[Design] Built-in AVRO Data Source In Spark 2.4

Gengliang Wang
July 11, 2018

1 Overview

Apache Avro (https://avro.apache.org) is a popular data serialization format. It is widely
used in the Spark and Hadoop ecosystem, especially for Kafka-based data pipelines. Using
the external package, Spark SQL can read and write the avro data. Making spark-Avro
built-in can provide a better experience for first-time users of Spark SQL and structured
streaming. We expect the built-in Avro data source can further improve the adoption of
structured streaming. The proposal is to inline code from spark-avro package (https://
github.com/databricks/spark-avro). The target release is Spark 2.4.

In terms of actual implementations, the plan is to create a pull request that does the
minimal cleanup, and then leverage open source contributors to implement more function-
alities once the initial code is merged.

2 User-facing APIs and Options

The user-facing APIs for Avro data source should be pretty straightforward to implement.
In DataFrameReader/DataFrameWriter, users can directly use .format(“avro”) to spec-
ify the file format as Avro. We will also provide implicit avro function, e.g. , Avro-
DataFrameWriter(df).avro(...)

3 Parsing Options
We should support the following options:

+ avroSchema user specified avro schema


https://avro.apache.org
https://github.com/databricks/spark-avro
https://github.com/databricks/spark-avro
https://github.com/databricks/spark-avro

val avroSchema = scala.io.Source.fromFile(test.avsc”).mkString
spark.read.option(”avroSchema”, avroSchema).avro(’test.avro”)

* avro.mapred.ignore.inputs.without.extension when set to true files without end-
ing “.avro” naming are ignored in read path. Default value is true.

* recordName Top level record name in write result, which is required in Avro spec .
Default value is “topLevelRecord”.

* recordNamespace record namespace in write result. Default value is “”. See Avro
spec for details.

* compression compression codec to use when saving to file,which can be “uncom-
pressed”/”’snappy”’/”deflate”. Default value is “snappy”.

* deflateLevel compression level if compression codec is “deflate” in write path. The
default level is -1.

4 Credits

Aaron Davidson, Amanj Sherwany, Arun Allamsetty, Cheng Lian, David Bieber, Gengliang
Wang, Guillaume Simard, Hao Xia, Imran Rashid, JD , Jacky Shen, Jacob Salomonsen,
James Aley, Jan Prach, Jon Bender, Joseph Batchik, Josh Rosen, Ken Sedgwick, Kevin Du-
raj, Koert Kuipers, Liang-Chi Hsieh, Mark Grover, Michael Armbrust, Nthed MBAREK,
OopsOutOfMemory, Patrick Wendell, Phil Wills, Reynold Xin, Sean Zhong, Silvio Fiorito,
Steven Aerts, Todd Gibson, Viacheslav Rodionov, Volodymyr Lyubinets, Xiangrui Meng,
Yitong Zhou, gsolasab, leahmcguire

S TODQOs after the initial import PR

1. Add a new function from_avro for parsing a binary column of avro format and
converting it into its corresponding catalyst value. Add a new function to_avro for
converting a column into binary of avro format with the specified schema.

2. Upgrade avro version from 1.7.7 to 1.8: support reading logical types - Decimal,
Timestamp with different precisions, Time with different precisions, Duration.

3. Create the related SQLConf with documentation, e.g, spark.sql.avro.compression.codec
and spark.sql.avro.deflate.level


https://avro.apache.org/docs/1.8.2/spec.html#schema_record
https://avro.apache.org/docs/1.8.2/spec.html#schema_record
https://avro.apache.org/docs/1.8.2/spec.html#schema_record

4. Improve unit tests

(a) Use Spark test utilities
(b) Refactor the read/write benchmark.



	Overview
	User­-facing APIs and Options
	Parsing Options
	Credits
	TODOs after the initial import PR

