Dynamic Resource Allocation for
Structured streaming

Author: Pavan Kotikalapudi
Shepherd: TBD

Ticket: SPARK-24815

Q1. What are you trying to do? Articulate your objectives using
absolutely no jargon.

Provide Spark structured streaming with the ability to dynamically scale
resources based on the heuristics of trigger interval.

Q2. What problem is this proposal NOT designed to solve?

This solution is not meant to be used in conjunction with traditional DRA configs
to run spark batch jobs.

Q3. How is it done today, and what are the limits of current
practice?

Currently there is no implementation of dynamic resource allocation of spark
cluster resources for structured streaming in spark. Spark provides dynamic
allocation scheduling to adjust resources based on the workload. But Spark’s
dynamic allocation is typically suitable to address use cases of batch mode (i.e
jobs which run at scheduled times), it doesn’t scale out/back well for streaming
cases.

If we use batch based DRA for streaming workloads It will scale out when there
are spark tasks queued in a particular spark stage of the job and scale back

when the executors are idle without any running tasks, that sounds alright right?

Not really, We have 2 issues here:

mailto:pkotikalapudi@twilio.com
https://issues.apache.org/jira/browse/SPARK-24815
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://www.slideshare.net/databricks/dynamic-allocation-in-spark

1. Scale out policy is based on
“spark.dynamicAllocation.schedulerBacklogTimeout™ config and it scales
out if a job is running in a particular stage for more than time mentioned in
the config above. That would be a problem if multiple stages of a job are
all small enough that it wouldn’t cross schedulerBacklogTimeout but the
overall runtime of the job (i.e micro-batch) crosses the scale-out threshold.

2. The scale back policy is by idleness of an executor. If we set executor idle
timeout below trigger interval, it will constantly decommission and upon
new micro-batch scales out executors every trigger interval. That will
cause additional executor bootstrapping delays as we have streaming
micro-batches which trigger every few mins/secs. This will hurt the flow
especially in stateful streaming jobs where you have to transfer state in
and out to checkpointing/decommissioning storage for each micro-batch.
To avoid this If we set the executor idle timeout above trigger interval, the
executors never become idle as they are used by spark Job for max
parallelism based on Source.

Q4. What is new in your approach and why do you think it will be
successful?

The new approach is to enable DRA for Structured Streaming apps based on the
heuristics of Trigger interval.

The trigger interval will help us determine the scale-out and scale-back
thresholds of the application. We should use the thresholds to update spark
configs to see DRA in play.This will help us auto-scale and utilize less resources
to the max possible duration of a trigger interval.

The Query execution time upon utilization of this approach tightly hugs the
scale-out threshold throughout the peak traffic hours and consumes as less
executors as possible to process incoming events inside a trigger interval time,
during the non-peak hours it will be get closer or below the scale-back threshold
and consumes the least amount of executors required to run the app and
process the incoming records.

A POC of this implementation has already been running successfully and yielded
up to 66% of cost savings running structured streaming apps

Q5. Who cares? If you are successful, what difference will it
make?

Everyone who uses Spark structured streaming and has a pattern of varied
incoming traffic throughout the day. This will help in savings on the costs incurred
when there is less traffic and resource cycles wasted when the trigger interval is
set high.

Q6. What are the risks?

e Might not be useful for streaming apps which will have multiple jobs run.
e Need to be well tested for all streaming use cases

Q7. How long will it take?

There is already an Implementation done. Upon review and recommendation, we
can decide on better approval/timelines and better testing.

Q8. What are the mid-term and final “exams” to check for
success?

The DRA for structured streaming should be available for future versions of
spark.

Appendix A. Proposed API Changes. Optional section defining
APls changes, if any. Backward and forward compatibility must be
taken into account.

Addition of new spark DRA configurations in addition to current spark DRA
configurations.

Java

enable dynamic resource allocation for structured streaming applications

"spark.dynamicAllocation.streaming.enabled": true

The scale out policy/threshold:

We use the same scale-out policy of a batch job but we use that to build considering the
trigger Interval. If we want the streaming app to run at most 90% of the trigger interval
duration (for 60s interval), we set scale out at 54s

Java

max time spark waits in each micro-batch before scaling out for
executors (scale-out trigger)

"spark.dynamicAllocation.schedulerBacklogTimeout": 54s

further delay after schedulerBacklogTimeout when the app scales out
executors exponentially

"spark.dynamicAllocation.sustainedSchedulerBacklogTimeout": 30s

The scale back policy/threshold:

We utilize some of the scale-back policy configurations of the batch job and add our
own. Again, for streaming workloads we consider setting the scale-back threshold at the
time of the trigger interval below which we feel the cluster resources are underutilized.
Eg: For a trigger interval of 60s, if we decide the cluster should be running at least half
of the time we should set our scale back threshold (i.e Trigger Interval time - scale back
time) to 30s

Java

time the executors wait in a micro-batch before they are scaled back by
spark app (scale-back trigger)

"spark.dynamicAllocation.executorIdleTimeout": 30@s

wait time for executors which has cached data - should be >=
executorIdleTimeout

"spark.dynamicAllocation.cachedExecutorIdleTimeout": 30s

percentage of idle executors to decommission on each evaluation - should
be between 0 to 1

"spark.dynamicAllocation.executorDeallocationRatio": 0.1

time delay in between each executor de-allocation cycle

"spark.dynamicAllocation.executorDeallocationTimeout": 300s

Appendix B. Optional Design Sketch: How are the goals going to
be accomplished? Give sufficient technical detail to allow a
contributor to judge whether it’s likely to be feasible. Note that this
is not a full design document.

The main need of a streaming application is to deliver/process/aggregate events
in seconds/minutes latency and provide near real-time results. Streaming
systems typically tend to offer low latency solutions with decent throughput by
scaling out the application.

In general latency(lower is better) is directly proportional to throughput(higher is
better) and inversely proportional to cost(lower is better). So based on the
use-case we optimize, In few cases for throughput and cost we sacrifice a bit of
latency. To achieve that we use a trigger Interval of secs/mins to emit records in
micro-batches. We provide resources to successfully process all the incoming
events in that trigger interval time throughout the day.

Since the Trigger interval is such an important knob for latency and throughput,
we will build dynamic allocation configurations based on the heuristics of the
Trigger interval.

Since in a static setup we over-provision, we typically see query(app) processing
times of a micro-batch less than trigger interval. But we do observe that the query
processing times are in line with typical traffic patterns of a day.

l.e the apps take longer to process a micro-batch of records in a fixed interval at
morning/afternoon and less time to process records at night because we have
less incoming data in that fixed interval of micro-batch.

The other reason for choosing query execution is cluster utilization of the job
during that trigger interval. Let’s slice the above graph to a time in peak hrs

Query Execution Duration [seconds]

You can observe that the query processing time (i.e the app run-time) to process
the events in a micro-batch is just ~23s, so the resources allocated to it are idle
for the rest of ~22s before the next micro-batch (configured by trigger interval)
starts.

That is further less at non-peak hrs of the day

Query Execution Duration [seconds] 1, Save to Dashboard | More.

So Trigger interval is the right heuristic which would help us address auto-scaling
based on traffic, but also better resource utilization of the allocated resources.

Generally The whole idea of scaling out with more resources is that if a job
cannot process the available data it will add resources linearly(or exponentially)
to handle the incoming events (i.e typical day traffic). That means in terms of a
trigger interval, if the job query execution time is close to the trigger interval or
not able to process all the data in the trigger interval time we need to scale out.

In the same way when a job has too many resources to process the available
data it processes the data very quickly and the resources are underutilized (i.e
typical night traffic). That means in terms of a trigger interval, if the job is done
rather too soon then the executors are just wasting resource time until the next
trigger interval.

Unset

How Structured streaming DRA algorithm works:

When we focus on resource wutilization by trigger
interval, we want the allocated resources should be
used for most of the duration of a trigger interval.

So we set the scale-out and scale-back threshold
limits at certain times inside a trigger interval.

To do that we should set scale-out threshold when
query execution 1is running at an elevated/ close to

trigger interval time of the micro batch. The
scale-back threshold should be set at a point where
the query executes and sits idle for most of the
trigger interval duration, thus forcing it to not hold
s00 many resources when it 1is processing data too
fast.

So ideally the thresholds should look like

©@ <= scale back threshold < scale up threshold <=
trigger Interval

For eg: if we have a trigger interval of 60s

e We want the streaming application to spend at
most 90% of its time (i.e 54s) utilizing the
resources it has to run the micro-batch. If the
query execution time is over 54s then it is very
likely that the current resources it has are not
enough to process the incoming data in that
micro-batch so we should trigger a scale-out
which will request to add additional resources
(which is configurable) .

e We want the streaming application to spend at
least 50% of its time (i.e 30s) utilizing the
resources it has to run the micro-batch. If the
query execution time is below 30s then we should
trigger a scale-back which will release some of
the app resources (which should be configurable).

SealeAtack Hm%a&(Sealy -oub /%iw/w{)/
20 Second

5 & Se,cmfu’éi—

References:

This implementation is loosely based on the discussions and concerns mentioned in
hitps://issues.apache.org/jira/browse/SPARK-12133

https://issues.apache.org/jira/browse/SPARK-12133

