.messages
The number of messages accumulated on a log

partition before messages are flushed to disk
long 9223372036854775807 [1,...]

log.flush.interval.ms

The maximum time in ms that a message in

any topic is kept in memory before flushed to

disk. If not set, the value in

log.flush.scheduler.interval.ms is used

long null

log.flush.offset.checkpoint.interval.ms

The frequency with which we update the

persistent record of the last flush which acts as

the log recovery point

int 60000 [0,...]

log.flush.scheduler.interval.ms
The frequency in ms that the log flusher checks

whether any log needs to be flushed to disk
long 9223372036854775807

log.retention.bytes The maximum size of the log before deleting it long -1

log.retention.hours

The number of hours to keep a log file before

deleting it (in hours), tertiary to

log.retention.ms property

int 168

log.retention.minutes

The number of minutes to keep a log file

before deleting it (in minutes), secondary to

log.retention.ms property. If not set, the value

in log.retention.hours is used

int null

log.retention.ms

The number of milliseconds to keep a log file

before deleting it (in milliseconds), If not set,

the value in log.retention.minutes is used

long null

log.roll.hours

The maximum time before a new log segment

is rolled out (in hours), secondary to

log.roll.ms property

int 168 [1,...]

log.roll.jitter.hours

The maximum jitter to subtract from

logRollTimeMillis (in hours), secondary to

log.roll.jitter.ms property

int 0 [0,...]

log.roll.jitter.ms

The maximum jitter to subtract from

logRollTimeMillis (in milliseconds). If not set,

the value in log.roll.jitter.hours is used

long null

log.roll.ms

The maximum time before a new log segment

is rolled out (in milliseconds). If not set, the

value in log.roll.hours is used

long null

log.segment.bytes The maximum size of a single log file int 1073741824 [14,...]

log.segment.delete.delay.ms
The amount of time to wait before deleting a

file from the filesystem
long 60000 [0,...]

message.max.bytes
The maximum size of message that the server

can receive
int 1000012 [0,...]

min.insync.replicas

When a producer sets acks to "all" (or "-1"),

min.insync.replicas specifies the minimum

number of replicas that must acknowledge a

write for the write to be considered successful.

If this minimum cannot be met, then the

producer will raise an exception (either

NotEnoughReplicas or

NotEnoughReplicasAfterAppend).

When used together, min.insync.replicas and

acks allow you to enforce greater durability

guarantees. A typical scenario would be to

create a topic with a replication factor of 3, set

min.insync.replicas to 2, and produce with

acks of "all". This will ensure that the producer

raises an exception if a majority of replicas do

not receive a write.

int 1 [1,...]

num.io.threads
The number of io threads that the server uses

for carrying out network requests
int 8 [1,...]

num.network.threads
the number of network threads that the server

uses for handling network requests
int 3 [1,...]

num.recovery.threads.per.data.dir

The number of threads per data directory to be

used for log recovery at startup and flushing at

shutdown

int 1 [1,...]

num.replica.fetchers

Number of fetcher threads used to replicate

messages from a source broker. Increasing this

value can increase the degree of I/O

parallelism in the follower broker.

int 1

offset.metadata.max.bytes
The maximum size for a metadata entry

associated with an offset commit
int 4096

offsets.commit.required.acks

The required acks before the commit can be

accepted. In general, the default (-1) should not

be overridden

short -1

Offset commit will be delayed until all replicas

offsets.commit.timeout.ms for the offsets topic receive the commit or this

timeout is reached. This is similar to the

producer request timeout.

int 5000 [1,...]

offsets.load.buffer.size
Batch size for reading from the offsets

segments when loading offsets into the cache.
int 5242880 [1,...]

offsets.retention.check.interval.ms Frequency at which to check for stale offsets long 600000 [1,...]

offsets.retention.minutes
Log retention window in minutes for offsets

topic
int 1440 [1,...]

offsets.topic.compression.codec

Compression codec for the offsets topic -

compression may be used to achieve "atomic"

commits

int 0

offsets.topic.num.partitions
The number of partitions for the offset commit

topic (should not change after deployment)
int 50 [1,...]

offsets.topic.replication.factor

The replication factor for the offsets topic (set

higher to ensure availability). To ensure that

the effective replication factor of the offsets

topic is the configured value, the number of

alive brokers has to be at least the replication

factor at the time of the first request for the

offsets topic. If not, either the offsets topic

creation will fail or it will get a replication

factor of min(alive brokers, configured

replication factor)

short 3 [1,...]

offsets.topic.segment.bytes

The offsets topic segment bytes should be kept

relatively small in order to facilitate faster log

compaction and cache loads

int 104857600 [1,...]

port

DEPRECATED: only used when `listeners` is

not set. Use `listeners` instead. the port to

listen and accept connections on

int 9092

queued.max.requests
The number of queued requests allowed before

blocking the network threads
int 500 [1,...]

quota.consumer.default

Any consumer distinguished by

clientId/consumer group will get throttled if it

fetches more bytes than this value per-second

long 9223372036854775807 [1,...]

quota.producer.default

Any producer distinguished by clientId will get

throttled if it produces more bytes than this

value per-second

long 9223372036854775807 [1,...]

replica.fetch.max.bytes
The number of bytes of messages to attempt to

fetch
int 1048576

replica.fetch.min.bytes

Minimum bytes expected for each fetch

response. If not enough bytes, wait up to

replicaMaxWaitTimeMs

int 1

replica.fetch.wait.max.ms

max wait time for each fetcher request issued

by follower replicas. This value should always

be less than the replica.lag.time.max.ms at all

times to prevent frequent shrinking of ISR for

low throughput topics

int 500

replica.high.watermark.checkpoint.interval.ms
The frequency with which the high watermark

is saved out to disk
long 5000

replica.lag.time.max.ms

If a follower hasn't sent any fetch requests or

hasn't consumed up to the leaders log end

offset for at least this time, the leader will

remove the follower from isr

long 10000

replica.socket.receive.buffer.bytes The socket receive buffer for network requests int 65536

replica.socket.timeout.ms

The socket timeout for network requests. Its

value should be at least

replica.fetch.wait.max.ms

int 30000

request.timeout.ms

The configuration controls the maximum

amount of time the client will wait for the

response of a request. If the response is not

received before the timeout elapses the client

will resend the request if necessary or fail the

request if retries are exhausted.

int 30000

socket.receive.buffer.bytes

The SO_RCVBUF buffer of the socket sever

sockets. If the value is -1, the OS default will

be used.

int 102400

socket.request.max.bytes
The maximum number of bytes in a socket

request
int 104857600 [1,...]

socket.send.buffer.bytes

The SO_SNDBUF buffer of the socket sever

sockets. If the value is -1, the OS default will

be used.

int 102400

unclean.leader.election.enable

Indicates whether to enable replicas not in the

ISR set to be elected as leader as a last resort,

even though doing so may result in data loss

boolean true

zookeeper.connection.timeout.ms

The max time that the client waits to establish

a connection to zookeeper. If not set, the value int null

in zookeeper.session.timeout.ms is used
zookeeper.session.timeout.ms Zookeeper session timeout int 6000
zookeeper.set.acl Set client to use secure ACLs boolean false

broker.id.generation.enable
Enable automatic broker id generation on the
server. When enabled the value configured for
reserved.broker.max.id should be reviewed.

boolean true

broker.rack
Rack of the broker. This will be used in rack
aware replication assignment for fault
tolerance. Examples: `RACK1`, `us-east-1d`

string null

connections.max.idle.ms
Idle connections timeout: the server socket
processor threads close the connections that
idle more than this

long 600000

controlled.shutdown.enable Enable controlled shutdown of the server boolean true

controlled.shutdown.max.retries
Controlled shutdown can fail for multiple
reasons. This determines the number of retries
when such failure happens

int 3

controlled.shutdown.retry.backoff.ms

Before each retry, the system needs time to
recover from the state that caused the previous
failure (Controller fail over, replica lag etc).
This config determines the amount of time to
wait before retrying.

long 5000

controller.socket.timeout.ms The socket timeout for controller-to-broker
channels int 30000

default.replication.factor default replication factors for automatically
created topics int 1

fetch.purgatory.purge.interval.requests The purge interval (in number of requests) of
the fetch request purgatory int 1000

group.max.session.timeout.ms

The maximum allowed session timeout for
registered consumers. Longer timeouts give
consumers more time to process messages in
between heartbeats at the cost of a longer time
to detect failures.

int 300000

group.min.session.timeout.ms

The minimum allowed session timeout for
registered consumers. Shorter timeouts leader
to quicker failure detection at the cost of more
frequent consumer heartbeating, which can
overwhelm broker resources.

int 6000

inter.broker.protocol.version

Specify which version of the inter-broker
protocol will be used. This is typically bumped
after all brokers were upgraded to a new
version. Example of some valid values are:
0.8.0, 0.8.1, 0.8.1.1, 0.8.2, 0.8.2.0, 0.8.2.1,
0.9.0.0, 0.9.0.1 Check ApiVersion for the full
list.

string 0.10.0-IV1

log.cleaner.backoff.ms The amount of time to sleep when there are no
logs to clean long 15000 [0,...]

log.cleaner.dedupe.buffer.size The total memory used for log deduplication
across all cleaner threads long 134217728

log.cleaner.delete.retention.ms How long are delete records retained? long 86400000

log.cleaner.enable

Enable the log cleaner process to run on the
server? Should be enabled if using any topics
with a cleanup.policy=compact including the
internal offsets topic. If disabled those topics
will not be compacted and continually grow in
size.

boolean true

log.cleaner.io.buffer.load.factor

Log cleaner dedupe buffer load factor. The
percentage full the dedupe buffer can become.
A higher value will allow more log to be
cleaned at once but will lead to more hash
collisions

double 0.9

log.cleaner.io.buffer.size The total memory used for log cleaner I/O
buffers across all cleaner threads int 524288 [0,...]

log.cleaner.io.max.bytes.per.second
The log cleaner will be throttled so that the
sum of its read and write i/o will be less than
this value on average

double 1.7976931348623157E308

log.cleaner.min.cleanable.ratio The minimum ratio of dirty log to total log for
a log to eligible for cleaning double 0.5

log.cleaner.threads The number of background threads to use for
log cleaning int 1 [0,...]

log.cleanup.policy
The default cleanup policy for segments
beyond the retention window, must be either
"delete" or "compact"

string delete [compact, delete]

log.index.interval.bytes The interval with which we add an entry to the
offset index int 4096 [0,...]

log.index.size.max.bytes The maximum size in bytes of the offset index int 10485760 [4,...]

log.message.format.version

Specify the message format version the broker

will use to append messages to the logs. The

value should be a valid ApiVersion. Some

examples are: 0.8.2, 0.9.0.0, 0.10.0, check

ApiVersion for more details. By setting a

particular message format version, the user is

certifying that all the existing messages on disk

are smaller or equal than the specified version.

Setting this value incorrectly will cause

consumers with older versions to break as they

will receive messages with a format that they

don't understand.

string 0.10.0-IV1

log.message.timestamp.difference.max.ms

The maximum difference allowed between the

timestamp when a broker receives a message

and the timestamp specified in the message. If

log.message.timestamp.type=CreateTime, a

message will be rejected if the difference in

timestamp exceeds this threshold. This

configuration is ignored if

log.message.timestamp.type=LogAppendTime.

long 9223372036854775807 [0,...]

log.message.timestamp.type

Define whether the timestamp in the message

is message create time or log append time. The

value should be either `CreateTime` or

`LogAppendTime`

string CreateTime
[CreateTime,

LogAppendTime]

log.preallocate

Should pre allocate file when create new

segment? If you are using Kafka on Windows,

you probably need to set it to true.

boolean false

log.retention.check.interval.ms

The frequency in milliseconds that the log

cleaner checks whether any log is eligible for

deletion

long 300000 [1,...]

max.connections.per.ip
The maximum number of connections we

allow from each ip address
int 2147483647 [1,...]

max.connections.per.ip.overrides
Per-ip or hostname overrides to the default

maximum number of connections
string ""

num.partitions The default number of log partitions per topic int 1 [1,...]

principal.builder.class

The fully qualified name of a class that

implements the PrincipalBuilder interface,

which is currently used to build the Principal

for connections with the SSL SecurityProtocol.

class
class

org.apache.kafka.common.security.auth.DefaultPrincipalBuilder

producer.purgatory.purge.interval.requests
The purge interval (in number of requests) of

the producer request purgatory
int 1000

replica.fetch.backoff.ms
The amount of time to sleep when fetch

partition error occurs.
int 1000 [0,...]

reserved.broker.max.id Max number that can be used for a broker.id int 1000 [0,...]

sasl.enabled.mechanisms

The list of SASL mechanisms enabled in the

Kafka server. The list may contain any

mechanism for which a security provider is

available. Only GSSAPI is enabled by default.

list [GSSAPI]

sasl.kerberos.kinit.cmd Kerberos kinit command path. string /usr/bin/kinit

sasl.kerberos.min.time.before.relogin
Login thread sleep time between refresh

attempts.
long 60000

sasl.kerberos.principal.to.local.rules

A list of rules for mapping from principal

names to short names (typically operating

system usernames). The rules are evaluated in

order and the first rule that matches a principal

name is used to map it to a short name. Any

later rules in the list are ignored. By default,

principal names of the form

{username}/{hostname}@{REALM} are

mapped to {username}. For more details on

the format please see security authorization

and acls.

list [DEFAULT]

sasl.kerberos.service.name

The Kerberos principal name that Kafka runs

as. This can be defined either in Kafka's JAAS

config or in Kafka's config.

string null

sasl.kerberos.ticket.renew.jitter
Percentage of random jitter added to the

renewal time.
double 0.05

sasl.kerberos.ticket.renew.window.factor

Login thread will sleep until the specified

window factor of time from last refresh to

ticket's expiry has been reached, at which time

it will try to renew the ticket.

double 0.8

sasl.mechanism.inter.broker.protocol
SASL mechanism used for inter-broker

communication. Default is GSSAPI.
string GSSAPI

security.inter.broker.protocol

Security protocol used to communicate

between brokers. Valid values are:

PLAINTEXT, SSL, SASL_PLAINTEXT,

SASL_SSL.

string PLAINTEXT

ssl.cipher.suites

A list of cipher suites. This is a named

combination of authentication, encryption,

MAC and key exchange algorithm used to

negotiate the security settings for a network

connection using TLS or SSL network

protocol.By default all the available cipher

suites are supported.

list null

ssl.client.auth

Configures kafka broker to request client

authentication. The following settings are

common:

ssl.client.auth=required If set to

required client authentication is required.

ssl.client.auth=requested This

means client authentication is optional.

unlike requested , if this option is set

client can choose not to provide

authentication information about itself

ssl.client.auth=none This means

client authentication is not needed.

string none
[required,

requested, none]

ssl.enabled.protocols
The list of protocols enabled for SSL

connections.
list [TLSv1.2, TLSv1.1, TLSv1]

ssl.key.password
The password of the private key in the key

store file. This is optional for client.
password null

ssl.keymanager.algorithm

The algorithm used by key manager factory for

SSL connections. Default value is the key

manager factory algorithm configured for the

Java Virtual Machine.

string SunX509

ssl.keystore.location

The location of the key store file. This is

optional for client and can be used for two-way

authentication for client.

string null

ssl.keystore.password

The store password for the key store file.This

is optional for client and only needed if

ssl.keystore.location is configured.

password null

ssl.keystore.type
The file format of the key store file. This is

optional for client.
string JKS

ssl.protocol

The SSL protocol used to generate the

SSLContext. Default setting is TLS, which is

fine for most cases. Allowed values in recent

JVMs are TLS, TLSv1.1 and TLSv1.2. SSL,

SSLv2 and SSLv3 may be supported in older

JVMs, but their usage is discouraged due to

known security vulnerabilities.

string TLS

ssl.provider

The name of the security provider used for

SSL connections. Default value is the default

security provider of the JVM.

string null

ssl.trustmanager.algorithm

The algorithm used by trust manager factory

for SSL connections. Default value is the trust

manager factory algorithm configured for the

Java Virtual Machine.

string PKIX

ssl.truststore.location The location of the trust store file. string null

ssl.truststore.password The password for the trust store file. password null

ssl.truststore.type The file format of the trust store file. string JKS

authorizer.class.name
The authorizer class that should be used for

authorization
string ""

metric.reporters

A list of classes to use as metrics reporters.

Implementing the MetricReporter interface

allows plugging in classes that will be notified

of new metric creation. The JmxReporter is

always included to register JMX statistics.

list []

metrics.num.samples
The number of samples maintained to compute

metrics.
int 2 [1,...]

metrics.sample.window.ms
The window of time a metrics sample is

computed over.
long 30000 [1,...]

quota.window.num The number of samples to retain in memory int 11 [1,...]

quota.window.size.seconds The time span of each sample int 1 [1,...]

ssl.endpoint.identification.algorithm

The endpoint identification algorithm to

validate server hostname using server

certificate.

string null

zookeeper.sync.time.ms
How far a ZK follower can be behind a ZK

leader
int 2000

More details about broker configuration can be found in the scala class kafka.server.KafkaConfig.

Topic-level configuration Configurations pertinent to topics have both a server default as well an optional per-topic override. If no per-topic configuration is given the

server default is used. The override can be set at topic creation time by giving one or more --config options. This example creates a topic named my-topic with a custom

max message size and flush rate:

 > bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic my-topic --partitions 1
 --replication-factor 1 --config max.message.bytes=64000 --config flush.messages=1

Overrides can also be changed or set later using the alter topic command. This example updates the max message size for my-topic:

 > bin/kafka-topics.sh --zookeeper localhost:2181 --alter --topic my-topic
 --config max.message.bytes=128000

To remove an override you can do

 > bin/kafka-topics.sh --zookeeper localhost:2181 --alter --topic my-topic
 --delete-config max.message.bytes

The following are the topic-level configurations. The server's default configuration for this property is given under the Server Default Property heading. A given server

default config value only applies to a topic if it does not have an explicit topic config override.

Name Description Type Default Valid Values Server Default Property

cleanup.policy

A string that is either "delete" or

"compact". This string designates the

retention policy to use on old log segments.

The default policy ("delete") will discard

old segments when their retention time or

size limit has been reached. The "compact"

setting will enable log compaction on the

topic.

string delete
[compact,

delete]
log.cleanup.policy

compression.type

Specify the final compression type for a

given topic. This configuration accepts the

standard compression codecs ('gzip',

'snappy', lz4). It additionally accepts

'uncompressed' which is equivalent to no

compression; and 'producer' which means

retain the original compression codec set

by the producer.

string producer

[uncompressed,

snappy, lz4,

gzip, producer]

compression.type

delete.retention.ms

The amount of time to retain delete

tombstone markers for log compacted

topics. This setting also gives a bound on

the time in which a consumer must

complete a read if they begin from offset 0

to ensure that they get a valid snapshot of

the final stage (otherwise delete tombstones

may be collected before they complete

their scan).

long 86400000 [0,...] log.cleaner.delete.retention.ms

file.delete.delay.ms
The time to wait before deleting a file from

the filesystem
long 60000 [0,...] log.segment.delete.delay.ms

flush.messages

This setting allows specifying an interval at

which we will force an fsync of data

written to the log. For example if this was

set to 1 we would fsync after every

message; if it were 5 we would fsync after

every five messages. In general we

recommend you not set this and use

replication for durability and allow the

operating system's background flush

capabilities as it is more efficient. This

setting can be overridden on a per-topic

basis (see the per-topic configuration

section).

long 9223372036854775807 [0,...] log.flush.interval.messages

flush.ms

This setting allows specifying a time

interval at which we will force an fsync of

data written to the log. For example if this

was set to 1000 we would fsync after 1000

ms had passed. In general we recommend

you not set this and use replication for

durability and allow the operating system's

background flush capabilities as it is more

efficient.

long 9223372036854775807 [0,...] log.flush.interval.ms

index.interval.bytes

This setting controls how frequently Kafka

adds an index entry to it's offset index. The

default setting ensures that we index a

message roughly every 4096 bytes. More

indexing allows reads to jump closer to the

exact position in the log but makes the

index larger. You probably don't need to

change this.

int 4096 [0,...] log.index.interval.bytes

max.message.bytes

This is largest message size Kafka will

allow to be appended. Note that if you

increase this size you must also increase

your consumer's fetch size so they can

fetch messages this large.

int 1000012 [0,...] message.max.bytes

Specify the message format version the

message.format.version

broker will use to append messages to the
logs. The value should be a valid
ApiVersion. Some examples are: 0.8.2,
0.9.0.0, 0.10.0, check ApiVersion for more
details. By setting a particular message
format version, the user is certifying that
all the existing messages on disk are
smaller or equal than the specified version.
Setting this value incorrectly will cause
consumers with older versions to break as
they will receive messages with a format
that they don't understand.

string 0.10.0-IV1 log.message.format.version

message.timestamp.difference.max.ms

The maximum difference allowed between
the timestamp when a broker receives a
message and the timestamp specified in the
message. If
message.timestamp.type=CreateTime, a
message will be rejected if the difference in
timestamp exceeds this threshold. This
configuration is ignored if
message.timestamp.type=LogAppendTime.

long 9223372036854775807 [0,...] log.message.timestamp.difference.max.ms

message.timestamp.type

Define whether the timestamp in the
message is message create time or log
append time. The value should be either
`CreateTime` or `LogAppendTime`

string CreateTime log.message.timestamp.type

min.cleanable.dirty.ratio

This configuration controls how frequently
the log compactor will attempt to clean the
log (assuming log compaction is enabled).
By default we will avoid cleaning a log
where more than 50% of the log has been
compacted. This ratio bounds the
maximum space wasted in the log by
duplicates (at 50% at most 50% of the log
could be duplicates). A higher ratio will
mean fewer, more efficient cleanings but
will mean more wasted space in the log.

double 0.5 [0,...,1] log.cleaner.min.cleanable.ratio

min.insync.replicas

When a producer sets acks to "all" (or
"-1"), min.insync.replicas specifies the
minimum number of replicas that must
acknowledge a write for the write to be
considered successful. If this minimum
cannot be met, then the producer will raise
an exception (either NotEnoughReplicas or
NotEnoughReplicasAfterAppend).
When used together, min.insync.replicas
and acks allow you to enforce greater
durability guarantees. A typical scenario
would be to create a topic with a
replication factor of 3, set
min.insync.replicas to 2, and produce with
acks of "all". This will ensure that the
producer raises an exception if a majority
of replicas do not receive a write.

int 1 [1,...] min.insync.replicas

preallocate Should pre allocate file when create new
segment? boolean false log.preallocate

retention.bytes

This configuration controls the maximum
size a log can grow to before we will
discard old log segments to free up space if
we are using the "delete" retention policy.
By default there is no size limit only a time
limit.

long -1 log.retention.bytes

retention.ms

This configuration controls the maximum
time we will retain a log before we will
discard old log segments to free up space if
we are using the "delete" retention policy.
This represents an SLA on how soon
consumers must read their data.

long 604800000 log.retention.ms

segment.bytes

This configuration controls the segment file
size for the log. Retention and cleaning is
always done a file at a time so a larger
segment size means fewer files but less
granular control over retention.

int 1073741824 [14,...] log.segment.bytes

segment.index.bytes

This configuration controls the size of the
index that maps offsets to file positions. We
preallocate this index file and shrink it only
after log rolls. You generally should not
need to change this setting.

int 10485760 [0,...] log.index.size.max.bytes

segment.jitter.ms
The maximum random jitter subtracted
from the scheduled segment roll time to long 0 [0,...] log.roll.jitter.ms

avoid thundering herds of segment rolling

segment.ms

This configuration controls the period of
time after which Kafka will force the log to
roll even if the segment file isn't full to
ensure that retention can delete or compact
old data.

long 604800000 [0,...] log.roll.ms

unclean.leader.election.enable

Indicates whether to enable replicas not in
the ISR set to be elected as leader as a last
resort, even though doing so may result in
data loss

boolean true unclean.leader.election.enable

3.2 Producer Configs

Below is the configuration of the Java producer:
Name Description Type Default Valid Values Importance

bootstrap.servers

A list of host/port pairs to use for
establishing the initial connection
to the Kafka cluster. The client will
make use of all servers irrespective
of which servers are specified here
for bootstrapping—this list only
impacts the initial hosts used to
discover the full set of servers.
This list should be in the form
host1:port1,host2:port2,....
Since these servers are just used
for the initial connection to
discover the full cluster
membership (which may change
dynamically), this list need not
contain the full set of servers (you
may want more than one, though,
in case a server is down).

list high

key.serializer
Serializer class for key that
implements the Serializer
interface.

class high

value.serializer
Serializer class for value that
implements the Serializer
interface.

class high

acks

The number of acknowledgments
the producer requires the leader to
have received before considering a
request complete. This controls the
durability of records that are sent.
The following settings are
common:

acks=0 If set to zero then the
producer will not wait for
any acknowledgment from
the server at all. The record
will be immediately added to
the socket buffer and
considered sent. No
guarantee can be made that
the server has received the
record in this case, and the
retries configuration will
not take effect (as the client
won't generally know of any
failures). The offset given
back for each record will
always be set to -1.
acks=1 This will mean the
leader will write the record
to its local log but will
respond without awaiting
full acknowledgement from
all followers. In this case
should the leader fail
immediately after
acknowledging the record
but before the followers
have replicated it then the
record will be lost.
acks=all This means the
leader will wait for the full
set of in-sync replicas to
acknowledge the record.

string 1 [all, -1, 0, 1] high

This guarantees that the
record will not be lost as
long as at least one in-sync
replica remains alive. This is
the strongest available
guarantee.

buffer.memory

The total bytes of memory the
producer can use to buffer records
waiting to be sent to the server. If
records are sent faster than they
can be delivered to the server the
producer will block for
max.block.ms after which it will
throw an exception.

This setting should correspond
roughly to the total memory the
producer will use, but is not a hard
bound since not all memory the
producer uses is used for buffering.
Some additional memory will be
used for compression (if
compression is enabled) as well as
for maintaining in-flight requests.

long 33554432 [0,...] high

compression.type

The compression type for all data
generated by the producer. The
default is none (i.e. no
compression). Valid values are
none, gzip, snappy, or lz4.
Compression is of full batches of
data, so the efficacy of batching
will also impact the compression
ratio (more batching means better
compression).

string none high

retries

Setting a value greater than zero
will cause the client to resend any
record whose send fails with a
potentially transient error. Note
that this retry is no different than if
the client resent the record upon
receiving the error. Allowing
retries will potentially change the
ordering of records because if two
records are sent to a single
partition, and the first fails and is
retried but the second succeeds,
then the second record may appear
first.

int 0 [0,...,2147483647] high

ssl.key.password
The password of the private key in
the key store file. This is optional
for client.

password null high

ssl.keystore.location

The location of the key store file.
This is optional for client and can
be used for two-way authentication
for client.

string null high

ssl.keystore.password

The store password for the key
store file.This is optional for client
and only needed if
ssl.keystore.location is configured.

password null high

ssl.truststore.location The location of the trust store file. string null high

ssl.truststore.password The password for the trust store
file. password null high

batch.size

The producer will attempt to batch
records together into fewer
requests whenever multiple
records are being sent to the same
partition. This helps performance
on both the client and the server.
This configuration controls the
default batch size in bytes.

No attempt will be made to batch
records larger than this size.

Requests sent to brokers will
contain multiple batches, one for
each partition with data available
to be sent.

int 16384 [0,...] medium

A small batch size will make
batching less common and may
reduce throughput (a batch size of
zero will disable batching
entirely). A very large batch size
may use memory a bit more
wastefully as we will always
allocate a buffer of the specified
batch size in anticipation of
additional records.

client.id

An id string to pass to the server
when making requests. The
purpose of this is to be able to
track the source of requests beyond
just ip/port by allowing a logical
application name to be included in
server-side request logging.

string "" medium

connections.max.idle.ms
Close idle connections after the
number of milliseconds specified
by this config.

long 540000 medium

linger.ms

The producer groups together any
records that arrive in between
request transmissions into a single
batched request. Normally this
occurs only under load when
records arrive faster than they can
be sent out. However in some
circumstances the client may want
to reduce the number of requests
even under moderate load. This
setting accomplishes this by
adding a small amount of artificial
delay—that is, rather than
immediately sending out a record
the producer will wait for up to the
given delay to allow other records
to be sent so that the sends can be
batched together. This can be
thought of as analogous to Nagle's
algorithm in TCP. This setting
gives the upper bound on the delay
for batching: once we get
batch.size worth of records for a
partition it will be sent
immediately regardless of this
setting, however if we have fewer
than this many bytes accumulated
for this partition we will 'linger' for
the specified time waiting for more
records to show up. This setting
defaults to 0 (i.e. no delay). Setting
linger.ms=5, for example, would
have the effect of reducing the
number of requests sent but would
add up to 5ms of latency to records
sent in the absense of load.

long 0 [0,...] medium

max.block.ms

The configuration controls how
long KafkaProducer.send() and
KafkaProducer.partitionsFor()
will block.These methods can be
blocked either because the buffer is
full or metadata
unavailable.Blocking in the user-
supplied serializers or partitioner
will not be counted against this
timeout.

long 60000 [0,...] medium

max.request.size

The maximum size of a request in
bytes. This is also effectively a cap
on the maximum record size. Note
that the server has its own cap on
record size which may be different
from this. This setting will limit
the number of record batches the
producer will send in a single
request to avoid sending huge
requests.

int 1048576 [0,...] medium

partitioner.class Partitioner class that implements
the Partitioner interface. class class

org.apache.kafka.clients.producer.internals.DefaultPartitioner medium

The size of the TCP receive buffer
(SO_RCVBUF) to use when

receive.buffer.bytes reading data. If the value is -1, the

OS default will be used.

int 32768 [0,...] medium

request.timeout.ms

The configuration controls the

maximum amount of time the

client will wait for the response of

a request. If the response is not

received before the timeout elapses

the client will resend the request if

necessary or fail the request if

retries are exhausted.

int 30000 [0,...] medium

sasl.kerberos.service.name

The Kerberos principal name that

Kafka runs as. This can be defined

either in Kafka's JAAS config or in

Kafka's config.

string null medium

sasl.mechanism

SASL mechanism used for client

connections. This may be any

mechanism for which a security

provider is available. GSSAPI is

the default mechanism.

string GSSAPI medium

security.protocol

Protocol used to communicate with

brokers. Valid values are:

PLAINTEXT, SSL,

SASL_PLAINTEXT, SASL_SSL.

string PLAINTEXT medium

send.buffer.bytes

The size of the TCP send buffer

(SO_SNDBUF) to use when

sending data. If the value is -1, the

OS default will be used.

int 131072 [0,...] medium

ssl.enabled.protocols
The list of protocols enabled for

SSL connections.
list [TLSv1.2, TLSv1.1, TLSv1] medium

ssl.keystore.type
The file format of the key store

file. This is optional for client.
string JKS medium

ssl.protocol

The SSL protocol used to generate

the SSLContext. Default setting is

TLS, which is fine for most cases.

Allowed values in recent JVMs are

TLS, TLSv1.1 and TLSv1.2. SSL,

SSLv2 and SSLv3 may be

supported in older JVMs, but their

usage is discouraged due to known

security vulnerabilities.

string TLS medium

ssl.provider

The name of the security provider

used for SSL connections. Default

value is the default security

provider of the JVM.

string null medium

ssl.truststore.type
The file format of the trust store

file.
string JKS medium

timeout.ms

The configuration controls the

maximum amount of time the

server will wait for

acknowledgments from followers

to meet the acknowledgment

requirements the producer has

specified with the acks
configuration. If the requested

number of acknowledgments are

not met when the timeout elapses

an error will be returned. This

timeout is measured on the server

side and does not include the

network latency of the request.

int 30000 [0,...] medium

block.on.buffer.full

When our memory buffer is

exhausted we must either stop

accepting new records (block) or

throw errors. By default this

setting is false and the producer

will no longer throw a

BufferExhaustException but

instead will use the max.block.ms
value to block, after which it will

throw a TimeoutException. Setting

this property to true will set the

max.block.ms to

Long.MAX_VALUE. Also if this
property is set to true, parameter
metadata.fetch.timeout.ms is
not longer honored.

This parameter is deprecated and

boolean false low

will be removed in a future release.
Parameter max.block.ms should
be used instead.

interceptor.classes

A list of classes to use as
interceptors. Implementing the
ProducerInterceptor interface
allows you to intercept (and
possibly mutate) the records
received by the producer before
they are published to the Kafka
cluster. By default, there are no
interceptors.

list null low

max.in.flight.requests.per.connection

The maximum number of
unacknowledged requests the
client will send on a single
connection before blocking. Note
that if this setting is set to be
greater than 1 and there are failed
sends, there is a risk of message re-
ordering due to retries (i.e., if
retries are enabled).

int 5 [1,...] low

metadata.fetch.timeout.ms

The first time data is sent to a topic
we must fetch metadata about that
topic to know which servers host
the topic's partitions. This fetch to
succeed before throwing an
exception back to the client.

long 60000 [0,...] low

metadata.max.age.ms

The period of time in milliseconds
after which we force a refresh of
metadata even if we haven't seen
any partition leadership changes to
proactively discover any new
brokers or partitions.

long 300000 [0,...] low

metric.reporters

A list of classes to use as metrics
reporters. Implementing the
MetricReporter interface allows
plugging in classes that will be
notified of new metric creation.
The JmxReporter is always
included to register JMX statistics.

list [] low

metrics.num.samples The number of samples maintained
to compute metrics. int 2 [1,...] low

metrics.sample.window.ms The window of time a metrics
sample is computed over. long 30000 [0,...] low

reconnect.backoff.ms

The amount of time to wait before
attempting to reconnect to a given
host. This avoids repeatedly
connecting to a host in a tight loop.
This backoff applies to all requests
sent by the consumer to the broker.

long 50 [0,...] low

retry.backoff.ms

The amount of time to wait before
attempting to retry a failed request
to a given topic partition. This
avoids repeatedly sending requests
in a tight loop under some failure
scenarios.

long 100 [0,...] low

sasl.kerberos.kinit.cmd Kerberos kinit command path. string /usr/bin/kinit low

sasl.kerberos.min.time.before.relogin Login thread sleep time between
refresh attempts. long 60000 low

sasl.kerberos.ticket.renew.jitter Percentage of random jitter added
to the renewal time. double 0.05 low

sasl.kerberos.ticket.renew.window.factor

Login thread will sleep until the
specified window factor of time
from last refresh to ticket's expiry
has been reached, at which time it
will try to renew the ticket.

double 0.8 low

ssl.cipher.suites

A list of cipher suites. This is a
named combination of
authentication, encryption, MAC
and key exchange algorithm used
to negotiate the security settings
for a network connection using
TLS or SSL network protocol.By
default all the available cipher
suites are supported.

list null low

ssl.endpoint.identification.algorithm
The endpoint identification
algorithm to validate server
hostname using server certificate.

string null low

ssl.keymanager.algorithm

The algorithm used by key

manager factory for SSL

connections. Default value is the

key manager factory algorithm

configured for the Java Virtual

Machine.

string SunX509 low

ssl.trustmanager.algorithm

The algorithm used by trust

manager factory for SSL

connections. Default value is the

trust manager factory algorithm

configured for the Java Virtual

Machine.

string PKIX low

For those interested in the legacy Scala producer configs, information can be found here.

3.3 Consumer Configs

We introduce both the old 0.8 consumer configs and the new consumer configs respectively below.

3.3.1 Old Consumer Configs

The essential old consumer configurations are the following:

group.id
zookeeper.connect

Property Default Description

group.id
A string that uniquely identifies the group of consumer processes to which this consumer belongs. By setting the same

group id multiple processes indicate that they are all part of the same consumer group.

zookeeper.connect

Specifies the ZooKeeper connection string in the form hostname:port where host and port are the host and port of a

ZooKeeper server. To allow connecting through other ZooKeeper nodes when that ZooKeeper machine is down you can

also specify multiple hosts in the form hostname1:port1,hostname2:port2,hostname3:port3.

The server may also have a ZooKeeper chroot path as part of it's ZooKeeper connection string which puts its data under

some path in the global ZooKeeper namespace. If so the consumer should use the same chroot path in its connection

string. For example to give a chroot path of /chroot/path you would give the connection string as

hostname1:port1,hostname2:port2,hostname3:port3/chroot/path.

consumer.id null Generated automatically if not set.

socket.timeout.ms 30 * 1000 The socket timeout for network requests. The actual timeout set will be max.fetch.wait + socket.timeout.ms.

socket.receive.buffer.bytes 64 * 1024 The socket receive buffer for network requests

fetch.message.max.bytes 1024 * 1024

The number of bytes of messages to attempt to fetch for each topic-partition in each fetch request. These bytes will be

read into memory for each partition, so this helps control the memory used by the consumer. The fetch request size must

be at least as large as the maximum message size the server allows or else it is possible for the producer to send messages

larger than the consumer can fetch.

num.consumer.fetchers 1 The number fetcher threads used to fetch data.

auto.commit.enable true
If true, periodically commit to ZooKeeper the offset of messages already fetched by the consumer. This committed offset

will be used when the process fails as the position from which the new consumer will begin.

auto.commit.interval.ms 60 * 1000 The frequency in ms that the consumer offsets are committed to zookeeper.

queued.max.message.chunks 2 Max number of message chunks buffered for consumption. Each chunk can be up to fetch.message.max.bytes.

rebalance.max.retries 4

When a new consumer joins a consumer group the set of consumers attempt to "rebalance" the load to assign partitions to

each consumer. If the set of consumers changes while this assignment is taking place the rebalance will fail and retry. This

setting controls the maximum number of attempts before giving up.

fetch.min.bytes 1
The minimum amount of data the server should return for a fetch request. If insufficient data is available the request will

wait for that much data to accumulate before answering the request.

fetch.wait.max.ms 100
The maximum amount of time the server will block before answering the fetch request if there isn't sufficient data to

immediately satisfy fetch.min.bytes

rebalance.backoff.ms 2000 Backoff time between retries during rebalance. If not set explicitly, the value in zookeeper.sync.time.ms is used.

refresh.leader.backoff.ms 200 Backoff time to wait before trying to determine the leader of a partition that has just lost its leader.

auto.offset.reset largest

What to do when there is no initial offset in ZooKeeper or if an offset is out of range:

* smallest : automatically reset the offset to the smallest offset

* largest : automatically reset the offset to the largest offset

* anything else: throw exception to the consumer

consumer.timeout.ms -1 Throw a timeout exception to the consumer if no message is available for consumption after the specified interval

exclude.internal.topics true Whether messages from internal topics (such as offsets) should be exposed to the consumer.

client.id
group id

value

The client id is a user-specified string sent in each request to help trace calls. It should logically identify the application

making the request.

zookeeper.session.timeout.msÂ 6000
ZooKeeper session timeout. If the consumer fails to heartbeat to ZooKeeper for this period of time it is considered dead

and a rebalance will occur.

zookeeper.connection.timeout.ms 6000 The max time that the client waits while establishing a connection to zookeeper.

zookeeper.sync.time.msÂ 2000 How far a ZK follower can be behind a ZK leader

offsets.storage zookeeper Select where offsets should be stored (zookeeper or kafka).

offsets.channel.backoff.ms 1000 The backoff period when reconnecting the offsets channel or retrying failed offset fetch/commit requests.

offsets.channel.socket.timeout.ms 10000
Socket timeout when reading responses for offset fetch/commit requests. This timeout is also used for ConsumerMetadata

requests that are used to query for the offset manager.

offsets.commit.max.retries 5

Retry the offset commit up to this many times on failure. This retry count only applies to offset commits during shut-

down. It does not apply to commits originating from the auto-commit thread. It also does not apply to attempts to query

for the offset coordinator before committing offsets. i.e., if a consumer metadata request fails for any reason, it will be

retried and that retry does not count toward this limit.

dual.commit.enabled true

If you are using "kafka" as offsets.storage, you can dual commit offsets to ZooKeeper (in addition to Kafka). This is

required during migration from zookeeper-based offset storage to kafka-based offset storage. With respect to any given

consumer group, it is safe to turn this off after all instances within that group have been migrated to the new version that

commits offsets to the broker (instead of directly to ZooKeeper).

partition.assignment.strategy range

Select between the "range" or "roundrobin" strategy for assigning partitions to consumer streams.

The round-robin partition assignor lays out all the available partitions and all the available consumer threads. It then

proceeds to do a round-robin assignment from partition to consumer thread. If the subscriptions of all consumer instances

are identical, then the partitions will be uniformly distributed. (i.e., the partition ownership counts will be within a delta of

exactly one across all consumer threads.) Round-robin assignment is permitted only if: (a) Every topic has the same

number of streams within a consumer instance (b) The set of subscribed topics is identical for every consumer instance

within the group.

Range partitioning works on a per-topic basis. For each topic, we lay out the available partitions in numeric order and the

consumer threads in lexicographic order. We then divide the number of partitions by the total number of consumer streams

(threads) to determine the number of partitions to assign to each consumer. If it does not evenly divide, then the first few

consumers will have one extra partition.

More details about consumer configuration can be found in the scala class kafka.consumer.ConsumerConfig.

3.3.2 New Consumer Configs

Since 0.9.0.0 we have been working on a replacement for our existing simple and high-level consumers. The code is considered beta quality. Below is the configuration for

the new consumer:

Name Description Type Default Valid
Values Importance

bootstrap.servers

A list of host/port pairs to use for

establishing the initial connection to the

Kafka cluster. The client will make use of

all servers irrespective of which servers are

specified here for bootstrapping—this list

only impacts the initial hosts used to

discover the full set of servers. This list

should be in the form

host1:port1,host2:port2,.... Since

these servers are just used for the initial

connection to discover the full cluster

membership (which may change

dynamically), this list need not contain the

full set of servers (you may want more than

one, though, in case a server is down).

list high

key.deserializer
Deserializer class for key that implements

the Deserializer interface.
class high

value.deserializer
Deserializer class for value that implements

the Deserializer interface.
class high

fetch.min.bytes

The minimum amount of data the server

should return for a fetch request. If

insufficient data is available the request will

wait for that much data to accumulate

before answering the request. The default

setting of 1 byte means that fetch requests

are answered as soon as a single byte of

data is available or the fetch request times

out waiting for data to arrive. Setting this to

something greater than 1 will cause the

server to wait for larger amounts of data to

accumulate which can improve server

throughput a bit at the cost of some

additional latency.

int 1 [0,...] high

group.id

A unique string that identifies the consumer

group this consumer belongs to. This

property is required if the consumer uses

either the group management functionality

by using subscribe(topic) or the Kafka-

based offset management strategy.

string "" high

heartbeat.interval.ms

The expected time between heartbeats to

the consumer coordinator when using

Kafka's group management facilities.

Heartbeats are used to ensure that the

consumer's session stays active and to

facilitate rebalancing when new consumers

join or leave the group. The value must be

set lower than session.timeout.ms, but

typically should be set no higher than 1/3 of

that value. It can be adjusted even lower to

int 3000 high

control the expected time for normal

rebalances.

max.partition.fetch.bytes

The maximum amount of data per-partition

the server will return. The maximum total

memory used for a request will be

#partitions *
max.partition.fetch.bytes. This size

must be at least as large as the maximum

message size the server allows or else it is

possible for the producer to send messages

larger than the consumer can fetch. If that

happens, the consumer can get stuck trying

to fetch a large message on a certain

partition.

int 1048576 [0,...] high

session.timeout.ms

The timeout used to detect failures when

using Kafka's group management facilities.

When a consumer's heartbeat is not

received within the session timeout, the

broker will mark the consumer as failed and

rebalance the group. Since heartbeats are

sent only when poll() is invoked, a higher

session timeout allows more time for

message processing in the consumer's poll

loop at the cost of a longer time to detect

hard failures. See also max.poll.records
for another option to control the processing

time in the poll loop. Note that the value

must be in the allowable range as

configured in the broker configuration by

group.min.session.timeout.ms and

group.max.session.timeout.ms.

int 30000 high

ssl.key.password
The password of the private key in the key

store file. This is optional for client.
password null high

ssl.keystore.location

The location of the key store file. This is

optional for client and can be used for two-

way authentication for client.

string null high

ssl.keystore.password

The store password for the key store

file.This is optional for client and only

needed if ssl.keystore.location is

configured.

password null high

ssl.truststore.location The location of the trust store file. string null high

ssl.truststore.password The password for the trust store file. password null high

auto.offset.reset

What to do when there is no initial offset in

Kafka or if the current offset does not exist

any more on the server (e.g. because that

data has been deleted):

earliest: automatically reset the offset

to the earliest offset

latest: automatically reset the offset to

the latest offset

none: throw exception to the

consumer if no previous offset is

found for the consumer's group

anything else: throw exception to the

consumer.

string latest

[latest,

earliest,

none]

medium

connections.max.idle.ms
Close idle connections after the number of

milliseconds specified by this config.
long 540000 medium

enable.auto.commit
If true the consumer's offset will be

periodically committed in the background.
boolean true medium

exclude.internal.topics

Whether records from internal topics (such

as offsets) should be exposed to the

consumer. If set to true the only way to

receive records from an internal topic is

subscribing to it.

boolean true medium

max.poll.records
The maximum number of records returned

in a single call to poll().
int 2147483647 [1,...] medium

partition.assignment.strategy

The class name of the partition assignment

strategy that the client will use to distribute

partition ownership amongst consumer

instances when group management is used

list [org.apache.kafka.clients.consumer.RangeAssignor] medium

receive.buffer.bytes

The size of the TCP receive buffer

(SO_RCVBUF) to use when reading data.

If the value is -1, the OS default will be

used.

int 65536 [0,...] medium

The configuration controls the maximum

amount of time the client will wait for the

request.timeout.ms
response of a request. If the response is not

received before the timeout elapses the

client will resend the request if necessary or

fail the request if retries are exhausted.

int 40000 [0,...] medium

sasl.kerberos.service.name

The Kerberos principal name that Kafka

runs as. This can be defined either in

Kafka's JAAS config or in Kafka's config.

string null medium

sasl.mechanism

SASL mechanism used for client

connections. This may be any mechanism

for which a security provider is available.

GSSAPI is the default mechanism.

string GSSAPI medium

security.protocol

Protocol used to communicate with brokers.

Valid values are: PLAINTEXT, SSL,

SASL_PLAINTEXT, SASL_SSL.

string PLAINTEXT medium

send.buffer.bytes

The size of the TCP send buffer

(SO_SNDBUF) to use when sending data.

If the value is -1, the OS default will be

used.

int 131072 [0,...] medium

ssl.enabled.protocols
The list of protocols enabled for SSL

connections.
list [TLSv1.2, TLSv1.1, TLSv1] medium

ssl.keystore.type
The file format of the key store file. This is

optional for client.
string JKS medium

ssl.protocol

The SSL protocol used to generate the

SSLContext. Default setting is TLS, which

is fine for most cases. Allowed values in

recent JVMs are TLS, TLSv1.1 and

TLSv1.2. SSL, SSLv2 and SSLv3 may be

supported in older JVMs, but their usage is

discouraged due to known security

vulnerabilities.

string TLS medium

ssl.provider

The name of the security provider used for

SSL connections. Default value is the

default security provider of the JVM.

string null medium

ssl.truststore.type The file format of the trust store file. string JKS medium

auto.commit.interval.ms

The frequency in milliseconds that the

consumer offsets are auto-committed to

Kafka if enable.auto.commit is set to

true.

long 5000 [0,...] low

check.crcs

Automatically check the CRC32 of the

records consumed. This ensures no on-the-

wire or on-disk corruption to the messages

occurred. This check adds some overhead,

so it may be disabled in cases seeking

extreme performance.

boolean true low

client.id

An id string to pass to the server when

making requests. The purpose of this is to

be able to track the source of requests

beyond just ip/port by allowing a logical

application name to be included in server-

side request logging.

string "" low

fetch.max.wait.ms

The maximum amount of time the server

will block before answering the fetch

request if there isn't sufficient data to

immediately satisfy the requirement given

by fetch.min.bytes.

int 500 [0,...] low

interceptor.classes

A list of classes to use as interceptors.

Implementing the ConsumerInterceptor
interface allows you to intercept (and

possibly mutate) records received by the

consumer. By default, there are no

interceptors.

list null low

metadata.max.age.ms

The period of time in milliseconds after

which we force a refresh of metadata even

if we haven't seen any partition leadership

changes to proactively discover any new

brokers or partitions.

long 300000 [0,...] low

metric.reporters

A list of classes to use as metrics reporters.

Implementing the MetricReporter
interface allows plugging in classes that

will be notified of new metric creation. The

JmxReporter is always included to register

JMX statistics.

list [] low

metrics.num.samples
The number of samples maintained to

compute metrics.
int 2 [1,...] low

metrics.sample.window.ms
The window of time a metrics sample is

computed over.
long 30000 [0,...] low

The amount of time to wait before

reconnect.backoff.ms
attempting to reconnect to a given host.

This avoids repeatedly connecting to a host

in a tight loop. This backoff applies to all

requests sent by the consumer to the broker.

long 50 [0,...] low

retry.backoff.ms

The amount of time to wait before

attempting to retry a failed request to a

given topic partition. This avoids repeatedly

sending requests in a tight loop under some

failure scenarios.

long 100 [0,...] low

sasl.kerberos.kinit.cmd Kerberos kinit command path. string /usr/bin/kinit low

sasl.kerberos.min.time.before.relogin
Login thread sleep time between refresh

attempts.
long 60000 low

sasl.kerberos.ticket.renew.jitter
Percentage of random jitter added to the

renewal time.
double 0.05 low

sasl.kerberos.ticket.renew.window.factor

Login thread will sleep until the specified

window factor of time from last refresh to

ticket's expiry has been reached, at which

time it will try to renew the ticket.

double 0.8 low

ssl.cipher.suites

A list of cipher suites. This is a named

combination of authentication, encryption,

MAC and key exchange algorithm used to

negotiate the security settings for a network

connection using TLS or SSL network

protocol.By default all the available cipher

suites are supported.

list null low

ssl.endpoint.identification.algorithm

The endpoint identification algorithm to

validate server hostname using server

certificate.

string null low

ssl.keymanager.algorithm

The algorithm used by key manager factory

for SSL connections. Default value is the

key manager factory algorithm configured

for the Java Virtual Machine.

string SunX509 low

ssl.trustmanager.algorithm

The algorithm used by trust manager

factory for SSL connections. Default value

is the trust manager factory algorithm

configured for the Java Virtual Machine.

string PKIX low

3.4 Kafka Connect Configs

Below is the configuration of the Kafka Connect framework.

Name Description Type Default Valid
Values Importance

config.storage.topic kafka topic to store configs string high

group.id A unique string that identifies the Connect cluster group this worker belongs to. string high

internal.key.converter
Converter class for internal key Connect data that implements the Converter
interface. Used for converting data like offsets and configs.

class high

internal.value.converter
Converter class for offset value Connect data that implements the Converter
interface. Used for converting data like offsets and configs.

class high

key.converter Converter class for key Connect data that implements the Converter interface. class high

offset.storage.topic kafka topic to store connector offsets in string high

status.storage.topic kafka topic to track connector and task status string high

value.converter Converter class for value Connect data that implements the Converter interface. class high

bootstrap.servers

A list of host/port pairs to use for establishing the initial connection to the Kafka

cluster. The client will make use of all servers irrespective of which servers are

specified here for bootstrapping—this list only impacts the initial hosts used to

discover the full set of servers. This list should be in the form

host1:port1,host2:port2,.... Since these servers are just used for the initial

connection to discover the full cluster membership (which may change

dynamically), this list need not contain the full set of servers (you may want

more than one, though, in case a server is down).

list [localhost:9092] high

heartbeat.interval.ms

The expected time between heartbeats to the group coordinator when using

Kafka's group management facilities. Heartbeats are used to ensure that the

worker's session stays active and to facilitate rebalancing when new members

join or leave the group. The value must be set lower than session.timeout.ms,

but typically should be set no higher than 1/3 of that value. It can be adjusted

even lower to control the expected time for normal rebalances.

int 3000 high

session.timeout.ms
The timeout used to detect failures when using Kafka's group management

facilities.
int 30000 high

ssl.key.password The password of the private key in the key store file. This is optional for client. password null high

ssl.keystore.location
The location of the key store file. This is optional for client and can be used for

two-way authentication for client.
string null high

ssl.keystore.password
The store password for the key store file.This is optional for client and only

needed if ssl.keystore.location is configured.
password null high

ssl.truststore.location The location of the trust store file. string null high

ssl.truststore.password The password for the trust store file. password null high

connections.max.idle.ms Close idle connections after the number of milliseconds specified by this config. long 540000 medium

receive.buffer.bytes The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If
the value is -1, the OS default will be used. int 32768 [0,...] medium

request.timeout.ms
The configuration controls the maximum amount of time the client will wait for
the response of a request. If the response is not received before the timeout
elapses the client will resend the request if necessary or fail the request if retries
are exhausted.

int 40000 [0,...] medium

sasl.kerberos.service.name The Kerberos principal name that Kafka runs as. This can be defined either in
Kafka's JAAS config or in Kafka's config. string null medium

sasl.mechanism SASL mechanism used for client connections. This may be any mechanism for
which a security provider is available. GSSAPI is the default mechanism. string GSSAPI medium

security.protocol Protocol used to communicate with brokers. Valid values are: PLAINTEXT,
SSL, SASL_PLAINTEXT, SASL_SSL. string PLAINTEXT medium

send.buffer.bytes The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the
value is -1, the OS default will be used. int 131072 [0,...] medium

ssl.enabled.protocols The list of protocols enabled for SSL connections. list
[TLSv1.2,
TLSv1.1,
TLSv1]

medium

ssl.keystore.type The file format of the key store file. This is optional for client. string JKS medium

ssl.protocol
The SSL protocol used to generate the SSLContext. Default setting is TLS,
which is fine for most cases. Allowed values in recent JVMs are TLS, TLSv1.1
and TLSv1.2. SSL, SSLv2 and SSLv3 may be supported in older JVMs, but
their usage is discouraged due to known security vulnerabilities.

string TLS medium

ssl.provider The name of the security provider used for SSL connections. Default value is the
default security provider of the JVM. string null medium

ssl.truststore.type The file format of the trust store file. string JKS medium

worker.sync.timeout.ms
When the worker is out of sync with other workers and needs to resynchronize
configurations, wait up to this amount of time before giving up, leaving the
group, and waiting a backoff period before rejoining.

int 3000 medium

worker.unsync.backoff.ms When the worker is out of sync with other workers and fails to catch up within
worker.sync.timeout.ms, leave the Connect cluster for this long before rejoining. int 300000 medium

access.control.allow.methods
Sets the methods supported for cross origin requests by setting the Access-
Control-Allow-Methods header. The default value of the Access-Control-Allow-
Methods header allows cross origin requests for GET, POST and HEAD.

string "" low

access.control.allow.origin

Value to set the Access-Control-Allow-Origin header to for REST API
requests.To enable cross origin access, set this to the domain of the application
that should be permitted to access the API, or '*' to allow access from any
domain. The default value only allows access from the domain of the REST
API.

string "" low

client.id
An id string to pass to the server when making requests. The purpose of this is to
be able to track the source of requests beyond just ip/port by allowing a logical
application name to be included in server-side request logging.

string "" low

metadata.max.age.ms
The period of time in milliseconds after which we force a refresh of metadata
even if we haven't seen any partition leadership changes to proactively discover
any new brokers or partitions.

long 300000 [0,...] low

metric.reporters
A list of classes to use as metrics reporters. Implementing the MetricReporter
interface allows plugging in classes that will be notified of new metric creation.
The JmxReporter is always included to register JMX statistics.

list [] low

metrics.num.samples The number of samples maintained to compute metrics. int 2 [1,...] low
metrics.sample.window.ms The window of time a metrics sample is computed over. long 30000 [0,...] low
offset.flush.interval.ms Interval at which to try committing offsets for tasks. long 60000 low

offset.flush.timeout.ms
Maximum number of milliseconds to wait for records to flush and partition
offset data to be committed to offset storage before cancelling the process and
restoring the offset data to be committed in a future attempt.

long 5000 low

reconnect.backoff.ms
The amount of time to wait before attempting to reconnect to a given host. This
avoids repeatedly connecting to a host in a tight loop. This backoff applies to all
requests sent by the consumer to the broker.

long 50 [0,...] low

rest.advertised.host.name If this is set, this is the hostname that will be given out to other workers to
connect to. string null low

rest.advertised.port If this is set, this is the port that will be given out to other workers to connect to. int null low
rest.host.name Hostname for the REST API. If this is set, it will only bind to this interface. string null low
rest.port Port for the REST API to listen on. int 8083 low

retry.backoff.ms
The amount of time to wait before attempting to retry a failed request to a given
topic partition. This avoids repeatedly sending requests in a tight loop under
some failure scenarios.

long 100 [0,...] low

sasl.kerberos.kinit.cmd Kerberos kinit command path. string /usr/bin/kinit low
sasl.kerberos.min.time.before.relogin Login thread sleep time between refresh attempts. long 60000 low
sasl.kerberos.ticket.renew.jitter Percentage of random jitter added to the renewal time. double 0.05 low

sasl.kerberos.ticket.renew.window.factor
Login thread will sleep until the specified window factor of time from last
refresh to ticket's expiry has been reached, at which time it will try to renew the
ticket.

double 0.8 low

ssl.cipher.suites
A list of cipher suites. This is a named combination of authentication,
encryption, MAC and key exchange algorithm used to negotiate the security
settings for a network connection using TLS or SSL network protocol.By default list null low

all the available cipher suites are supported.

ssl.endpoint.identification.algorithm The endpoint identification algorithm to validate server hostname using server
certificate. string null low

ssl.keymanager.algorithm The algorithm used by key manager factory for SSL connections. Default value
is the key manager factory algorithm configured for the Java Virtual Machine. string SunX509 low

ssl.trustmanager.algorithm The algorithm used by trust manager factory for SSL connections. Default value
is the trust manager factory algorithm configured for the Java Virtual Machine. string PKIX low

task.shutdown.graceful.timeout.ms
Amount of time to wait for tasks to shutdown gracefully. This is the total amount
of time, not per task. All task have shutdown triggered, then they are waited on
sequentially.

long 5000 low

3.5 Kafka Streams Configs

Below is the configuration of the Kafka Streams client library.

Name Description Type Default Valid
Values Importance

application.id

An identifier for the stream processing
application. Must be unique within the
Kafka cluster. It is used as 1) the
default client-id prefix, 2) the group-id
for membership management, 3) the
changelog topic prefix.

string high

bootstrap.servers

A list of host/port pairs to use for
establishing the initial connection to
the Kafka cluster. The client will
make use of all servers irrespective of
which servers are specified here for
bootstrapping—this list only impacts
the initial hosts used to discover the
full set of servers. This list should be
in the form
host1:port1,host2:port2,....
Since these servers are just used for
the initial connection to discover the
full cluster membership (which may
change dynamically), this list need not
contain the full set of servers (you
may want more than one, though, in
case a server is down).

list high

client.id

An id string to pass to the server when
making requests. The purpose of this
is to be able to track the source of
requests beyond just ip/port by
allowing a logical application name to
be included in server-side request
logging.

string "" high

zookeeper.connect Zookeeper connect string for Kafka
topics management. string "" high

key.serde Serializer / deserializer class for key
that implements the Serde interface. class class org.apache.kafka.common.serialization.Serdes$ByteArraySerde medium

partition.grouper
Partition grouper class that
implements the PartitionGrouper
interface.

class class org.apache.kafka.streams.processor.DefaultPartitionGrouper medium

replication.factor
The replication factor for change log
topics and repartition topics created
by the stream processing application.

int 1 medium

state.dir Directory location for state store. string /tmp/kafka-streams medium

timestamp.extractor
Timestamp extractor class that
implements the TimestampExtractor
interface.

class class
org.apache.kafka.streams.processor.ConsumerRecordTimestampExtractor medium

value.serde Serializer / deserializer class for value
that implements the Serde interface. class class org.apache.kafka.common.serialization.Serdes$ByteArraySerde medium

buffered.records.per.partition The maximum number of records to
buffer per partition. int 1000 low

commit.interval.ms The frequency with which to save the
position of the processor. long 30000 low

metric.reporters

A list of classes to use as metrics
reporters. Implementing the
MetricReporter interface allows
plugging in classes that will be
notified of new metric creation. The
JmxReporter is always included to
register JMX statistics.

list [] low

metrics.num.samples The number of samples maintained to
compute metrics. int 2 [1,...] low

The window of time a metrics sample

metrics.sample.window.ms is computed over. long 30000 [0,...] low

num.standby.replicas The number of standby replicas for
each task. int 0 low

num.stream.threads The number of threads to execute
stream processing. int 1 low

poll.ms The amount of time in milliseconds to
block waiting for input. long 100 low

state.cleanup.delay.ms
The amount of time in milliseconds to
wait before deleting state when a
partition has migrated.

long 60000 low

