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1 Overview

Apache Avro (https://avro.apache.org) is a popular data serialization format. It is widely
used in the Spark and Hadoop ecosystem, especially for Kafka-based data pipelines. Using
the external package, Spark SQL can read and write the avro data. Making spark-Avro
built-in can provide a better experience for first-time users of Spark SQL and structured
streaming. We expect the built-in Avro data source can further improve the adoption of
structured streaming. The proposal is to inline code from spark-avro package (https://
github.com/databricks/spark-avro). The target release is Spark 2.4.

In terms of actual implementations, the plan is to create a pull request that does the
minimal cleanup, and then leverage open source contributors to implement more function-
alities once the initial code is merged.

2 User-facing APIs and Options

The user-facing APIs for Avro data source should be pretty straightforward to implement.
In DataFrameReader/DataFrameWriter, users can directly use .format(“avro”) to spec-
ify the file format as Avro. We will also provide implicit avro function, e.g. , Avro-
DataFrameWriter(df).avro(...)

3 Parsing Options
We should support the following options:

+ avroSchema user specified avro schema
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val avroSchema = scala.io.Source.fromFile(test.avsc”).mkString
spark.read.option(”avroSchema”, avroSchema).avro(’test.avro”)

* avro.mapred.ignore.inputs.without.extension when set to true files without end-
ing “.avro” naming are ignored in read path. Default value is true.

* recordName Top level record name in write result, which is required in Avro spec .
Default value is “topLevelRecord”.

* recordNamespace record namespace in write result. Default value is “”. See Avro
spec for details.

* compression compression codec to use when saving to file,which can be “uncom-
pressed”/”’snappy”’/”deflate”. Default value is “snappy”.

* deflateLevel compression level if compression codec is “deflate” in write path. The
default level is -1.
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S TODQOs after the initial import PR

1. Add a new function from_avro for parsing a binary column of avro format and
converting it into its corresponding catalyst value. Add a new function to_avro for
converting a column into binary of avro format with the specified schema.

2. Upgrade avro version from 1.7.7 to 1.8: support reading logical types - Decimal,
Timestamp with different precisions, Time with different precisions, Duration.

3. Create the related SQLConf with documentation, e.g, spark.sql.avro.compression.codec
and spark.sql.avro.deflate.level
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4. Improve unit tests

(a) Use Spark test utilities
(b) Refactor the read/write benchmark.
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