Permalink
57 lines (47 sloc) 2.04 KB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
r"""
Counts words in UTF8 encoded, '\n' delimited text received from the network every second.
Usage: kafka_wordcount.py <zk> <topic>
To run this on your local machine, you need to setup Kafka and create a producer first, see
http://kafka.apache.org/documentation.html#quickstart
and then run the example
`$ bin/spark-submit --jars \
external/kafka-assembly/target/scala-*/spark-streaming-kafka-assembly-*.jar \
examples/src/main/python/streaming/kafka_wordcount.py \
localhost:2181 test`
"""
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: kafka_wordcount.py <zk> <topic>", file=sys.stderr)
sys.exit(-1)
sc = SparkContext(appName="PythonStreamingKafkaWordCount")
ssc = StreamingContext(sc, 1)
zkQuorum, topic = sys.argv[1:]
kvs = KafkaUtils.createStream(ssc, zkQuorum, "spark-streaming-consumer", {topic: 1})
lines = kvs.map(lambda x: x[1])
counts = lines.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a+b)
counts.pprint()
ssc.start()
ssc.awaitTermination()