Skip to content
Branch: master
Find file History
jose-torres and jiangxb1987 [SPARK-27711][CORE] Unset InputFileBlockHolder at the end of tasks
## What changes were proposed in this pull request?

Unset InputFileBlockHolder at the end of tasks to stop the file name from leaking over to other tasks in the same thread. This happens in particular in Pyspark because of its complex threading model.

## How was this patch tested?

new pyspark test

Closes #24605 from jose-torres/fix254.

Authored-by: Jose Torres <torres.joseph.f+github@gmail.com>
Signed-off-by: Xingbo Jiang <xingbo.jiang@databricks.com>
Latest commit 5fae8f7 May 23, 2019

README.md

Apache Spark

Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing.

https://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page

Python Packaging

This README file only contains basic information related to pip installed PySpark. This packaging is currently experimental and may change in future versions (although we will do our best to keep compatibility). Using PySpark requires the Spark JARs, and if you are building this from source please see the builder instructions at "Building Spark".

The Python packaging for Spark is not intended to replace all of the other use cases. This Python packaged version of Spark is suitable for interacting with an existing cluster (be it Spark standalone, YARN, or Mesos) - but does not contain the tools required to set up your own standalone Spark cluster. You can download the full version of Spark from the Apache Spark downloads page.

NOTE: If you are using this with a Spark standalone cluster you must ensure that the version (including minor version) matches or you may experience odd errors.

Python Requirements

At its core PySpark depends on Py4J (currently version 0.10.8.1), but some additional sub-packages have their own extra requirements for some features (including numpy, pandas, and pyarrow).

You can’t perform that action at this time.