diff --git a/docs/mllib-data-types.md b/docs/mllib-data-types.md
index 24d22b9bcdfa4..fe6c1bf7bfd99 100644
--- a/docs/mllib-data-types.md
+++ b/docs/mllib-data-types.md
@@ -298,23 +298,22 @@ In general the use of non-deterministic RDDs can lead to errors.
### BlockMatrix
-A `BlockMatrix` is a distributed matrix backed by an RDD of `MatrixBlock`s, where `MatrixBlock` is
+A `BlockMatrix` is a distributed matrix backed by an RDD of `MatrixBlock`s, where a `MatrixBlock` is
a tuple of `((Int, Int), Matrix)`, where the `(Int, Int)` is the index of the block, and `Matrix` is
the sub-matrix at the given index with size `rowsPerBlock` x `colsPerBlock`.
-`BlockMatrix` supports methods such as `.add` and `.multiply` with another `BlockMatrix`.
-`BlockMatrix` also has a helper function `.validate` which can be used to debug whether the
+`BlockMatrix` supports methods such as `add` and `multiply` with another `BlockMatrix`.
+`BlockMatrix` also has a helper function `validate` which can be used to check whether the
`BlockMatrix` is set up properly.
A [`BlockMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.BlockMatrix) can be
-most easily created from an `IndexedRowMatrix` or `CoordinateMatrix` using `.toBlockMatrix()`.
-`.toBlockMatrix()` will create blocks of size 1024 x 1024. Users may change the sizes of their blocks
-by supplying the values through `.toBlockMatrix(rowsPerBlock, colsPerBlock)`.
+most easily created from an `IndexedRowMatrix` or `CoordinateMatrix` by calling `toBlockMatrix`.
+`toBlockMatrix` creates blocks of size 1024 x 1024 by default.
+Users may change the block size by supplying the values through `toBlockMatrix(rowsPerBlock, colsPerBlock)`.
{% highlight scala %}
-import org.apache.spark.mllib.linalg.SingularValueDecomposition
import org.apache.spark.mllib.linalg.distributed.{BlockMatrix, CoordinateMatrix, MatrixEntry}
val entries: RDD[MatrixEntry] = ... // an RDD of (i, j, v) matrix entries
@@ -323,29 +322,24 @@ val coordMat: CoordinateMatrix = new CoordinateMatrix(entries)
// Transform the CoordinateMatrix to a BlockMatrix
val matA: BlockMatrix = coordMat.toBlockMatrix().cache()
-// validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.
+// Validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.
// Nothing happens if it is valid.
-matA.validate
+matA.validate()
// Calculate A^T A.
-val AtransposeA = matA.transpose.multiply(matA)
-
-// get SVD of 2 * A
-val A2 = matA.add(matA)
-val svd = A2.toIndexedRowMatrix().computeSVD(20, false, 1e-9)
+val ata = matA.transpose.multiply(matA)
{% endhighlight %}
-A [`BlockMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.BlockMatrix) can be
-most easily created from an `IndexedRowMatrix` or `CoordinateMatrix` using `.toBlockMatrix()`.
-`.toBlockMatrix()` will create blocks of size 1024 x 1024. Users may change the sizes of their blocks
-by supplying the values through `.toBlockMatrix(rowsPerBlock, colsPerBlock)`.
+A [`BlockMatrix`](api/java/org/apache/spark/mllib/linalg/distributed/BlockMatrix.html) can be
+most easily created from an `IndexedRowMatrix` or `CoordinateMatrix` by calling `toBlockMatrix`.
+`toBlockMatrix` creates blocks of size 1024 x 1024 by default.
+Users may change the block size by supplying the values through `toBlockMatrix(rowsPerBlock, colsPerBlock)`.
{% highlight java %}
import org.apache.spark.api.java.JavaRDD;
-import org.apache.spark.mllib.linalg.SingularValueDecomposition;
import org.apache.spark.mllib.linalg.distributed.BlockMatrix;
import org.apache.spark.mllib.linalg.distributed.CoordinateMatrix;
import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix;
@@ -356,17 +350,12 @@ CoordinateMatrix coordMat = new CoordinateMatrix(entries.rdd());
// Transform the CoordinateMatrix to a BlockMatrix
BlockMatrix matA = coordMat.toBlockMatrix().cache();
-// validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.
+// Validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.
// Nothing happens if it is valid.
matA.validate();
// Calculate A^T A.
-BlockMatrix AtransposeA = matA.transpose().multiply(matA);
-
-// get SVD of 2 * A
-BlockMatrix A2 = matA.add(matA);
-SingularValueDecomposition svd =
- A2.toIndexedRowMatrix().computeSVD(20, false, 1e-9);
+BlockMatrix ata = matA.transpose().multiply(matA);
{% endhighlight %}