Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
757 lines (680 sloc) 34.2 KB
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{execution, AnalysisException, Strategy}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateExpression
import org.apache.spark.sql.catalyst.optimizer.NormalizeFloatingNumbers
import org.apache.spark.sql.catalyst.planning._
import org.apache.spark.sql.catalyst.plans._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.plans.physical._
import org.apache.spark.sql.catalyst.streaming.InternalOutputModes
import org.apache.spark.sql.execution.adaptive.LogicalQueryStage
import org.apache.spark.sql.execution.columnar.{InMemoryRelation, InMemoryTableScanExec}
import org.apache.spark.sql.execution.command._
import org.apache.spark.sql.execution.exchange.ShuffleExchangeExec
import org.apache.spark.sql.execution.joins.{BuildLeft, BuildRight, BuildSide}
import org.apache.spark.sql.execution.python._
import org.apache.spark.sql.execution.streaming._
import org.apache.spark.sql.execution.streaming.sources.MemoryPlan
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.streaming.{OutputMode, StreamingQuery}
import org.apache.spark.sql.types.StructType
/**
* Converts a logical plan into zero or more SparkPlans. This API is exposed for experimenting
* with the query planner and is not designed to be stable across spark releases. Developers
* writing libraries should instead consider using the stable APIs provided in
* [[org.apache.spark.sql.sources]]
*/
abstract class SparkStrategy extends GenericStrategy[SparkPlan] {
override protected def planLater(plan: LogicalPlan): SparkPlan = PlanLater(plan)
}
case class PlanLater(plan: LogicalPlan) extends LeafExecNode {
override def output: Seq[Attribute] = plan.output
protected override def doExecute(): RDD[InternalRow] = {
throw new UnsupportedOperationException()
}
}
abstract class SparkStrategies extends QueryPlanner[SparkPlan] {
self: SparkPlanner =>
override def plan(plan: LogicalPlan): Iterator[SparkPlan] = {
super.plan(plan).map { p =>
val logicalPlan = plan match {
case ReturnAnswer(rootPlan) => rootPlan
case _ => plan
}
p.setLogicalLink(logicalPlan)
p
}
}
/**
* Plans special cases of limit operators.
*/
object SpecialLimits extends Strategy {
override def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case ReturnAnswer(rootPlan) => rootPlan match {
case Limit(IntegerLiteral(limit), Sort(order, true, child))
if limit < conf.topKSortFallbackThreshold =>
TakeOrderedAndProjectExec(limit, order, child.output, planLater(child)) :: Nil
case Limit(IntegerLiteral(limit), Project(projectList, Sort(order, true, child)))
if limit < conf.topKSortFallbackThreshold =>
TakeOrderedAndProjectExec(limit, order, projectList, planLater(child)) :: Nil
case Limit(IntegerLiteral(limit), child) =>
CollectLimitExec(limit, planLater(child)) :: Nil
case other => planLater(other) :: Nil
}
case Limit(IntegerLiteral(limit), Sort(order, true, child))
if limit < conf.topKSortFallbackThreshold =>
TakeOrderedAndProjectExec(limit, order, child.output, planLater(child)) :: Nil
case Limit(IntegerLiteral(limit), Project(projectList, Sort(order, true, child)))
if limit < conf.topKSortFallbackThreshold =>
TakeOrderedAndProjectExec(limit, order, projectList, planLater(child)) :: Nil
case _ => Nil
}
}
/**
* Select the proper physical plan for join based on join strategy hints, the availability of
* equi-join keys and the sizes of joining relations. Below are the existing join strategies,
* their characteristics and their limitations.
*
* - Broadcast hash join (BHJ):
* Only supported for equi-joins, while the join keys do not need to be sortable.
* Supported for all join types except full outer joins.
* BHJ usually performs faster than the other join algorithms when the broadcast side is
* small. However, broadcasting tables is a network-intensive operation and it could cause
* OOM or perform badly in some cases, especially when the build/broadcast side is big.
*
* - Shuffle hash join:
* Only supported for equi-joins, while the join keys do not need to be sortable.
* Supported for all join types except full outer joins.
*
* - Shuffle sort merge join (SMJ):
* Only supported for equi-joins and the join keys have to be sortable.
* Supported for all join types.
*
* - Broadcast nested loop join (BNLJ):
* Supports both equi-joins and non-equi-joins.
* Supports all the join types, but the implementation is optimized for:
* 1) broadcasting the left side in a right outer join;
* 2) broadcasting the right side in a left outer, left semi, left anti or existence join;
* 3) broadcasting either side in an inner-like join.
* For other cases, we need to scan the data multiple times, which can be rather slow.
*
* - Shuffle-and-replicate nested loop join (a.k.a. cartesian product join):
* Supports both equi-joins and non-equi-joins.
* Supports only inner like joins.
*/
object JoinSelection extends Strategy with PredicateHelper {
/**
* Matches a plan whose output should be small enough to be used in broadcast join.
*/
private def canBroadcast(plan: LogicalPlan): Boolean = {
plan.stats.sizeInBytes >= 0 && plan.stats.sizeInBytes <= conf.autoBroadcastJoinThreshold
}
/**
* Matches a plan whose single partition should be small enough to build a hash table.
*
* Note: this assume that the number of partition is fixed, requires additional work if it's
* dynamic.
*/
private def canBuildLocalHashMap(plan: LogicalPlan): Boolean = {
plan.stats.sizeInBytes < conf.autoBroadcastJoinThreshold * conf.numShufflePartitions
}
/**
* Returns whether plan a is much smaller (3X) than plan b.
*
* The cost to build hash map is higher than sorting, we should only build hash map on a table
* that is much smaller than other one. Since we does not have the statistic for number of rows,
* use the size of bytes here as estimation.
*/
private def muchSmaller(a: LogicalPlan, b: LogicalPlan): Boolean = {
a.stats.sizeInBytes * 3 <= b.stats.sizeInBytes
}
private def canBuildRight(joinType: JoinType): Boolean = joinType match {
case _: InnerLike | LeftOuter | LeftSemi | LeftAnti | _: ExistenceJoin => true
case _ => false
}
private def canBuildLeft(joinType: JoinType): Boolean = joinType match {
case _: InnerLike | RightOuter => true
case _ => false
}
private def getBuildSide(
wantToBuildLeft: Boolean,
wantToBuildRight: Boolean,
left: LogicalPlan,
right: LogicalPlan): Option[BuildSide] = {
if (wantToBuildLeft && wantToBuildRight) {
// returns the smaller side base on its estimated physical size, if we want to build the
// both sides.
Some(getSmallerSide(left, right))
} else if (wantToBuildLeft) {
Some(BuildLeft)
} else if (wantToBuildRight) {
Some(BuildRight)
} else {
None
}
}
private def getSmallerSide(left: LogicalPlan, right: LogicalPlan) = {
if (right.stats.sizeInBytes <= left.stats.sizeInBytes) BuildRight else BuildLeft
}
private def hintToBroadcastLeft(hint: JoinHint): Boolean = {
hint.leftHint.exists(_.strategy.contains(BROADCAST))
}
private def hintToBroadcastRight(hint: JoinHint): Boolean = {
hint.rightHint.exists(_.strategy.contains(BROADCAST))
}
private def hintToShuffleHashLeft(hint: JoinHint): Boolean = {
hint.leftHint.exists(_.strategy.contains(SHUFFLE_HASH))
}
private def hintToShuffleHashRight(hint: JoinHint): Boolean = {
hint.rightHint.exists(_.strategy.contains(SHUFFLE_HASH))
}
private def hintToSortMergeJoin(hint: JoinHint): Boolean = {
hint.leftHint.exists(_.strategy.contains(SHUFFLE_MERGE)) ||
hint.rightHint.exists(_.strategy.contains(SHUFFLE_MERGE))
}
private def hintToShuffleReplicateNL(hint: JoinHint): Boolean = {
hint.leftHint.exists(_.strategy.contains(SHUFFLE_REPLICATE_NL)) ||
hint.rightHint.exists(_.strategy.contains(SHUFFLE_REPLICATE_NL))
}
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
// If it is an equi-join, we first look at the join hints w.r.t. the following order:
// 1. broadcast hint: pick broadcast hash join if the join type is supported. If both sides
// have the broadcast hints, choose the smaller side (based on stats) to broadcast.
// 2. sort merge hint: pick sort merge join if join keys are sortable.
// 3. shuffle hash hint: We pick shuffle hash join if the join type is supported. If both
// sides have the shuffle hash hints, choose the smaller side (based on stats) as the
// build side.
// 4. shuffle replicate NL hint: pick cartesian product if join type is inner like.
//
// If there is no hint or the hints are not applicable, we follow these rules one by one:
// 1. Pick broadcast hash join if one side is small enough to broadcast, and the join type
// is supported. If both sides are small, choose the smaller side (based on stats)
// to broadcast.
// 2. Pick shuffle hash join if one side is small enough to build local hash map, and is
// much smaller than the other side, and `spark.sql.join.preferSortMergeJoin` is false.
// 3. Pick sort merge join if the join keys are sortable.
// 4. Pick cartesian product if join type is inner like.
// 5. Pick broadcast nested loop join as the final solution. It may OOM but we don't have
// other choice.
case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right, hint) =>
def createBroadcastHashJoin(buildLeft: Boolean, buildRight: Boolean) = {
val wantToBuildLeft = canBuildLeft(joinType) && buildLeft
val wantToBuildRight = canBuildRight(joinType) && buildRight
getBuildSide(wantToBuildLeft, wantToBuildRight, left, right).map { buildSide =>
Seq(joins.BroadcastHashJoinExec(
leftKeys,
rightKeys,
joinType,
buildSide,
condition,
planLater(left),
planLater(right)))
}
}
def createShuffleHashJoin(buildLeft: Boolean, buildRight: Boolean) = {
val wantToBuildLeft = canBuildLeft(joinType) && buildLeft
val wantToBuildRight = canBuildRight(joinType) && buildRight
getBuildSide(wantToBuildLeft, wantToBuildRight, left, right).map { buildSide =>
Seq(joins.ShuffledHashJoinExec(
leftKeys,
rightKeys,
joinType,
buildSide,
condition,
planLater(left),
planLater(right)))
}
}
def createSortMergeJoin() = {
if (RowOrdering.isOrderable(leftKeys)) {
Some(Seq(joins.SortMergeJoinExec(
leftKeys, rightKeys, joinType, condition, planLater(left), planLater(right))))
} else {
None
}
}
def createCartesianProduct() = {
if (joinType.isInstanceOf[InnerLike]) {
Some(Seq(joins.CartesianProductExec(planLater(left), planLater(right), condition)))
} else {
None
}
}
def createJoinWithoutHint() = {
createBroadcastHashJoin(
canBroadcast(left) && !hint.leftHint.exists(_.strategy.contains(NO_BROADCAST_HASH)),
canBroadcast(right) && !hint.rightHint.exists(_.strategy.contains(NO_BROADCAST_HASH)))
.orElse {
if (!conf.preferSortMergeJoin) {
createShuffleHashJoin(
canBuildLocalHashMap(left) && muchSmaller(left, right),
canBuildLocalHashMap(right) && muchSmaller(right, left))
} else {
None
}
}
.orElse(createSortMergeJoin())
.orElse(createCartesianProduct())
.getOrElse {
// This join could be very slow or OOM
val buildSide = getSmallerSide(left, right)
Seq(joins.BroadcastNestedLoopJoinExec(
planLater(left), planLater(right), buildSide, joinType, condition))
}
}
createBroadcastHashJoin(hintToBroadcastLeft(hint), hintToBroadcastRight(hint))
.orElse { if (hintToSortMergeJoin(hint)) createSortMergeJoin() else None }
.orElse(createShuffleHashJoin(hintToShuffleHashLeft(hint), hintToShuffleHashRight(hint)))
.orElse { if (hintToShuffleReplicateNL(hint)) createCartesianProduct() else None }
.getOrElse(createJoinWithoutHint())
// If it is not an equi-join, we first look at the join hints w.r.t. the following order:
// 1. broadcast hint: pick broadcast nested loop join. If both sides have the broadcast
// hints, choose the smaller side (based on stats) to broadcast for inner and full joins,
// choose the left side for right join, and choose right side for left join.
// 2. shuffle replicate NL hint: pick cartesian product if join type is inner like.
//
// If there is no hint or the hints are not applicable, we follow these rules one by one:
// 1. Pick broadcast nested loop join if one side is small enough to broadcast. If only left
// side is broadcast-able and it's left join, or only right side is broadcast-able and
// it's right join, we skip this rule. If both sides are small, broadcasts the smaller
// side for inner and full joins, broadcasts the left side for right join, and broadcasts
// right side for left join.
// 2. Pick cartesian product if join type is inner like.
// 3. Pick broadcast nested loop join as the final solution. It may OOM but we don't have
// other choice. It broadcasts the smaller side for inner and full joins, broadcasts the
// left side for right join, and broadcasts right side for left join.
case logical.Join(left, right, joinType, condition, hint) =>
val desiredBuildSide = if (joinType.isInstanceOf[InnerLike] || joinType == FullOuter) {
getSmallerSide(left, right)
} else {
// For perf reasons, `BroadcastNestedLoopJoinExec` prefers to broadcast left side if
// it's a right join, and broadcast right side if it's a left join.
// TODO: revisit it. If left side is much smaller than the right side, it may be better
// to broadcast the left side even if it's a left join.
if (canBuildLeft(joinType)) BuildLeft else BuildRight
}
def createBroadcastNLJoin(buildLeft: Boolean, buildRight: Boolean) = {
val maybeBuildSide = if (buildLeft && buildRight) {
Some(desiredBuildSide)
} else if (buildLeft) {
Some(BuildLeft)
} else if (buildRight) {
Some(BuildRight)
} else {
None
}
maybeBuildSide.map { buildSide =>
Seq(joins.BroadcastNestedLoopJoinExec(
planLater(left), planLater(right), buildSide, joinType, condition))
}
}
def createCartesianProduct() = {
if (joinType.isInstanceOf[InnerLike]) {
Some(Seq(joins.CartesianProductExec(planLater(left), planLater(right), condition)))
} else {
None
}
}
def createJoinWithoutHint() = {
createBroadcastNLJoin(canBroadcast(left), canBroadcast(right))
.orElse(createCartesianProduct())
.getOrElse {
// This join could be very slow or OOM
Seq(joins.BroadcastNestedLoopJoinExec(
planLater(left), planLater(right), desiredBuildSide, joinType, condition))
}
}
createBroadcastNLJoin(hintToBroadcastLeft(hint), hintToBroadcastRight(hint))
.orElse { if (hintToShuffleReplicateNL(hint)) createCartesianProduct() else None }
.getOrElse(createJoinWithoutHint())
// --- Cases where this strategy does not apply ---------------------------------------------
case _ => Nil
}
}
/**
* Used to plan streaming aggregation queries that are computed incrementally as part of a
* [[StreamingQuery]]. Currently this rule is injected into the planner
* on-demand, only when planning in a [[org.apache.spark.sql.execution.streaming.StreamExecution]]
*/
object StatefulAggregationStrategy extends Strategy {
override def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case _ if !plan.isStreaming => Nil
case EventTimeWatermark(columnName, delay, child) =>
EventTimeWatermarkExec(columnName, delay, planLater(child)) :: Nil
case PhysicalAggregation(
namedGroupingExpressions, aggregateExpressions, rewrittenResultExpressions, child) =>
if (aggregateExpressions.exists(PythonUDF.isGroupedAggPandasUDF)) {
throw new AnalysisException(
"Streaming aggregation doesn't support group aggregate pandas UDF")
}
val stateVersion = conf.getConf(SQLConf.STREAMING_AGGREGATION_STATE_FORMAT_VERSION)
// Ideally this should be done in `NormalizeFloatingNumbers`, but we do it here because
// `groupingExpressions` is not extracted during logical phase.
val normalizedGroupingExpressions = namedGroupingExpressions.map { e =>
NormalizeFloatingNumbers.normalize(e) match {
case n: NamedExpression => n
case other => Alias(other, e.name)(exprId = e.exprId)
}
}
aggregate.AggUtils.planStreamingAggregation(
normalizedGroupingExpressions,
aggregateExpressions.map(expr => expr.asInstanceOf[AggregateExpression]),
rewrittenResultExpressions,
stateVersion,
planLater(child))
case _ => Nil
}
}
/**
* Used to plan the streaming deduplicate operator.
*/
object StreamingDeduplicationStrategy extends Strategy {
override def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case Deduplicate(keys, child) if child.isStreaming =>
StreamingDeduplicateExec(keys, planLater(child)) :: Nil
case _ => Nil
}
}
/**
* Used to plan the streaming global limit operator for streams in append mode.
* We need to check for either a direct Limit or a Limit wrapped in a ReturnAnswer operator,
* following the example of the SpecialLimits Strategy above.
* Streams with limit in Append mode use the stateful StreamingGlobalLimitExec.
* Streams with limit in Complete mode use the stateless CollectLimitExec operator.
* Limit is unsupported for streams in Update mode.
*/
case class StreamingGlobalLimitStrategy(outputMode: OutputMode) extends Strategy {
override def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case ReturnAnswer(rootPlan) => rootPlan match {
case Limit(IntegerLiteral(limit), child)
if plan.isStreaming && outputMode == InternalOutputModes.Append =>
StreamingGlobalLimitExec(limit, LocalLimitExec(limit, planLater(child))) :: Nil
case _ => Nil
}
case Limit(IntegerLiteral(limit), child)
if plan.isStreaming && outputMode == InternalOutputModes.Append =>
StreamingGlobalLimitExec(limit, LocalLimitExec(limit, planLater(child))) :: Nil
case _ => Nil
}
}
object StreamingJoinStrategy extends Strategy {
override def apply(plan: LogicalPlan): Seq[SparkPlan] = {
plan match {
case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right, _)
if left.isStreaming && right.isStreaming =>
val stateVersion = conf.getConf(SQLConf.STREAMING_JOIN_STATE_FORMAT_VERSION)
new StreamingSymmetricHashJoinExec(leftKeys, rightKeys, joinType, condition,
stateVersion, planLater(left), planLater(right)) :: Nil
case Join(left, right, _, _, _) if left.isStreaming && right.isStreaming =>
throw new AnalysisException(
"Stream-stream join without equality predicate is not supported", plan = Some(plan))
case _ => Nil
}
}
}
/**
* Used to plan the aggregate operator for expressions based on the AggregateFunction2 interface.
*/
object Aggregation extends Strategy {
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case PhysicalAggregation(groupingExpressions, aggExpressions, resultExpressions, child)
if aggExpressions.forall(expr => expr.isInstanceOf[AggregateExpression]) =>
val aggregateExpressions = aggExpressions.map(expr =>
expr.asInstanceOf[AggregateExpression])
val (functionsWithDistinct, functionsWithoutDistinct) =
aggregateExpressions.partition(_.isDistinct)
if (functionsWithDistinct.map(_.aggregateFunction.children.toSet).distinct.length > 1) {
// This is a sanity check. We should not reach here when we have multiple distinct
// column sets. Our `RewriteDistinctAggregates` should take care this case.
sys.error("You hit a query analyzer bug. Please report your query to " +
"Spark user mailing list.")
}
// Ideally this should be done in `NormalizeFloatingNumbers`, but we do it here because
// `groupingExpressions` is not extracted during logical phase.
val normalizedGroupingExpressions = groupingExpressions.map { e =>
NormalizeFloatingNumbers.normalize(e) match {
case n: NamedExpression => n
case other => Alias(other, e.name)(exprId = e.exprId)
}
}
val aggregateOperator =
if (functionsWithDistinct.isEmpty) {
aggregate.AggUtils.planAggregateWithoutDistinct(
normalizedGroupingExpressions,
aggregateExpressions,
resultExpressions,
planLater(child))
} else {
aggregate.AggUtils.planAggregateWithOneDistinct(
normalizedGroupingExpressions,
functionsWithDistinct,
functionsWithoutDistinct,
resultExpressions,
planLater(child))
}
aggregateOperator
case PhysicalAggregation(groupingExpressions, aggExpressions, resultExpressions, child)
if aggExpressions.forall(expr => expr.isInstanceOf[PythonUDF]) =>
val udfExpressions = aggExpressions.map(expr => expr.asInstanceOf[PythonUDF])
Seq(execution.python.AggregateInPandasExec(
groupingExpressions,
udfExpressions,
resultExpressions,
planLater(child)))
case PhysicalAggregation(_, _, _, _) =>
// If cannot match the two cases above, then it's an error
throw new AnalysisException(
"Cannot use a mixture of aggregate function and group aggregate pandas UDF")
case _ => Nil
}
}
object Window extends Strategy {
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case PhysicalWindow(
WindowFunctionType.SQL, windowExprs, partitionSpec, orderSpec, child) =>
execution.window.WindowExec(
windowExprs, partitionSpec, orderSpec, planLater(child)) :: Nil
case PhysicalWindow(
WindowFunctionType.Python, windowExprs, partitionSpec, orderSpec, child) =>
execution.python.WindowInPandasExec(
windowExprs, partitionSpec, orderSpec, planLater(child)) :: Nil
case _ => Nil
}
}
protected lazy val singleRowRdd = sparkContext.parallelize(Seq(InternalRow()), 1)
object InMemoryScans extends Strategy {
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case PhysicalOperation(projectList, filters, mem: InMemoryRelation) =>
pruneFilterProject(
projectList,
filters,
identity[Seq[Expression]], // All filters still need to be evaluated.
InMemoryTableScanExec(_, filters, mem)) :: Nil
case _ => Nil
}
}
/**
* This strategy is just for explaining `Dataset/DataFrame` created by `spark.readStream`.
* It won't affect the execution, because `StreamingRelation` will be replaced with
* `StreamingExecutionRelation` in `StreamingQueryManager` and `StreamingExecutionRelation` will
* be replaced with the real relation using the `Source` in `StreamExecution`.
*/
object StreamingRelationStrategy extends Strategy {
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case s: StreamingRelation =>
StreamingRelationExec(s.sourceName, s.output) :: Nil
case s: StreamingExecutionRelation =>
StreamingRelationExec(s.toString, s.output) :: Nil
case s: StreamingRelationV2 =>
StreamingRelationExec(s.sourceName, s.output) :: Nil
case _ => Nil
}
}
/**
* Strategy to convert [[FlatMapGroupsWithState]] logical operator to physical operator
* in streaming plans. Conversion for batch plans is handled by [[BasicOperators]].
*/
object FlatMapGroupsWithStateStrategy extends Strategy {
override def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case FlatMapGroupsWithState(
func, keyDeser, valueDeser, groupAttr, dataAttr, outputAttr, stateEnc, outputMode, _,
timeout, child) =>
val stateVersion = conf.getConf(SQLConf.FLATMAPGROUPSWITHSTATE_STATE_FORMAT_VERSION)
val execPlan = FlatMapGroupsWithStateExec(
func, keyDeser, valueDeser, groupAttr, dataAttr, outputAttr, None, stateEnc, stateVersion,
outputMode, timeout, batchTimestampMs = None, eventTimeWatermark = None, planLater(child))
execPlan :: Nil
case _ =>
Nil
}
}
/**
* Strategy to convert EvalPython logical operator to physical operator.
*/
object PythonEvals extends Strategy {
override def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case ArrowEvalPython(udfs, output, child, evalType) =>
ArrowEvalPythonExec(udfs, output, planLater(child), evalType) :: Nil
case BatchEvalPython(udfs, output, child) =>
BatchEvalPythonExec(udfs, output, planLater(child)) :: Nil
case _ =>
Nil
}
}
object BasicOperators extends Strategy {
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case d: DataWritingCommand => DataWritingCommandExec(d, planLater(d.query)) :: Nil
case r: RunnableCommand => ExecutedCommandExec(r) :: Nil
case MemoryPlan(sink, output) =>
val encoder = RowEncoder(StructType.fromAttributes(output))
LocalTableScanExec(output, sink.allData.map(r => encoder.toRow(r).copy())) :: Nil
case logical.Distinct(child) =>
throw new IllegalStateException(
"logical distinct operator should have been replaced by aggregate in the optimizer")
case logical.Intersect(left, right, false) =>
throw new IllegalStateException(
"logical intersect operator should have been replaced by semi-join in the optimizer")
case logical.Intersect(left, right, true) =>
throw new IllegalStateException(
"logical intersect operator should have been replaced by union, aggregate" +
" and generate operators in the optimizer")
case logical.Except(left, right, false) =>
throw new IllegalStateException(
"logical except operator should have been replaced by anti-join in the optimizer")
case logical.Except(left, right, true) =>
throw new IllegalStateException(
"logical except (all) operator should have been replaced by union, aggregate" +
" and generate operators in the optimizer")
case logical.ResolvedHint(child, hints) =>
throw new IllegalStateException(
"ResolvedHint operator should have been replaced by join hint in the optimizer")
case logical.DeserializeToObject(deserializer, objAttr, child) =>
execution.DeserializeToObjectExec(deserializer, objAttr, planLater(child)) :: Nil
case logical.SerializeFromObject(serializer, child) =>
execution.SerializeFromObjectExec(serializer, planLater(child)) :: Nil
case logical.MapPartitions(f, objAttr, child) =>
execution.MapPartitionsExec(f, objAttr, planLater(child)) :: Nil
case logical.MapPartitionsInR(f, p, b, is, os, objAttr, child) =>
execution.MapPartitionsExec(
execution.r.MapPartitionsRWrapper(f, p, b, is, os), objAttr, planLater(child)) :: Nil
case logical.FlatMapGroupsInR(f, p, b, is, os, key, value, grouping, data, objAttr, child) =>
execution.FlatMapGroupsInRExec(f, p, b, is, os, key, value, grouping,
data, objAttr, planLater(child)) :: Nil
case logical.FlatMapGroupsInRWithArrow(f, p, b, is, ot, key, grouping, child) =>
execution.FlatMapGroupsInRWithArrowExec(
f, p, b, is, ot, key, grouping, planLater(child)) :: Nil
case logical.MapPartitionsInRWithArrow(f, p, b, is, ot, child) =>
execution.MapPartitionsInRWithArrowExec(
f, p, b, is, ot, planLater(child)) :: Nil
case logical.FlatMapGroupsInPandas(grouping, func, output, child) =>
execution.python.FlatMapGroupsInPandasExec(grouping, func, output, planLater(child)) :: Nil
case logical.FlatMapCoGroupsInPandas(leftGroup, rightGroup, func, output, left, right) =>
execution.python.FlatMapCoGroupsInPandasExec(
leftGroup, rightGroup, func, output, planLater(left), planLater(right)) :: Nil
case logical.MapInPandas(func, output, child) =>
execution.python.MapInPandasExec(func, output, planLater(child)) :: Nil
case logical.MapElements(f, _, _, objAttr, child) =>
execution.MapElementsExec(f, objAttr, planLater(child)) :: Nil
case logical.AppendColumns(f, _, _, in, out, child) =>
execution.AppendColumnsExec(f, in, out, planLater(child)) :: Nil
case logical.AppendColumnsWithObject(f, childSer, newSer, child) =>
execution.AppendColumnsWithObjectExec(f, childSer, newSer, planLater(child)) :: Nil
case logical.MapGroups(f, key, value, grouping, data, objAttr, child) =>
execution.MapGroupsExec(f, key, value, grouping, data, objAttr, planLater(child)) :: Nil
case logical.FlatMapGroupsWithState(
f, key, value, grouping, data, output, _, _, _, timeout, child) =>
execution.MapGroupsExec(
f, key, value, grouping, data, output, timeout, planLater(child)) :: Nil
case logical.CoGroup(f, key, lObj, rObj, lGroup, rGroup, lAttr, rAttr, oAttr, left, right) =>
execution.CoGroupExec(
f, key, lObj, rObj, lGroup, rGroup, lAttr, rAttr, oAttr,
planLater(left), planLater(right)) :: Nil
case logical.Repartition(numPartitions, shuffle, child) =>
if (shuffle) {
ShuffleExchangeExec(RoundRobinPartitioning(numPartitions),
planLater(child), canChangeNumPartitions = false) :: Nil
} else {
execution.CoalesceExec(numPartitions, planLater(child)) :: Nil
}
case logical.Sort(sortExprs, global, child) =>
execution.SortExec(sortExprs, global, planLater(child)) :: Nil
case logical.Project(projectList, child) =>
execution.ProjectExec(projectList, planLater(child)) :: Nil
case logical.Filter(condition, child) =>
execution.FilterExec(condition, planLater(child)) :: Nil
case f: logical.TypedFilter =>
execution.FilterExec(f.typedCondition(f.deserializer), planLater(f.child)) :: Nil
case e @ logical.Expand(_, _, child) =>
execution.ExpandExec(e.projections, e.output, planLater(child)) :: Nil
case logical.Sample(lb, ub, withReplacement, seed, child) =>
execution.SampleExec(lb, ub, withReplacement, seed, planLater(child)) :: Nil
case logical.LocalRelation(output, data, _) =>
LocalTableScanExec(output, data) :: Nil
case logical.LocalLimit(IntegerLiteral(limit), child) =>
execution.LocalLimitExec(limit, planLater(child)) :: Nil
case logical.GlobalLimit(IntegerLiteral(limit), child) =>
execution.GlobalLimitExec(limit, planLater(child)) :: Nil
case logical.Union(unionChildren) =>
execution.UnionExec(unionChildren.map(planLater)) :: Nil
case g @ logical.Generate(generator, _, outer, _, _, child) =>
execution.GenerateExec(
generator, g.requiredChildOutput, outer,
g.qualifiedGeneratorOutput, planLater(child)) :: Nil
case _: logical.OneRowRelation =>
execution.RDDScanExec(Nil, singleRowRdd, "OneRowRelation") :: Nil
case r: logical.Range =>
execution.RangeExec(r) :: Nil
case r: logical.RepartitionByExpression =>
exchange.ShuffleExchangeExec(
r.partitioning, planLater(r.child), canChangeNumPartitions = false) :: Nil
case ExternalRDD(outputObjAttr, rdd) => ExternalRDDScanExec(outputObjAttr, rdd) :: Nil
case r: LogicalRDD =>
RDDScanExec(r.output, r.rdd, "ExistingRDD", r.outputPartitioning, r.outputOrdering) :: Nil
case _: UpdateTable =>
throw new UnsupportedOperationException(s"UPDATE TABLE is not supported temporarily.")
case _: MergeIntoTable =>
throw new UnsupportedOperationException(s"MERGE INTO TABLE is not supported temporarily.")
case _ => Nil
}
}
}
You can’t perform that action at this time.