
2.2.02.2.0 OverviewOverview Programming GuidesProgramming Guides API DocsAPI Docs DeployingDeploying MoreMore

Spark Configuration
Spark Properties

Dynamically Loading Spark Properties
Viewing Spark Properties
Available Properties

Application Properties
Runtime Environment
Shuffle Behavior
Spark UI
Compression and Serialization
Memory Management
Execution Behavior
Networking
Scheduling
Dynamic Allocation
Security
TLS / SSL
Spark SQL
Spark Streaming
SparkR
Deploy
Cluster Managers

YARN
Mesos
Standalone Mode

Environment Variables
Configuring Logging
Overriding configuration directory
Inheriting Hadoop Cluster Configuration

Spark provides three locations to configure the system:

Spark properties control most application parameters and can be set by using a SparkConf object, or through Java system properties.
Environment variables can be used to set per-machine settings, such as the IP address, through the conf/spark-env.sh script on each node.
Logging can be configured through log4j.properties.

Spark Properties
Spark properties control most application settings and are configured separately for each application. These properties can be set directly on a
SparkConf passed to your SparkContext. SparkConf allows you to configure some of the common properties (e.g. master URL and application
name), as well as arbitrary key-value pairs through the set() method. For example, we could initialize an application with two threads as follows:

Note that we run with local[2], meaning two threads - which represents “minimal” parallelism, which can help detect bugs that only exist when we
run in a distributed context.

val conf = new SparkConf()
 .setMaster("local[2]")
 .setAppName("CountingSheep")
val sc = new SparkContext(conf)

Note that we can have more than 1 thread in local mode, and in cases like Spark Streaming, we may actually require more than 1 thread to
prevent any sort of starvation issues.

Properties that specify some time duration should be configured with a unit of time. The following format is accepted:

25ms (milliseconds)
5s (seconds)
10m or 10min (minutes)
3h (hours)
5d (days)
1y (years)

Properties that specify a byte size should be configured with a unit of size. The following format is accepted:

1b (bytes)
1k or 1kb (kibibytes = 1024 bytes)
1m or 1mb (mebibytes = 1024 kibibytes)
1g or 1gb (gibibytes = 1024 mebibytes)

http://127.0.0.1:4000/index.html
http://127.0.0.1:4000/index.html
http://127.0.0.1:4000/configuration.html#
http://127.0.0.1:4000/configuration.html#
http://127.0.0.1:4000/configuration.html#
http://127.0.0.1:4000/api.html
http://127.0.0.1:4000/configuration.html#spark-configuration
http://127.0.0.1:4000/configuration.html#spark-configuration
http://127.0.0.1:4000/configuration.html#spark-properties
http://127.0.0.1:4000/configuration.html#dynamically-loading-spark-properties
http://127.0.0.1:4000/configuration.html#viewing-spark-properties
http://127.0.0.1:4000/configuration.html#available-properties
http://127.0.0.1:4000/configuration.html#application-properties
http://127.0.0.1:4000/configuration.html#runtime-environment
http://127.0.0.1:4000/configuration.html#shuffle-behavior
http://127.0.0.1:4000/configuration.html#spark-ui
http://127.0.0.1:4000/configuration.html#compression-and-serialization
http://127.0.0.1:4000/configuration.html#memory-management
http://127.0.0.1:4000/configuration.html#execution-behavior
http://127.0.0.1:4000/configuration.html#networking
http://127.0.0.1:4000/configuration.html#scheduling
http://127.0.0.1:4000/configuration.html#dynamic-allocation
http://127.0.0.1:4000/configuration.html#security
http://127.0.0.1:4000/configuration.html#tls--ssl
http://127.0.0.1:4000/configuration.html#spark-sql
http://127.0.0.1:4000/configuration.html#spark-streaming
http://127.0.0.1:4000/configuration.html#sparkr
http://127.0.0.1:4000/configuration.html#deploy
http://127.0.0.1:4000/configuration.html#cluster-managers
http://127.0.0.1:4000/running-on-yarn.html#configuration
http://127.0.0.1:4000/running-on-mesos.html#configuration
http://127.0.0.1:4000/spark-standalone.html#cluster-launch-scripts
http://127.0.0.1:4000/configuration.html#environment-variables
http://127.0.0.1:4000/configuration.html#configuring-logging
http://127.0.0.1:4000/configuration.html#overriding-configuration-directory
http://127.0.0.1:4000/configuration.html#inheriting-hadoop-cluster-configuration
http://127.0.0.1:4000/configuration.html#spark-properties
http://127.0.0.1:4000/api/scala/index.html#org.apache.spark.SparkConf
http://127.0.0.1:4000/configuration.html#environment-variables
http://127.0.0.1:4000/configuration.html#configuring-logging
http://127.0.0.1:4000/configuration.html#spark-properties
http://127.0.0.1:4000/configuration.html#spark-properties
http://127.0.0.1:4000/api/scala/index.html#org.apache.spark.SparkConf

1t or 1tb (tebibytes = 1024 gibibytes)
1p or 1pb (pebibytes = 1024 tebibytes)

Dynamically Loading Spark Properties
In some cases, you may want to avoid hard-coding certain configurations in a SparkConf. For instance, if you’d like to run the same application
with different masters or different amounts of memory. Spark allows you to simply create an empty conf:

val sc = new SparkContext(new SparkConf())

Then, you can supply configuration values at runtime:

./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=false
 --conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps" myApp.jar

The Spark shell and spark-submit tool support two ways to load configurations dynamically. The first are command line options, such as --
master, as shown above. spark-submit can accept any Spark property using the --conf flag, but uses special flags for properties that play a part
in launching the Spark application. Running ./bin/spark-submit --help will show the entire list of these options.

bin/spark-submit will also read configuration options from conf/spark-defaults.conf, in which each line consists of a key and a value
separated by whitespace. For example:

spark.master spark://5.6.7.8:7077
spark.executor.memory 4g
spark.eventLog.enabled true
spark.serializer org.apache.spark.serializer.KryoSerializer

Any values specified as flags or in the properties file will be passed on to the application and merged with those specified through SparkConf.
Properties set directly on the SparkConf take highest precedence, then flags passed to spark-submit or spark-shell, then options in the spark-
defaults.conf file. A few configuration keys have been renamed since earlier versions of Spark; in such cases, the older key names are still
accepted, but take lower precedence than any instance of the newer key.

Viewing Spark Properties
The application web UI at http://<driver>:4040 lists Spark properties in the “Environment” tab. This is a useful place to check to make sure that
your properties have been set correctly. Note that only values explicitly specified through spark-defaults.conf, SparkConf, or the command line
will appear. For all other configuration properties, you can assume the default value is used.

Available Properties
Most of the properties that control internal settings have reasonable default values. Some of the most common options to set are:

Application Properties

Property Name Default Meaning

spark.app.name (none) The name of your application. This will appear in the UI and in log data.

spark.driver.cores 1 Number of cores to use for the driver process, only in cluster mode.

spark.driver.maxResultSize 1g Limit of total size of serialized results of all partitions for each Spark action (e.g. collect). Should be
at least 1M, or 0 for unlimited. Jobs will be aborted if the total size is above this limit. Having a high
limit may cause out-of-memory errors in driver (depends on spark.driver.memory and memory
overhead of objects in JVM). Setting a proper limit can protect the driver from out-of-memory errors.

spark.driver.memory 1g Amount of memory to use for the driver process, i.e. where SparkContext is initialized. (e.g. 1g, 2g).
Note: In client mode, this config must not be set through the SparkConf directly in your application,
because the driver JVM has already started at that point. Instead, please set this through the --
driver-memory command line option or in your default properties file.

spark.executor.memory 1g Amount of memory to use per executor process (e.g. 2g, 8g).

spark.extraListeners (none) A comma-separated list of classes that implement SparkListener; when initializing SparkContext,
instances of these classes will be created and registered with Spark's listener bus. If a class has a
single-argument constructor that accepts a SparkConf, that constructor will be called; otherwise, a
zero-argument constructor will be called. If no valid constructor can be found, the SparkContext
creation will fail with an exception.

spark.local.dir /tmp Directory to use for "scratch" space in Spark, including map output files and RDDs that get stored
on disk. This should be on a fast, local disk in your system. It can also be a comma-separated list of
multiple directories on different disks. NOTE: In Spark 1.0 and later this will be overridden by

http://127.0.0.1:4000/configuration.html#dynamically-loading-spark-properties
http://127.0.0.1:4000/configuration.html#dynamically-loading-spark-properties
http://127.0.0.1:4000/submitting-applications.html
http://127.0.0.1:4000/configuration.html#viewing-spark-properties
http://127.0.0.1:4000/configuration.html#viewing-spark-properties
http://127.0.0.1:4000/configuration.html#available-properties
http://127.0.0.1:4000/configuration.html#available-properties
http://127.0.0.1:4000/configuration.html#application-properties
http://127.0.0.1:4000/configuration.html#application-properties

SPARK_LOCAL_DIRS (Standalone, Mesos) or LOCAL_DIRS (YARN) environment variables set by the
cluster manager.

spark.logConf false Logs the effective SparkConf as INFO when a SparkContext is started.

spark.master (none) The cluster manager to connect to. See the list of allowed master URL's.

spark.submit.deployMode (none) The deploy mode of Spark driver program, either "client" or "cluster", Which means to launch driver
program locally ("client") or remotely ("cluster") on one of the nodes inside the cluster.

spark.log.callerContext (none) Application information that will be written into Yarn RM log/HDFS audit log when running on
Yarn/HDFS. Its length depends on the Hadoop configuration hadoop.caller.context.max.size. It
should be concise, and typically can have up to 50 characters.

Apart from these, the following properties are also available, and may be useful in some situations:

Runtime Environment

Property Name Default Meaning

spark.driver.extraClassPath (none) Extra classpath entries to prepend to the classpath of the driver.
Note: In client mode, this config must not be set through the
SparkConf directly in your application, because the driver JVM has
already started at that point. Instead, please set this through the --
driver-class-path command line option or in your default
properties file.

spark.driver.extraJavaOptions (none) A string of extra JVM options to pass to the driver. For instance, GC
settings or other logging. Note that it is illegal to set maximum heap
size (-Xmx) settings with this option. Maximum heap size settings
can be set with spark.driver.memory in the cluster mode and
through the --driver-memory command line option in the client
mode.
Note: In client mode, this config must not be set through the
SparkConf directly in your application, because the driver JVM has
already started at that point. Instead, please set this through the --
driver-java-options command line option or in your default
properties file.

spark.driver.extraLibraryPath (none) Set a special library path to use when launching the driver JVM.
Note: In client mode, this config must not be set through the
SparkConf directly in your application, because the driver JVM has
already started at that point. Instead, please set this through the --
driver-library-path command line option or in your default
properties file.

spark.driver.userClassPathFirst false (Experimental) Whether to give user-added jars precedence over
Spark's own jars when loading classes in the driver. This feature can
be used to mitigate conflicts between Spark's dependencies and
user dependencies. It is currently an experimental feature. This is
used in cluster mode only.

spark.executor.extraClassPath (none) Extra classpath entries to prepend to the classpath of executors.
This exists primarily for backwards-compatibility with older versions
of Spark. Users typically should not need to set this option.

spark.executor.extraJavaOptions (none) A string of extra JVM options to pass to executors. For instance, GC
settings or other logging. Note that it is illegal to set Spark properties
or maximum heap size (-Xmx) settings with this option. Spark
properties should be set using a SparkConf object or the spark-
defaults.conf file used with the spark-submit script. Maximum heap
size settings can be set with spark.executor.memory.

spark.executor.extraLibraryPath (none) Set a special library path to use when launching executor JVM's.

spark.executor.logs.rolling.maxRetainedFiles (none) Sets the number of latest rolling log files that are going to be
retained by the system. Older log files will be deleted. Disabled by
default.

spark.executor.logs.rolling.enableCompression false Enable executor log compression. If it is enabled, the rolled executor
logs will be compressed. Disabled by default.

spark.executor.logs.rolling.maxSize (none) Set the max size of the file in bytes by which the executor logs will
be rolled over. Rolling is disabled by default. See

http://127.0.0.1:4000/submitting-applications.html#master-urls
http://127.0.0.1:4000/configuration.html#runtime-environment
http://127.0.0.1:4000/configuration.html#runtime-environment

spark.executor.logs.rolling.maxRetainedFiles for automatic
cleaning of old logs.

spark.executor.logs.rolling.strategy (none) Set the strategy of rolling of executor logs. By default it is disabled. It
can be set to "time" (time-based rolling) or "size" (size-based rolling).
For "time", use spark.executor.logs.rolling.time.interval to
set the rolling interval. For "size", use
spark.executor.logs.rolling.maxSize to set the maximum file size
for rolling.

spark.executor.logs.rolling.time.interval daily Set the time interval by which the executor logs will be rolled over.
Rolling is disabled by default. Valid values are daily, hourly,
minutely or any interval in seconds. See
spark.executor.logs.rolling.maxRetainedFiles for automatic
cleaning of old logs.

spark.executor.userClassPathFirst false (Experimental) Same functionality as
spark.driver.userClassPathFirst, but applied to executor
instances.

spark.executorEnv.[EnvironmentVariableName] (none) Add the environment variable specified by
EnvironmentVariableName to the Executor process. The user can
specify multiple of these to set multiple environment variables.

spark.redaction.regex (?
i)secret|password

Regex to decide which Spark configuration properties and
environment variables in driver and executor environments contain
sensitive information. When this regex matches a property, its value
is redacted from the environment UI and various logs like YARN and
event logs.

spark.python.profile false Enable profiling in Python worker, the profile result will show up by
sc.show_profiles(), or it will be displayed before the driver exiting.
It also can be dumped into disk by sc.dump_profiles(path). If
some of the profile results had been displayed manually, they will not
be displayed automatically before driver exiting. By default the
pyspark.profiler.BasicProfiler will be used, but this can be
overridden by passing a profiler class in as a parameter to the
SparkContext constructor.

spark.python.profile.dump (none) The directory which is used to dump the profile result before driver
exiting. The results will be dumped as separated file for each RDD.
They can be loaded by ptats.Stats(). If this is specified, the profile
result will not be displayed automatically.

spark.python.worker.memory 512m Amount of memory to use per python worker process during
aggregation, in the same format as JVM memory strings (e.g. 512m,
2g). If the memory used during aggregation goes above this amount,
it will spill the data into disks.

spark.python.worker.reuse true Reuse Python worker or not. If yes, it will use a fixed number of
Python workers, does not need to fork() a Python process for every
tasks. It will be very useful if there is large broadcast, then the
broadcast will not be needed to transferred from JVM to Python
worker for every task.

spark.files Comma-separated list of files to be placed in the working directory
of each executor.

spark.submit.pyFiles Comma-separated list of .zip, .egg, or .py files to place on the
PYTHONPATH for Python apps.

spark.jars Comma-separated list of local jars to include on the driver and
executor classpaths.

spark.jars.packages Comma-separated list of maven coordinates of jars to include on the
driver and executor classpaths. Will search the local maven repo,
then maven central and any additional remote repositories given by
spark.jars.ivy. The format for the coordinates should be
groupId:artifactId:version.

spark.jars.excludes Comma-separated list of groupId:artifactId, to exclude while
resolving the dependencies provided in spark.jars.packages to
avoid dependency conflicts.

spark.jars.ivy Comma-separated list of additional remote repositories to search for
the coordinates given with spark.jars.packages.

spark.pyspark.driver.python Python binary executable to use for PySpark in driver. (default is
spark.pyspark.python)

spark.pyspark.python Python binary executable to use for PySpark in both driver and
executors.

Shuffle Behavior

Property Name Default Meaning

spark.reducer.maxSizeInFlight 48m Maximum size of map outputs to fetch simultaneously from each reduce task.
Since each output requires us to create a buffer to receive it, this represents a
fixed memory overhead per reduce task, so keep it small unless you have a
large amount of memory.

spark.reducer.maxReqsInFlight Int.MaxValue This configuration limits the number of remote requests to fetch blocks at any
given point. When the number of hosts in the cluster increase, it might lead to
very large number of in-bound connections to one or more nodes, causing the
workers to fail under load. By allowing it to limit the number of fetch requests,
this scenario can be mitigated.

spark.shuffle.compress true Whether to compress map output files. Generally a good idea. Compression
will use spark.io.compression.codec.

spark.shuffle.file.buffer 32k Size of the in-memory buffer for each shuffle file output stream. These buffers
reduce the number of disk seeks and system calls made in creating
intermediate shuffle files.

spark.shuffle.io.maxRetries 3 (Netty only) Fetches that fail due to IO-related exceptions are automatically
retried if this is set to a non-zero value. This retry logic helps stabilize large
shuffles in the face of long GC pauses or transient network connectivity
issues.

spark.shuffle.io.numConnectionsPerPeer 1 (Netty only) Connections between hosts are reused in order to reduce
connection buildup for large clusters. For clusters with many hard disks and
few hosts, this may result in insufficient concurrency to saturate all disks, and
so users may consider increasing this value.

spark.shuffle.io.preferDirectBufs true (Netty only) Off-heap buffers are used to reduce garbage collection during
shuffle and cache block transfer. For environments where off-heap memory is
tightly limited, users may wish to turn this off to force all allocations from Netty
to be on-heap.

spark.shuffle.io.retryWait 5s (Netty only) How long to wait between retries of fetches. The maximum delay
caused by retrying is 15 seconds by default, calculated as maxRetries *
retryWait.

spark.shuffle.service.enabled false Enables the external shuffle service. This service preserves the shuffle files
written by executors so the executors can be safely removed. This must be
enabled if spark.dynamicAllocation.enabled is "true". The external shuffle
service must be set up in order to enable it. See dynamic allocation
configuration and setup documentation for more information.

spark.shuffle.service.port 7337 Port on which the external shuffle service will run.

spark.shuffle.service.index.cache.entries 1024 Max number of entries to keep in the index cache of the shuffle service.

spark.shuffle.sort.bypassMergeThreshold 200 (Advanced) In the sort-based shuffle manager, avoid merge-sorting data if
there is no map-side aggregation and there are at most this many reduce
partitions.

spark.shuffle.spill.compress true Whether to compress data spilled during shuffles. Compression will use
spark.io.compression.codec.

spark.io.encryption.enabled false Enable IO encryption. Currently supported by all modes except Mesos. It's
recommended that RPC encryption be enabled when using this feature.

spark.io.encryption.keySizeBits 128 IO encryption key size in bits. Supported values are 128, 192 and 256.

spark.io.encryption.keygen.algorithm HmacSHA1 The algorithm to use when generating the IO encryption key. The supported
algorithms are described in the KeyGenerator section of the Java
Cryptography Architecture Standard Algorithm Name Documentation.

http://127.0.0.1:4000/configuration.html#shuffle-behavior
http://127.0.0.1:4000/configuration.html#shuffle-behavior
http://127.0.0.1:4000/job-scheduling.html#configuration-and-setup

Spark UI

Property Name Default Meaning

spark.eventLog.compress false Whether to compress logged events, if spark.eventLog.enabled is true.

spark.eventLog.dir file:///tmp/spark-
events

Base directory in which Spark events are logged, if spark.eventLog.enabled is
true. Within this base directory, Spark creates a sub-directory for each application,
and logs the events specific to the application in this directory. Users may want to
set this to a unified location like an HDFS directory so history files can be read by
the history server.

spark.eventLog.enabled false Whether to log Spark events, useful for reconstructing the Web UI after the
application has finished.

spark.ui.enabled true Whether to run the web UI for the Spark application.

spark.ui.killEnabled true Allows jobs and stages to be killed from the web UI.

spark.ui.port 4040 Port for your application's dashboard, which shows memory and workload data.

spark.ui.retainedJobs 1000 How many jobs the Spark UI and status APIs remember before garbage
collecting.

spark.ui.retainedStages 1000 How many stages the Spark UI and status APIs remember before garbage
collecting.

spark.ui.retainedTasks 100000 How many tasks the Spark UI and status APIs remember before garbage
collecting.

spark.ui.reverseProxy false Enable running Spark Master as reverse proxy for worker and application UIs. In
this mode, Spark master will reverse proxy the worker and application UIs to
enable access without requiring direct access to their hosts. Use it with caution,
as worker and application UI will not be accessible directly, you will only be able
to access them through spark master/proxy public URL. This setting affects all the
workers and application UIs running in the cluster and must be set on all the
workers, drivers and masters.

spark.ui.reverseProxyUrl This is the URL where your proxy is running. This URL is for proxy which is
running in front of Spark Master. This is useful when running proxy for
authentication e.g. OAuth proxy. Make sure this is a complete URL including
scheme (http/https) and port to reach your proxy.

spark.ui.showConsoleProgress true Show the progress bar in the console. The progress bar shows the progress of
stages that run for longer than 500ms. If multiple stages run at the same time,
multiple progress bars will be displayed on the same line.

spark.worker.ui.retainedExecutors 1000 How many finished executors the Spark UI and status APIs remember before
garbage collecting.

spark.worker.ui.retainedDrivers 1000 How many finished drivers the Spark UI and status APIs remember before
garbage collecting.

spark.sql.ui.retainedExecutions 1000 How many finished executions the Spark UI and status APIs remember before
garbage collecting.

spark.streaming.ui.retainedBatches 1000 How many finished batches the Spark UI and status APIs remember before
garbage collecting.

spark.ui.retainedDeadExecutors 100 How many dead executors the Spark UI and status APIs remember before
garbage collecting.

Compression and Serialization

Property Name Default Meaning

spark.broadcast.compress true Whether to compress broadcast variables before sending them.
Generally a good idea.

spark.io.compression.codec lz4 The codec used to compress internal data such as RDD partitions,
broadcast variables and shuffle outputs. By default, Spark provides
three codecs: lz4, lzf, and snappy. You can also use fully qualified
class names to specify the codec, e.g.
org.apache.spark.io.LZ4CompressionCodec,

http://127.0.0.1:4000/configuration.html#spark-ui
http://127.0.0.1:4000/configuration.html#spark-ui
http://127.0.0.1:4000/configuration.html#compression-and-serialization
http://127.0.0.1:4000/configuration.html#compression-and-serialization

org.apache.spark.io.LZFCompressionCodec, and
org.apache.spark.io.SnappyCompressionCodec.

spark.io.compression.lz4.blockSize 32k Block size used in LZ4 compression, in the case when LZ4
compression codec is used. Lowering this block size will also lower
shuffle memory usage when LZ4 is used.

spark.io.compression.snappy.blockSize 32k Block size used in Snappy compression, in the case when Snappy
compression codec is used. Lowering this block size will also lower
shuffle memory usage when Snappy is used.

spark.kryo.classesToRegister (none) If you use Kryo serialization, give a comma-separated list of custom
class names to register with Kryo. See the tuning guide for more
details.

spark.kryo.referenceTracking true Whether to track references to the same object when serializing
data with Kryo, which is necessary if your object graphs have loops
and useful for efficiency if they contain multiple copies of the same
object. Can be disabled to improve performance if you know this is
not the case.

spark.kryo.registrationRequired false Whether to require registration with Kryo. If set to 'true', Kryo will
throw an exception if an unregistered class is serialized. If set to
false (the default), Kryo will write unregistered class names along
with each object. Writing class names can cause significant
performance overhead, so enabling this option can enforce strictly
that a user has not omitted classes from registration.

spark.kryo.registrator (none) If you use Kryo serialization, give a comma-separated list of classes
that register your custom classes with Kryo. This property is useful if
you need to register your classes in a custom way, e.g. to specify a
custom field serializer. Otherwise spark.kryo.classesToRegister is
simpler. It should be set to classes that extend KryoRegistrator.
See the tuning guide for more details.

spark.kryo.unsafe false Whether to use unsafe based Kryo serializer. Can be substantially
faster by using Unsafe Based IO.

spark.kryoserializer.buffer.max 64m Maximum allowable size of Kryo serialization buffer. This must be
larger than any object you attempt to serialize. Increase this if you
get a "buffer limit exceeded" exception inside Kryo.

spark.kryoserializer.buffer 64k Initial size of Kryo's serialization buffer. Note that there will be one
buffer per core on each worker. This buffer will grow up to
spark.kryoserializer.buffer.max if needed.

spark.rdd.compress false Whether to compress serialized RDD partitions (e.g. for
StorageLevel.MEMORY_ONLY_SER in Java and Scala or
StorageLevel.MEMORY_ONLY in Python). Can save substantial space
at the cost of some extra CPU time.

spark.serializer org.apache.spark.serializer.
JavaSerializer

Class to use for serializing objects that will be sent over the network
or need to be cached in serialized form. The default of Java
serialization works with any Serializable Java object but is quite
slow, so we recommend using
org.apache.spark.serializer.KryoSerializer and configuring
Kryo serialization when speed is necessary. Can be any subclass of
org.apache.spark.Serializer.

spark.serializer.objectStreamReset 100 When serializing using org.apache.spark.serializer.JavaSerializer, the
serializer caches objects to prevent writing redundant data, however
that stops garbage collection of those objects. By calling 'reset' you
flush that info from the serializer, and allow old objects to be
collected. To turn off this periodic reset set it to -1. By default it will
reset the serializer every 100 objects.

Memory Management

Property Name Default Meaning

spark.memory.fraction 0.6 Fraction of (heap space - 300MB) used for execution and storage. The lower this is, the more
frequently spills and cached data eviction occur. The purpose of this config is to set aside memory
for internal metadata, user data structures, and imprecise size estimation in the case of sparse,

http://127.0.0.1:4000/tuning.html#data-serialization
http://127.0.0.1:4000/api/scala/index.html#org.apache.spark.serializer.KryoRegistrator
http://127.0.0.1:4000/tuning.html#data-serialization
http://127.0.0.1:4000/tuning.html
http://127.0.0.1:4000/api/scala/index.html#org.apache.spark.serializer.Serializer
http://127.0.0.1:4000/configuration.html#memory-management
http://127.0.0.1:4000/configuration.html#memory-management

unusually large records. Leaving this at the default value is recommended. For more detail,
including important information about correctly tuning JVM garbage collection when increasing
this value, see this description.

spark.memory.storageFraction 0.5 Amount of storage memory immune to eviction, expressed as a fraction of the size of the region
set aside by s ​park.memory.fraction. The higher this is, the less working memory may be
available to execution and tasks may spill to disk more often. Leaving this at the default value is
recommended. For more detail, see this description.

spark.memory.offHeap.enabled false If true, Spark will attempt to use off-heap memory for certain operations. If off-heap memory use is
enabled, then spark.memory.offHeap.size must be positive.

spark.memory.offHeap.size 0 The absolute amount of memory in bytes which can be used for off-heap allocation. This setting
has no impact on heap memory usage, so if your executors' total memory consumption must fit
within some hard limit then be sure to shrink your JVM heap size accordingly. This must be set to
a positive value when spark.memory.offHeap.enabled=true.

spark.memory.useLegacyMode false ​Whether to enable the legacy memory management mode used in Spark 1.5 and before. The
legacy mode rigidly partitions the heap space into fixed-size regions, potentially leading to
excessive spilling if the application was not tuned. The following deprecated memory fraction
configurations are not read unless this is enabled: spark.shuffle.memoryFraction
spark.storage.memoryFraction
spark.storage.unrollFraction

spark.shuffle.memoryFraction 0.2 (deprecated) This is read only if spark.memory.useLegacyMode is enabled. Fraction of Java heap to
use for aggregation and cogroups during shuffles. At any given time, the collective size of all in-
memory maps used for shuffles is bounded by this limit, beyond which the contents will begin to
spill to disk. If spills are often, consider increasing this value at the expense of
spark.storage.memoryFraction.

spark.storage.memoryFraction 0.6 (deprecated) This is read only if spark.memory.useLegacyMode is enabled. Fraction of Java heap to
use for Spark's memory cache. This should not be larger than the "old" generation of objects in
the JVM, which by default is given 0.6 of the heap, but you can increase it if you configure your
own old generation size.

spark.storage.unrollFraction 0.2 (deprecated) This is read only if spark.memory.useLegacyMode is enabled. Fraction of
spark.storage.memoryFraction to use for unrolling blocks in memory. This is dynamically
allocated by dropping existing blocks when there is not enough free storage space to unroll the
new block in its entirety.

Execution Behavior

Property Name Default Meaning

spark.broadcast.blockSize 4m Size of each piece of a block for TorrentBroadcastFactory. Too large a value
decreases parallelism during broadcast (makes it slower); however, if it is too
small, BlockManager might take a performance hit.

spark.executor.cores 1 in YARN mode, all the
available cores on the
worker in standalone
and Mesos coarse-
grained modes.

The number of cores to use on each executor. In standalone and Mesos
coarse-grained modes, setting this parameter allows an application to run
multiple executors on the same worker, provided that there are enough cores
on that worker. Otherwise, only one executor per application will run on each
worker.

spark.default.parallelism For distributed shuffle
operations like
reduceByKey and join,
the largest number of
partitions in a parent
RDD. For operations
like parallelize with
no parent RDDs, it
depends on the cluster
manager:

Local mode:
number of cores on
the local machine
Mesos fine grained
mode: 8
Others: total
number of cores on
all executor nodes
or 2, whichever is

Default number of partitions in RDDs returned by transformations like join,
reduceByKey, and parallelize when not set by user.

http://127.0.0.1:4000/tuning.html#memory-management-overview
http://127.0.0.1:4000/tuning.html#memory-management-overview
http://127.0.0.1:4000/configuration.html#execution-behavior
http://127.0.0.1:4000/configuration.html#execution-behavior

larger

spark.executor.heartbeatInterval 10s Interval between each executor's heartbeats to the driver. Heartbeats let the
driver know that the executor is still alive and update it with metrics for in-
progress tasks. spark.executor.heartbeatInterval should be significantly less
than spark.network.timeout

spark.files.fetchTimeout 60s Communication timeout to use when fetching files added through
SparkContext.addFile() from the driver.

spark.files.useFetchCache true If set to true (default), file fetching will use a local cache that is shared by
executors that belong to the same application, which can improve task
launching performance when running many executors on the same host. If
set to false, these caching optimizations will be disabled and all executors
will fetch their own copies of files. This optimization may be disabled in order
to use Spark local directories that reside on NFS filesystems (see SPARK-
6313 for more details).

spark.files.overwrite false Whether to overwrite files added through SparkContext.addFile() when the
target file exists and its contents do not match those of the source.

spark.files.maxPartitionBytes 134217728 (128 MB) The maximum number of bytes to pack into a single partition when reading
files.

spark.files.openCostInBytes 4194304 (4 MB) The estimated cost to open a file, measured by the number of bytes could be
scanned in the same time. This is used when putting multiple files into a
partition. It is better to over estimate, then the partitions with small files will
be faster than partitions with bigger files.

spark.hadoop.cloneConf false If set to true, clones a new Hadoop Configuration object for each task. This
option should be enabled to work around Configuration thread-safety
issues (see SPARK-2546 for more details). This is disabled by default in order
to avoid unexpected performance regressions for jobs that are not affected
by these issues.

spark.hadoop.validateOutputSpecs true If set to true, validates the output specification (e.g. checking if the output
directory already exists) used in saveAsHadoopFile and other variants. This
can be disabled to silence exceptions due to pre-existing output directories.
We recommend that users do not disable this except if trying to achieve
compatibility with previous versions of Spark. Simply use Hadoop's
FileSystem API to delete output directories by hand. This setting is ignored
for jobs generated through Spark Streaming's StreamingContext, since data
may need to be rewritten to pre-existing output directories during checkpoint
recovery.

spark.storage.memoryMapThreshold 2m Size of a block above which Spark memory maps when reading a block from
disk. This prevents Spark from memory mapping very small blocks. In
general, memory mapping has high overhead for blocks close to or below the
page size of the operating system.

Networking

Property Name Default Meaning

spark.rpc.message.maxSize 128 Maximum message size (in MB) to allow in "control plane" communication;
generally only applies to map output size information sent between executors
and the driver. Increase this if you are running jobs with many thousands of
map and reduce tasks and see messages about the RPC message size.

spark.blockManager.port (random) Port for all block managers to listen on. These exist on both the driver and the
executors.

spark.driver.blockManager.port (value of
spark.blockManager.port)

Driver-specific port for the block manager to listen on, for cases where it
cannot use the same configuration as executors.

spark.driver.bindAddress (value of
spark.driver.host)

Hostname or IP address where to bind listening sockets. This config overrides
the SPARK_LOCAL_IP environment variable (see below).

It also allows a different address from the local one to be advertised to
executors or external systems. This is useful, for example, when running
containers with bridged networking. For this to properly work, the different
ports used by the driver (RPC, block manager and UI) need to be forwarded
from the container's host.

https://issues.apache.org/jira/browse/SPARK-6313
https://issues.apache.org/jira/browse/SPARK-2546
http://127.0.0.1:4000/configuration.html#networking
http://127.0.0.1:4000/configuration.html#networking

spark.driver.host (local hostname) Hostname or IP address for the driver. This is used for communicating with
the executors and the standalone Master.

spark.driver.port (random) Port for the driver to listen on. This is used for communicating with the
executors and the standalone Master.

spark.network.timeout 120s Default timeout for all network interactions. This config will be used in place of
spark.core.connection.ack.wait.timeout,
spark.storage.blockManagerSlaveTimeoutMs,
spark.shuffle.io.connectionTimeout, spark.rpc.askTimeout or
spark.rpc.lookupTimeout if they are not configured.

spark.port.maxRetries 16 Maximum number of retries when binding to a port before giving up. When a
port is given a specific value (non 0), each subsequent retry will increment the
port used in the previous attempt by 1 before retrying. This essentially allows
it to try a range of ports from the start port specified to port + maxRetries.

spark.rpc.numRetries 3 Number of times to retry before an RPC task gives up. An RPC task will run at
most times of this number.

spark.rpc.retry.wait 3s Duration for an RPC ask operation to wait before retrying.

spark.rpc.askTimeout spark.network.timeout Duration for an RPC ask operation to wait before timing out.

spark.rpc.lookupTimeout 120s Duration for an RPC remote endpoint lookup operation to wait before timing
out.

Scheduling

Property Name Default Meaning

spark.cores.max (not set) When running on a standalone deploy cluster or a Mesos
cluster in "coarse-grained" sharing mode, the maximum
amount of CPU cores to request for the application from
across the cluster (not from each machine). If not set, the
default will be spark.deploy.defaultCores on Spark's
standalone cluster manager, or infinite (all available cores)
on Mesos.

spark.locality.wait 3s How long to wait to launch a data-local task before giving
up and launching it on a less-local node. The same wait will
be used to step through multiple locality levels (process-
local, node-local, rack-local and then any). It is also
possible to customize the waiting time for each level by
setting spark.locality.wait.node, etc. You should
increase this setting if your tasks are long and see poor
locality, but the default usually works well.

spark.locality.wait.node spark.locality.wait Customize the locality wait for node locality. For example,
you can set this to 0 to skip node locality and search
immediately for rack locality (if your cluster has rack
information).

spark.locality.wait.process spark.locality.wait Customize the locality wait for process locality. This affects
tasks that attempt to access cached data in a particular
executor process.

spark.locality.wait.rack spark.locality.wait Customize the locality wait for rack locality.

spark.scheduler.maxRegisteredResourcesWaitingTime 30s Maximum amount of time to wait for resources to register
before scheduling begins.

spark.scheduler.minRegisteredResourcesRatio 0.8 for YARN
mode; 0.0 for
standalone mode
and Mesos
coarse-grained
mode

The minimum ratio of registered resources (registered
resources / total expected resources) (resources are
executors in yarn mode, CPU cores in standalone mode
and Mesos coarsed-grained mode ['spark.cores.max' value
is total expected resources for Mesos coarse-grained
mode]) to wait for before scheduling begins. Specified as a
double between 0.0 and 1.0. Regardless of whether the
minimum ratio of resources has been reached, the
maximum amount of time it will wait before scheduling
begins is controlled by config
spark.scheduler.maxRegisteredResourcesWaitingTime.

http://127.0.0.1:4000/configuration.html#scheduling
http://127.0.0.1:4000/configuration.html#scheduling
http://127.0.0.1:4000/spark-standalone.html
http://127.0.0.1:4000/running-on-mesos.html#mesos-run-modes

spark.scheduler.mode FIFO The scheduling mode between jobs submitted to the same
SparkContext. Can be set to FAIR to use fair sharing
instead of queueing jobs one after another. Useful for multi-
user services.

spark.scheduler.revive.interval 1s The interval length for the scheduler to revive the worker
resource offers to run tasks.

spark.blacklist.enabled false If set to "true", prevent Spark from scheduling tasks on
executors that have been blacklisted due to too many task
failures. The blacklisting algorithm can be further controlled
by the other "spark.blacklist" configuration options.

spark.blacklist.timeout 1h (Experimental) How long a node or executor is blacklisted
for the entire application, before it is unconditionally
removed from the blacklist to attempt running new tasks.

spark.blacklist.task.maxTaskAttemptsPerExecutor 1 (Experimental) For a given task, how many times it can be
retried on one executor before the executor is blacklisted
for that task.

spark.blacklist.task.maxTaskAttemptsPerNode 2 (Experimental) For a given task, how many times it can be
retried on one node, before the entire node is blacklisted
for that task.

spark.blacklist.stage.maxFailedTasksPerExecutor 2 (Experimental) How many different tasks must fail on one
executor, within one stage, before the executor is
blacklisted for that stage.

spark.blacklist.stage.maxFailedExecutorsPerNode 2 (Experimental) How many different executors are marked
as blacklisted for a given stage, before the entire node is
marked as failed for the stage.

spark.blacklist.application.maxFailedTasksPerExecutor 2 (Experimental) How many different tasks must fail on one
executor, in successful task sets, before the executor is
blacklisted for the entire application. Blacklisted executors
will be automatically added back to the pool of available
resources after the timeout specified by
spark.blacklist.timeout. Note that with dynamic
allocation, though, the executors may get marked as idle
and be reclaimed by the cluster manager.

spark.blacklist.application.maxFailedExecutorsPerNode 2 (Experimental) How many different executors must be
blacklisted for the entire application, before the node is
blacklisted for the entire application. Blacklisted nodes will
be automatically added back to the pool of available
resources after the timeout specified by
spark.blacklist.timeout. Note that with dynamic
allocation, though, the executors on the node may get
marked as idle and be reclaimed by the cluster manager.

spark.speculation false If set to "true", performs speculative execution of tasks.
This means if one or more tasks are running slowly in a
stage, they will be re-launched.

spark.speculation.interval 100ms How often Spark will check for tasks to speculate.

spark.speculation.multiplier 1.5 How many times slower a task is than the median to be
considered for speculation.

spark.speculation.quantile 0.75 Fraction of tasks which must be complete before
speculation is enabled for a particular stage.

spark.task.cpus 1 Number of cores to allocate for each task.

spark.task.maxFailures 4 Number of failures of any particular task before giving up
on the job. The total number of failures spread across
different tasks will not cause the job to fail; a particular task
has to fail this number of attempts. Should be greater than
or equal to 1. Number of allowed retries = this value - 1.

Dynamic Allocation

http://127.0.0.1:4000/job-scheduling.html#scheduling-within-an-application
http://127.0.0.1:4000/configuration.html#dynamic-allocation
http://127.0.0.1:4000/configuration.html#dynamic-allocation

Property Name Default Meaning

spark.dynamicAllocation.enabled false Whether to use dynamic resource allocation, which
scales the number of executors registered with this
application up and down based on the workload. For
more detail, see the description here.

This requires spark.shuffle.service.enabled to be
set. The following configurations are also relevant:
spark.dynamicAllocation.minExecutors,
spark.dynamicAllocation.maxExecutors, and
spark.dynamicAllocation.initialExecutors

spark.dynamicAllocation.executorIdleTimeout 60s If dynamic allocation is enabled and an executor has
been idle for more than this duration, the executor will
be removed. For more detail, see this description.

spark.dynamicAllocation.cachedExecutorIdleTimeout infinity If dynamic allocation is enabled and an executor which
has cached data blocks has been idle for more than
this duration, the executor will be removed. For more
details, see this description.

spark.dynamicAllocation.initialExecutors spark.dynamicAllocation.minExecutors Initial number of executors to run if dynamic allocation
is enabled.

If `--num-executors` (or `spark.executor.instances`) is
set and larger than this value, it will be used as the
initial number of executors.

spark.dynamicAllocation.maxExecutors infinity Upper bound for the number of executors if dynamic
allocation is enabled.

spark.dynamicAllocation.minExecutors 0 Lower bound for the number of executors if dynamic
allocation is enabled.

spark.dynamicAllocation.schedulerBacklogTimeout 1s If dynamic allocation is enabled and there have been
pending tasks backlogged for more than this duration,
new executors will be requested. For more detail, see
this description.

spark.dynamicAllocation.sustainedSchedulerBacklogTimeout schedulerBacklogTimeout Same as
spark.dynamicAllocation.schedulerBacklogTimeout,
but used only for subsequent executor requests. For
more detail, see this description.

Security

Property Name Default Meaning

spark.acls.enable false Whether Spark acls should be enabled. If enabled, this checks to
see if the user has access permissions to view or modify the job.
Note this requires the user to be known, so if the user comes
across as null no checks are done. Filters can be used with the UI
to authenticate and set the user.

spark.admin.acls Empty Comma separated list of users/administrators that have view and
modify access to all Spark jobs. This can be used if you run on a
shared cluster and have a set of administrators or devs who
debug when things do not work. Putting a "*" in the list means any
user can have the privilege of admin.

spark.admin.acls.groups Empty Comma separated list of groups that have view and modify access
to all Spark jobs. This can be used if you have a set of
administrators or developers who help maintain and debug
underlying infrastructure. Putting a "*" in the list means any user in
any group can have the privilege of admin. The user groups are
obtained from the instance of the groups mapping provider
specified by spark.user.groups.mapping. Check the entry
spark.user.groups.mapping for more details.

spark.user.groups.mapping org.apache.spark.security.ShellBasedGroupsMappingProvider The list of groups for a user are determined by a group mapping
service defined by the trait
org.apache.spark.security.GroupMappingServiceProvider which
can configured by this property. A default unix shell based

http://127.0.0.1:4000/job-scheduling.html#dynamic-resource-allocation
http://127.0.0.1:4000/job-scheduling.html#resource-allocation-policy
http://127.0.0.1:4000/job-scheduling.html#resource-allocation-policy
http://127.0.0.1:4000/job-scheduling.html#resource-allocation-policy
http://127.0.0.1:4000/job-scheduling.html#resource-allocation-policy
http://127.0.0.1:4000/configuration.html#security
http://127.0.0.1:4000/configuration.html#security

implementation is provided
org.apache.spark.security.ShellBasedGroupsMappingProvider
which can be specified to resolve a list of groups for a user.
This implementation supports only a Unix/Linux based
environment. Windows environment is currently not supported.
However, a new platform/protocol can be supported by
implementing the trait
org.apache.spark.security.GroupMappingServiceProvider

spark.authenticate false Whether Spark authenticates its internal connections. See
spark.authenticate.secret if not running on YARN.

spark.authenticate.secret None Set the secret key used for Spark to authenticate between
components. This needs to be set if not running on YARN and
authentication is enabled.

spark.authenticate.enableSaslEncryption false Enable encrypted communication when authentication is
This is supported by the block transfer service and the
endpoints.

spark.network.sasl.serverAlwaysEncrypt false Disable unencrypted connections for services that support SASL
authentication. This is currently supported by the external shuffle
service.

spark.network.aes.enabled false Enable AES for over-the-wire encryption. This is supported for
RPC and the block transfer service. This option has precedence
over SASL-based encryption if both are enabled.

spark.network.aes.keySize 16 The bytes of AES cipher key which is effective when AES cipher is
enabled. AES works with 16, 24 and 32 bytes keys.

spark.network.aes.config.* None Configuration values for the commons-crypto library, such as
which cipher implementations to use. The config name should be
the name of commons-crypto configuration without the
"commons.crypto" prefix.

spark.core.connection.ack.wait.timeout spark.network.timeout How long for the connection to wait for ack to occur before timing
out and giving up. To avoid unwilling timeout caused by long
pause like GC, you can set larger value.

spark.core.connection.auth.wait.timeout 30s How long for the connection to wait for authentication to occur
before timing out and giving up.

spark.modify.acls Empty Comma separated list of users that have modify access to the
Spark job. By default only the user that started the Spark job has
access to modify it (kill it for example). Putting a "*" in the list
means any user can have access to modify it.

spark.modify.acls.groups Empty Comma separated list of groups that have modify access to the
Spark job. This can be used if you have a set of administrators or
developers from the same team to have access to control the job.
Putting a "*" in the list means any user in any group has the access
to modify the Spark job. The user groups are obtained from the
instance of the groups mapping provider specified by
spark.user.groups.mapping. Check the entry
spark.user.groups.mapping for more details.

spark.ui.filters None Comma separated list of filter class names to apply to the Spark
web UI. The filter should be a standard javax servlet Filter
Parameters to each filter can also be specified by setting a
system property of:
spark.<class name of
filter>.params='param1=value1,param2=value2'
For example:
-Dspark.ui.filters=com.test.filter1
-
Dspark.com.test.filter1.params='param1=foo,param2=testing'

spark.ui.view.acls Empty Comma separated list of users that have view access to the Spark
web ui. By default only the user that started the Spark job has view
access. Putting a "*" in the list means any user can have view
access to this Spark job.

spark.ui.view.acls.groups Empty Comma separated list of groups that have view access to the
Spark web ui to view the Spark Job details. This can be used if

http://docs.oracle.com/javaee/6/api/javax/servlet/Filter.html

Scala Java Python R

Scala Java Python R

you have a set of administrators or developers or users who can
monitor the Spark job submitted. Putting a "*" in the list means any
user in any group can view the Spark job details on the Spark web
ui. The user groups are obtained from the instance of the
mapping provider specified by spark.user.groups.mapping
Check the entry spark.user.groups.mapping for more details.

TLS / SSL

Property Name Default Meaning

spark.ssl.enabled false Whether to enable SSL connections on all supported protocols.

When spark.ssl.enabled is configured, spark.ssl.protocol is required.

All the SSL settings like spark.ssl.xxx where xxx is a particular configuration property, denote
the global configuration for all the supported protocols. In order to override the global
configuration for the particular protocol, the properties must be overwritten in the protocol-specific
namespace.

Use spark.ssl.YYY.XXX settings to overwrite the global configuration for particular protocol
denoted by YYY. Example values for YYY include fs, ui, standalone, and historyServer. See SSL
Configuration for details on hierarchical SSL configuration for services.

spark.ssl.enabledAlgorithms Empty A comma separated list of ciphers. The specified ciphers must be supported by JVM. The
reference list of protocols one can find on this page. Note: If not set, it will use the default cipher
suites of JVM.

spark.ssl.keyPassword None A password to the private key in key-store.

spark.ssl.keyStore None A path to a key-store file. The path can be absolute or relative to the directory where the
component is started in.

spark.ssl.keyStorePassword None A password to the key-store.

spark.ssl.keyStoreType JKS The type of the key-store.

spark.ssl.protocol None A protocol name. The protocol must be supported by JVM. The reference list of protocols one can
find on this page.

spark.ssl.needClientAuth false Set true if SSL needs client authentication.

spark.ssl.trustStore None A path to a trust-store file. The path can be absolute or relative to the directory where the
component is started in.

spark.ssl.trustStorePassword None A password to the trust-store.

spark.ssl.trustStoreType JKS The type of the trust-store.

Spark SQL
Running the SET -v command will show the entire list of the SQL configuration.

// spark is an existing SparkSession
spark.sql("SET -v").show(numRows = 200, truncate = false)

Spark Streaming

Property Name Default Meaning

spark.streaming.backpressure.enabled false Enables or disables Spark Streaming's internal backpressure
mechanism (since 1.5). This enables the Spark Streaming to
control the receiving rate based on the current batch
scheduling delays and processing times so that the system
receives only as fast as the system can process. Internally, this
dynamically sets the maximum receiving rate of receivers. This
rate is upper bounded by the values

http://127.0.0.1:4000/configuration.html#tab_scala_0
http://127.0.0.1:4000/configuration.html#tab_java_0
http://127.0.0.1:4000/configuration.html#tab_python_0
http://127.0.0.1:4000/configuration.html#tab_r_0
http://127.0.0.1:4000/configuration.html#tab_scala_0
http://127.0.0.1:4000/configuration.html#tab_java_0
http://127.0.0.1:4000/configuration.html#tab_python_0
http://127.0.0.1:4000/configuration.html#tab_r_0
http://127.0.0.1:4000/configuration.html#tls--ssl
http://127.0.0.1:4000/configuration.html#tls--ssl
http://127.0.0.1:4000/security.html#ssl-configuration
https://blogs.oracle.com/java-platform-group/entry/diagnosing_tls_ssl_and_https
https://blogs.oracle.com/java-platform-group/entry/diagnosing_tls_ssl_and_https
http://127.0.0.1:4000/configuration.html#spark-sql
http://127.0.0.1:4000/configuration.html#spark-sql
http://127.0.0.1:4000/configuration.html#spark-streaming
http://127.0.0.1:4000/configuration.html#spark-streaming

spark.streaming.receiver.maxRate and
spark.streaming.kafka.maxRatePerPartition if they are set
(see below).

spark.streaming.backpressure.initialRate not set This is the initial maximum receiving rate at which each receiver
will receive data for the first batch when the backpressure
mechanism is enabled.

spark.streaming.blockInterval 200ms Interval at which data received by Spark Streaming receivers is
chunked into blocks of data before storing them in Spark.
Minimum recommended - 50 ms. See the performance tuning
section in the Spark Streaming programing guide for more
details.

spark.streaming.receiver.maxRate not set Maximum rate (number of records per second) at which each
receiver will receive data. Effectively, each stream will consume
at most this number of records per second. Setting this
configuration to 0 or a negative number will put no limit on the
rate. See the deployment guide in the Spark Streaming
programing guide for mode details.

spark.streaming.receiver.writeAheadLog.enable false Enable write ahead logs for receivers. All the input data
received through receivers will be saved to write ahead logs
that will allow it to be recovered after driver failures. See the
deployment guide in the Spark Streaming programing guide for
more details.

spark.streaming.unpersist true Force RDDs generated and persisted by Spark Streaming to be
automatically unpersisted from Spark's memory. The raw input
data received by Spark Streaming is also automatically cleared.
Setting this to false will allow the raw data and persisted RDDs
to be accessible outside the streaming application as they will
not be cleared automatically. But it comes at the cost of higher
memory usage in Spark.

spark.streaming.stopGracefullyOnShutdown false If true, Spark shuts down the StreamingContext gracefully on
JVM shutdown rather than immediately.

spark.streaming.kafka.maxRatePerPartition not set Maximum rate (number of records per second) at which data
will be read from each Kafka partition when using the new
Kafka direct stream API. See the Kafka Integration guide for
more details.

spark.streaming.kafka.maxRetries 1 Maximum number of consecutive retries the driver will make in
order to find the latest offsets on the leader of each partition (a
default value of 1 means that the driver will make a maximum of
2 attempts). Only applies to the new Kafka direct stream API.

spark.streaming.ui.retainedBatches 1000 How many batches the Spark Streaming UI and status APIs
remember before garbage collecting.

spark.streaming.driver.writeAheadLog.closeFileAfterWrite false Whether to close the file after writing a write ahead log record
on the driver. Set this to 'true' when you want to use S3 (or any
file system that does not support flushing) for the metadata
WAL on the driver.

spark.streaming.receiver.writeAheadLog.closeFileAfterWrite false Whether to close the file after writing a write ahead log record
on the receivers. Set this to 'true' when you want to use S3 (or
any file system that does not support flushing) for the data WAL
on the receivers.

SparkR

Property Name Default Meaning

spark.r.numRBackendThreads 2 Number of threads used by RBackend to handle RPC calls from SparkR package.

spark.r.command Rscript Executable for executing R scripts in cluster modes for both driver and workers.

spark.r.driver.command spark.r.command Executable for executing R scripts in client modes for driver. Ignored in cluster
modes.

spark.r.shell.command R Executable for executing sparkR shell in client modes for driver. Ignored in cluster
modes. It is the same as environment variable SPARKR_DRIVER_R, but take

http://127.0.0.1:4000/streaming-programming-guide.html#level-of-parallelism-in-data-receiving
http://127.0.0.1:4000/streaming-programming-guide.html#deploying-applications
http://127.0.0.1:4000/streaming-programming-guide.html#deploying-applications
http://127.0.0.1:4000/streaming-kafka-integration.html
http://127.0.0.1:4000/configuration.html#sparkr
http://127.0.0.1:4000/configuration.html#sparkr

precedence over it. spark.r.shell.command is used for sparkR shell while
spark.r.driver.command is used for running R script.

spark.r.backendConnectionTimeout 6000 Connection timeout set by R process on its connection to RBackend in seconds.

spark.r.heartBeatInterval 100 Interval for heartbeats sent from SparkR backend to R process to prevent
connection timeout.

Deploy

Property Name Default Meaning

spark.deploy.recoveryMode NONE The recovery mode setting to recover submitted Spark jobs with cluster mode when it failed and
relaunches. This is only applicable for cluster mode when running with Standalone or Mesos.

spark.deploy.zookeeper.url None When `spark.deploy.recoveryMode` is set to ZOOKEEPER, this configuration is used to set the
zookeeper URL to connect to.

spark.deploy.zookeeper.dir None When `spark.deploy.recoveryMode` is set to ZOOKEEPER, this configuration is used to set the
zookeeper directory to store recovery state.

Cluster Managers
Each cluster manager in Spark has additional configuration options. Configurations can be found on the pages for each mode:

YARN

Mesos

Standalone Mode

Environment Variables
Certain Spark settings can be configured through environment variables, which are read from the conf/spark-env.sh script in the directory where
Spark is installed (or conf/spark-env.cmd on Windows). In Standalone and Mesos modes, this file can give machine specific information such as
hostnames. It is also sourced when running local Spark applications or submission scripts.

Note that conf/spark-env.sh does not exist by default when Spark is installed. However, you can copy conf/spark-env.sh.template to create it.
Make sure you make the copy executable.

The following variables can be set in spark-env.sh:

Environment Variable Meaning

JAVA_HOME Location where Java is installed (if it's not on your default PATH).

PYSPARK_PYTHON Python binary executable to use for PySpark in both driver and workers (default is python2.7 if available,
otherwise python). Property spark.pyspark.python take precedence if it is set

PYSPARK_DRIVER_PYTHON Python binary executable to use for PySpark in driver only (default is PYSPARK_PYTHON). Property
spark.pyspark.driver.python take precedence if it is set

SPARKR_DRIVER_R R binary executable to use for SparkR shell (default is R). Property spark.r.shell.command take precedence if it
is set

SPARK_LOCAL_IP IP address of the machine to bind to.

SPARK_PUBLIC_DNS Hostname your Spark program will advertise to other machines.

In addition to the above, there are also options for setting up the Spark standalone cluster scripts, such as number of cores to use on each
machine and maximum memory.

Since spark-env.sh is a shell script, some of these can be set programmatically – for example, you might compute SPARK_LOCAL_IP by looking up
the IP of a specific network interface.

Note: When running Spark on YARN in cluster mode, environment variables need to be set using the spark.yarn.appMasterEnv.
[EnvironmentVariableName] property in your conf/spark-defaults.conf file. Environment variables that are set in spark-env.sh will not be
reflected in the YARN Application Master process in cluster mode. See the YARN-related Spark Properties for more information.

Configuring Logging
Spark uses log4j for logging. You can configure it by adding a log4j.properties file in the conf directory. One way to start is to copy the existing
log4j.properties.template located there.

http://127.0.0.1:4000/configuration.html#deploy
http://127.0.0.1:4000/configuration.html#deploy
http://127.0.0.1:4000/configuration.html#cluster-managers
http://127.0.0.1:4000/configuration.html#cluster-managers
http://127.0.0.1:4000/running-on-yarn.html#configuration
http://127.0.0.1:4000/configuration.html#yarnrunning-on-yarnhtmlconfiguration
http://127.0.0.1:4000/configuration.html#yarnrunning-on-yarnhtmlconfiguration
http://127.0.0.1:4000/running-on-mesos.html#configuration
http://127.0.0.1:4000/configuration.html#mesosrunning-on-mesoshtmlconfiguration
http://127.0.0.1:4000/configuration.html#mesosrunning-on-mesoshtmlconfiguration
http://127.0.0.1:4000/spark-standalone.html#cluster-launch-scripts
http://127.0.0.1:4000/configuration.html#standalone-modespark-standalonehtmlcluster-launch-scripts
http://127.0.0.1:4000/configuration.html#standalone-modespark-standalonehtmlcluster-launch-scripts
http://127.0.0.1:4000/configuration.html#environment-variables
http://127.0.0.1:4000/configuration.html#environment-variables
http://127.0.0.1:4000/spark-standalone.html#cluster-launch-scripts
http://127.0.0.1:4000/running-on-yarn.html#spark-properties
http://127.0.0.1:4000/configuration.html#configuring-logging
http://127.0.0.1:4000/configuration.html#configuring-logging
http://logging.apache.org/log4j/

Overriding configuration directory
To specify a different configuration directory other than the default “SPARK_HOME/conf”, you can set SPARK_CONF_DIR. Spark will use the
configuration files (spark-defaults.conf, spark-env.sh, log4j.properties, etc) from this directory.

Inheriting Hadoop Cluster Configuration
If you plan to read and write from HDFS using Spark, there are two Hadoop configuration files that should be included on Spark’s classpath:

hdfs-site.xml, which provides default behaviors for the HDFS client.
core-site.xml, which sets the default filesystem name.

The location of these configuration files varies across CDH and HDP versions, but a common location is inside of /etc/hadoop/conf. Some tools,
such as Cloudera Manager, create configurations on-the-fly, but offer a mechanisms to download copies of them.

To make these files visible to Spark, set HADOOP_CONF_DIR in $SPARK_HOME/spark-env.sh to a location containing the configuration files.

http://127.0.0.1:4000/configuration.html#overriding-configuration-directory
http://127.0.0.1:4000/configuration.html#overriding-configuration-directory
http://127.0.0.1:4000/configuration.html#inheriting-hadoop-cluster-configuration
http://127.0.0.1:4000/configuration.html#inheriting-hadoop-cluster-configuration

