
MongoSQL Reference

General
SQL Syntax in MongoDB Shell vs. 3rd Party SQL Based Tools (going through ODBC/JDBC driver)
When executing a SQL statement within the MongoDB Shell environment, one must include the proper wrapping syntax that includes
the aggregate command and proper quoting (see Quoting for more details). If executing a SQL statement by way of a 3rd party tool
that would be connected using one of our Atlas SQL drivers (ODBC or JDBC), the MongoDB aggregate command is not necessary
and in some cases the quotes are not needed either. In many cases (though it depends on the tool) the connectors and drivers add
these code wrappers when doing the SQL to MQL translation.

Tool SQL Syntax Additional Info

MongoDB Shell db.sql(`Select username from

Customers where username='fmiller'

limit 2`)

db.aggregate([{$sql: {statement:

`SELECT * from Sales where

storeLocation='Seattle' limit 2`,

format:"jdbc",

dialect:"mongosql"}}])

db.sql is the shortened form of the $sql
aggregate.

DBeaver & Tableau Select username from Customers

where username='fmiller' limit 2

Quoting - In some areas, Atlas SQL can be pretty forgiving with quotes and which types can be used. And many times if coming in
from a BI Tool, you only need to worry about quotes when identifying a string literal (ex. A string within the where clause). But if you
are in Mongo shell, you need to add quotes to the whole statement. And if you need quotes in other areas of your statement (column
names or string filters) this is a general guide for quote usage and the types of quotes to use.

​ The quote marks you use in SQL Statements matter.
​ `` entire statement tick marks
​ “” column names double quotes
​ ‘’ strings single quotes

Using Quotes with Atlas SQL in Mongo Shell
db.sql("Select username from customers where username='fmiller' limit 2")
db.sql(`Select username from customers where username='fmiller' limit 2`)

db.sql(`Select "username" from customers where username='fmiller' limit 2`)

Using Quotes with Atlas SQL in DBeaver or Tableau
Quoting Syntax Examples

Select purchaseMethod from Sales
Select purchaseMethod from Sales where purchaseMethod ='Online'
Select "purchaseMethod" from Sales where purchaseMethod ='Online'
Select "Sales"."customer" AS "customer","Sales"."customer"."age" AS "customerAge", "Sales"."purchaseMethod" AS
"purchaseMethod" From "Sales" Where "purchaseMethod"='Online'

Type

Construct/Oper
ators

Syntax/Example
Examples are displayed for
Mongo Shell, these can be
applied to other tools by
removing the db.sql(``)

Syntax/Example (connecting through a
driver and/or connector) Additional Notes

Object

Identifiers

Collection/Table

db.sql(`select * from Sales
Limit 2`) select * from Sales Limit 2

Case Sensitive: Sales is
the name of the virtual
collection in the Atlas
Federated Database
(ADF). All MongoDB
namespaces are case
sensitive, the SQL syntax
is not.

Field/Column

db.sql(`select saleDate,
items, customer.age from
Sales Limit 2`)

select saleDate, items, customer.age from
Sales Limit 2

saleDate is a top level
field, items is an array,
and customer.age is a
part of a nested
document. Customer Age
can be displayed as a
column/top level field by
using dot notation.
Because the items array
is not unwound, it would
display the whole array in
Mongo Shell and in
DBeaver or Tableau it
would display as one
column stringified

String Literals Single quotes:
db.sql(`select * from Sales
Where customer.gender = 'M'
Limit 2`)

select * from Sales Where
customer.gender = 'M' Limit 2

Notice the M, is in single
quotes. While the whole
SQL stmt is surrounded
in ticks.

Query Syntax

SELECT

db.sql(`select * from Sales
Limit 2`)

db.sql(`select
purchaseMethod,customer,
items from Sales Limit 2`)

select * from Sales Limit 2

select purchaseMethod,customer, items
from Sales Limit 2

While the commonly used
syntax "Select * from
Table" is supported, the
syntax to combine * plus
column names is not, the
query "Select *, FieldA
from Table" will product
an error

DISTINCT Currently not supported
Not compatible with
documents because of the
way field ordering and
comparing would work

Count Distinct is working,
Select Distinct is not
supported

db.sql(`SELECT
COUNT(DISTINCT
purchaseMethod) FROM
Sales`)

SELECT COUNT(DISTINCT
purchaseMethod) FROM Sales

Count Distinct is working,
Select Distinct is not
supported

CASE db.sql(`SELECT CASE
WHEN customer.age <=20
THEN '20 years old or
younger' WHEN
customer.age >20 AND
customer.age <=30 THEN
'21-30 year olds' WHEN
customer.age >30 AND
customer.age <=40 THEN
'31-40 year olds' WHEN
customer.age >40 AND
customer.age <=50 THEN
'41-50 year olds' WHEN
customer.age >50 AND
customer.age <=60 THEN
'51-60 year olds' WHEN
customer.age >60 AND
customer.age <=70 THEN
'61-70 year olds' WHEN
customer.age >70 THEN '70
years and older' ELSE 'Other'
END AS ageRange,
customer.age,
customer.gender,
customer.email FROM
Sales`)

SELECT CASE WHEN customer.age
<=20 THEN '20 years old or younger'
WHEN customer.age >20 AND
customer.age <=30 THEN '21-30 year
olds' WHEN customer.age >30 AND
customer.age <=40 THEN '31-40 year
olds' WHEN customer.age >40 AND
customer.age <=50 THEN '41-50 year
olds' WHEN customer.age >50 AND
customer.age <=60 THEN '51-60 year
olds' WHEN customer.age >60 AND
customer.age <=70 THEN '61-70 year
olds' WHEN customer.age >70 THEN '70
years and older' ELSE 'Other' END AS
ageRange, customer.age,
customer.gender, customer.email FROM
Sales

This shows a typical
CASE expression using
dot notation to select a
field that is within a
nested document.

FROM db.sql(`select * from Sales
Limit 2`) select * from Sales Limit 2

JOIN SELECT b.ProductSold, CAST(b.`_id` as
string) ID, (b.Price * b.Quantity)
totalAmount FROM (SELECT * FROM
Sales a WHERE customer.gender='F') a
Inner Join Transactions b on (Cast(a.`_id`
as string)=Cast(b.`_id` as string))

select b.ProductSold,b.`_id` as ID,
(b.Price * b.Quantity) as
SaleTotal,a.couponUsed from Sales a
inner join Transactions b on Cast(a.`_id`
as string)=Cast(b.`_id` as string)
limit 2

select b.ProductSold,b.`_id` as ID,
(b.Price * b.Quantity) as
SaleTotal,a.couponUsed from Sales a
inner join Transactions b on Cast(a.`_id`
as string)=Cast(b.`_id` as string)
where Cast(a.`_id`as
string)='5bd761dcae323e45a93ccff4'

It's best to filter or limit
the data as much as
possible to ensure speed
with query execution

The first example shows
how to form the SQL
query to create a derived
table that joins after the
where clause filter

MongoSQL supports:
INNER JOIN, (CROSS)
JOIN, LEFT OUTER
JOIN, and RIGHT
OUTER JOIN

UNION ALL

SELECT * FROM Sales UNION ALL SELECT
* FROM Transactions

UNION is not supported,
UNION ALL is supported

The main difference
between UNION and
UNION ALL is that:
UNION: only keeps
unique records. UNION
ALL: keeps all records,

including duplicates

NESTED
SELECTS

SELECT .. FROM (SELECT ..) as subSelect

Mongosql requires nested
selects to have an alias.
This is not a SQL-92
requirement.

JOINED
SUBQUERIES

SELECT ... FROM (SELECT) as sub1 JOIN
(SELECT) as sub2 ON

WHERE db.sql(`SELECT * from Sales
WHERE customer.gender='M'`)

db.sql(`SELECT * FROM Sales
WHERE customer.age>20`)

SELECT * from Sales WHERE
customer.gender='M'

SELECT * FROM Sales WHERE
customer.age>20

LIKE SELECT purchaseMethod FROM Sales
WHERE purchaseMethod LIKE 'In%'

ESCAPE

SELECT customer FROM Sales WHERE
customer.email LIKE '%_%' ESCAPE '_'

The ESCAPE clause is
supported in the LIKE
operator to indicate the
escape character. Escape
characters are used in
the pattern string to
indicate that any wildcard
character that occurs
after the escape
character in the pattern
string should be treated
as a regular character.

GROUP BY db.sql(`SELECT customerAge,
COUNT(*) FROM Sales GROUP
BY customer.age AS
customerAge`)

db.sql(`SELECT
customerGender,customerAge,
COUNT(*) FROM Sales GROUP
BY customer.gender AS
customerGender, customer.age
AS customerAge`)

db.sql(`SELECT
ProductSold,Sum(Price) FROM
Transactions GROUP BY
ProductSold`)

SELECT customerAge, COUNT(*) FROM
Sales GROUP BY customer.age AS
customerAge

SELECT customerGender,customerAge,
COUNT(*) FROM Sales GROUP BY
customer.gender AS customerGender,
customer.age AS customerAge

SELECT ProductSold,Sum(Price) FROM
Transactions GROUP BY ProductSold

HAVING db.sql(`SELECT
customerGender,customerAg
e, COUNT(*) FROM Sales
GROUP BY customer.gender
AS customerGender,
customer.age AS
customerAge Having
COUNT(*)>1`)

SELECT customerGender,customerAge,
COUNT(*) FROM Sales GROUP BY
customer.gender AS customerGender,
customer.age AS customerAge Having
COUNT(*)>1

ORDER BY db.sql(`SELECT
customerGender, COUNT(*)
FROM Sales GROUP BY
customer.gender AS
customerGender ORDER BY
customerGender`)

SELECT customerGender, COUNT(*) FROM
Sales GROUP BY customer.gender AS
customerGender ORDER BY
customerGender

LIMIT db.sql(`SELECT * FROM
Sales LIMIT 3`)

SELECT * FROM Sales LIMIT 3

OFFSET db.sql(`SELECT couponUsed
FROM Sales OFFSET 2`)

SELECT couponUsed FROM Sales OFFSET
2

AS db.sql("SELECT couponUsed
AS Coupons FROM Sales
OFFSET 2")

db.sql(`SELECT
customerAge, COUNT(*)
FROM Sales GROUP BY
customer.age AS
customerAge`)

SELECT couponUsed AS Coupons
FROM Sales OFFSET 2

SELECT customerAge, COUNT(*) FROM
Sales GROUP BY customer.age AS
customerAge

Alias assignments work
as expected, though the
syntax is a bit unexpected
when using an aggregate
with a subdocument
namespace - see 2nd
example.

Arithmetic
Operators

=+, -, *, /, %

db.sql(`SELECT
ProductSold,Price,
Quantity,(Price*Quantity) as
TotalCost FROM Transactions
Limit 2`)

SELECT ProductSold,Price,
Quantity,(Price*Quantity) as TotalCost
FROM Transactions Limit 2

+ (Addition) → +

- (Subtraction) → -

* (Multiplication) → *
/ (Division) → /
% (Modulus remainder)
→ MOD({val1},{val2})

These arithmetics
operators all work as the
syntax example shows,
just replace the operator
you need within this
syntax example. Only %
uses a function.

Comparison
Operators

=, !=, <>, >, <,
>=, <=

db.sql(`SELECT * FROM Sales
WHERE customer.age>20`)

db.sql(`
SELECT * FROM Sales WHERE
customer.gender='F'`)

SELECT * FROM Sales WHERE
customer.age>20

SELECT * FROM Sales WHERE
customer.gender='F'

= Equals
!= Not Equal
<> Not Equal
> Greater Than
>= Greater Than & Equal
< Less Than
<= Less Than & Equal

These comparison
operators all work as the
syntax example suggests,
just replace the operator
you need within this
syntax example.

Logical/Boolea
n Operators

AND, NOT, OR db.sql(`SELECT * FROM
Sales WHERE
customer.age>20 AND
customer.gender='M'`)

db.sql(`SELECT * FROM
Sales WHERE
customer.age=20 OR
customer.gender='M'`)

db.sql(`SELECT * FROM
Sales WHERE

SELECT * FROM Sales WHERE
customer.age>20 AND
customer.gender='M'

SELECT * FROM Sales WHERE
customer.age=20 OR
customer.gender='M'

SELECT * FROM Sales WHERE
customer.age>20 AND NOT
customer.gender='M'

customer.age>20 AND NOT
customer.gender='M'`)

Aggregate
Expressions

SUM() db.sql(`SELECT
ProductSold,SUM(Price)
FROM Transactions GROUP
BY ProductSold`)

SELECT ProductSold,SUM(Price) FROM
Transactions GROUP BY ProductSold

AVG() db.sql(`SELECT
ProductSold,AVG(Price)
FROM Transactions GROUP
BY ProductSold`)

SELECT ProductSold,AVG(Price) FROM
Transactions GROUP BY ProductSold

COUNT() db.sql(`SELECT
ProductSold,COUNT(Price)
FROM Transactions GROUP
BY ProductSold`)

SELECT ProductSold,COUNT(Price)
FROM Transactions GROUP BY
ProductSold

MIN() db.sql(`SELECT
ProductSold,MIN(Price)
FROM Transactions GROUP
BY ProductSold`)

SELECT ProductSold,MIN(Price) FROM
Transactions GROUP BY ProductSold

MAX() db.sql(`SELECT
ProductSold,MAX(Price)
FROM Transactions GROUP
BY ProductSold`

SELECT ProductSold,MAX(Price) FROM
Transactions GROUP BY ProductSold

COUNT(DISTIN
CT) db.sql(`SELECT

COUNT(DISTINCT
purchaseMethod) FROM
Sales`)

SELECT COUNT(DISTINCT
purchaseMethod) FROM Sales

Does not work if the
aggregated field is not
comparable to itself.
Document, Array, no
schema set or polymorphic

schema.

SUM(DISTINCT) db.sql(`SELECT
ProductSold,SUM(DISTINCT
Price) FROM Transactions
GROUP BY ProductSold`)

SELECT ProductSold,SUM(DISTINCT
Price) FROM Transactions GROUP BY
ProductSold

GROUP_CONC
AT() Not Supported

Scalar
Functions

CONCAT

db.sql(`SELECT
purchaseMethod||'
'||storeLocation as
purchaseDetails,purchaseMetho
d, storeLocation from Sales`)

SELECT purchaseMethod||'
'||storeLocation as
purchaseDetails,purchaseMethod,
storeLocation from Sales

|| operator for
concatenating strings
This example shows how
to concatenate 2 strings,
while adding a space
between them.

DATETRUNC

db.sql(`SELECT
DATETRUNC(DAY,saleDate)
from Sales`)

SELECT DATETRUNC(DAY,saleDate)
from Sales

The DATETRUNC
function shortens
timestamps so they are
easier to read.
We support
DATETRUNC(<date_part
>, <timestamp>) and
DATETRUNC(<date_part
>, <timestamp>,
'<start_of_week>')

Supported date_parts are
YEAR | MONTH | DAY |
HOUR | MINUTE |
SECOND | WEEK |

DAY_OF_YEAR |
ISO_WEEK |
ISO_WEEKDAY

DATEADD

db.sql(`SELECT
DATEADD(YEAR,1,saleDate),
saleDate from Sales`)

SELECT DATEADD(YEAR,1,saleDate),
saleDate from Sales

Supported date_parts are
YEAR | MONTH | DAY |
HOUR | MINUTE |
SECOND | WEEK |
DAY_OF_YEAR |
ISO_WEEK |
ISO_WEEKDAY

DATEDIFF

db.sql(`SELECT
DATEDIFF(YEAR,CURRENT_TI
MESTAMP,saleDate),saleDate
from Sales`)

SELECT
DATEDIFF(YEAR,CURRENT_TIMESTAM
P,saleDate),saleDate from Sales

Supported date_parts are
YEAR | MONTH | DAY |
HOUR | MINUTE |
SECOND | WEEK |
DAY_OF_YEAR |
ISO_WEEK |
ISO_WEEKDAY

TO_STRING

db.sql(`SELECT CAST(saleDate
as string), saleDate from Sales`)

SELECT CAST(saleDate as string), saleDate
from Sales
SELECT saleDate::STRING as salesDateStr,
saleDate from Sales
SELECT CAST(EXTRACT(YEAR FROM
saleDate)as string), saleDate from Sales

CAST(<expr> AS
STRING) or ::STRING

TO/FROM
EPOCH

This can be done with
CAST.
To Epoch ==
CAST(<timestamp> AS
LONG)
From Epoch ==
CAST(<epoch> AS

TIMESTAMP)

CASTING
TO/FROM
DATE,
TIMESTAMP

db.sql(`SELECT
CAST(EXTRACT(YEAR FROM
saleDate)as integer), saleDate
from Sales`)

db.sql(`SELECT
CAST(EXTRACT(YEAR FROM
saleDate)as string), saleDate
from Sales`)

db.sql(`SELECT
CAST('1975-01-23' as
TIMESTAMP) as Birthdate,
saleDate from Sales`)

SELECT CAST(EXTRACT(YEAR FROM
saleDate)as integer), saleDate from Sales

SELECT CAST(EXTRACT(YEAR FROM
saleDate)as string), saleDate from Sales

SELECT CAST('1975-01-23' as
TIMESTAMP) as Birthdate, saleDate from
Sales

MongoDB only supports
TIMESTAMP type.
supports: "cast from
date/timestamp to/from
other types"

DAY OF WEEK db.sql(`SELECT
EXTRACT(ISO_WEEKDAY
FROM saleDate), saleDate from
Sales`)

SELECT EXTRACT(ISO_WEEKDAY
FROM saleDate), saleDate from Sales

EXTRACT(ISO_WEEKD
AY FROM <timestamp>)

TIMEZONE
CONVERSION

Not Supported, MongoDB
stores in UTC

CURRENT
DATE TIME

db.sql(`SELECT
CURRENT_TIMESTAMP from
Sales`)

SELECT CURRENT_TIMESTAMP from
Sales

EXTRACT db.sql(`SELECT
EXTRACT(YEAR FROM
saleDate), saleDate from Sales`)

SELECT EXTRACT(YEAR FROM
saleDate), saleDate from Sales

RANDOM() Not Supported

SUBSTRING()

db.sql(`SELECT ProductSold,
SUBSTRING
(ProductSold,0,2)FROM
Transactions`)

SELECT ProductSold, SUBSTRING
(ProductSold,0,2)FROM Transactions

SUBSTRING(string, start
position, length)
MongoSQL uses 0-indexing,
so start should be 0 to start
at the first character, 1 to
start at the second, and so
on

UPPER db.sql(`SELECT ProductSold,
UPPER(SUBSTRING
(ProductSold,0,2))FROM
Transactions`)

SELECT ProductSold,
UPPER(SUBSTRING
(ProductSold,0,2))FROM Transactions UPPER(string)

LOWER db.sql(`SELECT ProductSold,
LOWER(SUBSTRING
(ProductSold,0,2))FROM
Transactions`)

SELECT ProductSold,
LOWER(SUBSTRING
(ProductSold,0,2))FROM Transactions LOWER(string)

TRIM db.sql(`SELECT
TRIM(purchaseMethod) FROM
Sales`)
db.sql(`SELECT TRIM('In'
FROM purchaseMethod) FROM
Sales`)

SELECT TRIM(purchaseMethod) FROM
Sales
SELECT TRIM('In' FROM
purchaseMethod) FROM Sales

removes leading and/or
trailing spaces, or an
optionally specified
substring, from the
argued string

LEFT

db.sql(`SELECT ProductSold,
SUBSTRING
(ProductSold,0,2)FROM
Transactions`)

SELECT ProductSold, SUBSTRING
(ProductSold,0,2)FROM Transactions

Use Substring with a
starting position of 0
or use: (CASE WHEN %2
<= 0 THEN NULL ELSE
SUBSTRING(%1,0,%2)
END)

RIGHT

db.sql(`SELECT SUBSTRING
(ProductSold,(CHAR_LENGTH(
ProductSold)-2),2)FROM
Transactions`)

SELECT SUBSTRING
(ProductSold,(CHAR_LENGTH(ProductS
old)-2),2)FROM Transactions

Use a combo of Substring
and Char_length minus the
length from the substring
argument or use: (CASE
WHEN %2 <= 0 THEN
(CASE WHEN %1 IS NULL
THEN NULL ELSE '' END)
WHEN %2 >=
CHAR_LENGTH(%1) THEN
%1 ELSE SUBSTRING(%1
FROM
(CHAR_LENGTH(%1) - %2)
FOR %2) END)

CHAR_LENGTH db.sql(`SELECT
CHAR_LENGTH(ProductSold)
FROM Transactions`)

SELECT CHAR_LENGTH(ProductSold)
FROM Transactions

POSITION

db.sql(`SELECT
purchaseMethod, POSITION ('i'
IN purchaseMethod) FROM
Sales`)

SELECT purchaseMethod, POSITION ('i'
IN purchaseMethod) FROM Sales

POSITION(substring IN
string)
returns the position of the
first occurrence of
substring in the string, or
-1 if it does not occur

SIMILAR TO Not Supported

MongoDB commands:
Flatten & Unwind
How can I flatten all of the data within a nested object?
Initial view of data within Tableau
Tableau Table View: Select * from Sales where customer.age=59

_id Coupon Used Customer

_Id
{"$oid": "5bd761dcae323e45a93ccff4"}

False {"gender": "F", "age": 59, "satisfaction": 4}

_Id
{"$oid": "5bd761dcae323e45a93ccff4"}

False Customer
{"gender": "M", "age": 59, "satisfaction": 5}

_Id
{"$oid": "5bd761dcae323e45a93ccfee"}

True Customer
{"gender": "F", "age": 59, "email": "pan@cak.zm",
"satisfaction": 5}

Flatten Command:
This selects and flattens all nested fields within the customer object and presents them as top level fields (aka columns):

Tableau Table View: Select * from FLATTEN(Sales) where customer_age=59

_id Coupon Used customer_age customer_gender customer_satisfacti
on

_Id
{"$oid":
"5bd761dcae323e45a93ccff4"}

False 59 F 4

_Id
{"$oid":
"5bd761dcae323e45a93ccff4"}

False 59 M 5

_Id
{"$oid":
"5bd761dcae323e45a93ccfee"
}

True 59 F 5

How do I only flatten some fields, I don’t need them all?
Initial view of data within Tableau
Tableau Table View: Select * from Sales where purchaseMethod ='Online'

_id Coupon Used Customer

_Id
{"$oid": "5bd761dcae323e45a93ccff4"}

False {"gender": "F", "age": 59, "satisfaction": 4}

_Id
{"$oid": "5bd761dcae323e45a93ccff3"}

False Customer
{"gender": "M", "age": 59, "satisfaction": 5}

_Id
{"$oid": "5bd761dcae323e45a93ccfee"}

True Customer
{"gender": "F", "age": 59, "email": "pan@cak.zm",
"satisfaction": 5}

Use dot notation:
This selects customer name and email (which are nested within the customer object) and presents them as top level fields (aka columns):

Select CAST(_id as String) as ID_new, customer.age, customer.gender from Sales where purchaseMethod ='Online'

_id Coupon
Used

customer.age customer.gender

5bd761dcae323e45a93ccff4 False 59 F

5bd761dcae323e45a93ccff3 False 59 M

5bd761dcae323e45a93ccfee True 59 F

How can I unwind array data?
The “items” column is an array data type

Tableau Table View: Select * from Sales
_id Coupon

Used
Customer items

_Id
{"$oid":
"5bd761dc
ae323e45a
93ccff4"}

False {"gender": "F", "age": 59, "satisfaction": 4} [{"name": "backpack", "price":
{"$numberDecimal": "187.16"}, "quantity": 2},
{"name": "printer paper", "price":
{"$numberDecimal": "20.61"}, "quantity": 10},
{"name": "notepad", "price": {"$numberDecimal":
"23.75"}, "quantity": 5}]

This unwinds and flattens all of the “items” array and presents all nested object data as top level fields (columns):

Select * from FLATTEN(UNWIND(Sales WITH PATH=> Sales.items))

_id Coupo
n Used

custome
r_age

customer
_gender

customer_sati
sfaction

items_name items_price items_quantity

_Id
{"$oid":
"5bd761dcae32
3e45a93ccff4"}

False 59 F 4 backpack 187.16 2

_Id
{"$oid":
"5bd761dcae32
3e45a93ccff4"}

False 59 F 4 printer paper 20.61 10

_Id
{"$oid":
"5bd761dcae32
3e45a93ccff4"}

False 59 F 4 notepad 23.75 5

This unwinds the “items” array but only selects some of the fields within the array (the quantity, price, and tags) this also shows how to use a
where clause (note that you do not have to flatten the data when not returning *):

Select CAST(_id as String),items.quantity, items.name, items.price from UNWIND(Sales WITH PATH=> Sales.items)

_id items_name items_price items_quantity

5bd761dcae323e45a93ccff4 backpack 187.16 2

5bd761dcae323e45a93ccff4 printer paper 20.61 10

5bd761dcae323e45a93ccff4 notepad 23.75 5

This unwinds the “items” array but only selects some of the fields within the array (the quantity and price), selects some top level fields (_id and
purchaseMethod) and also selects a nested object field (customer_age) plus this also shows how to use a where clause with an integer data type:

***Notice the Flatten command can be omitted, since we are not intending to Flatten every nested object as we are using dot notation to
select specific fields (both nested objects and array types)

Select CAST(_id as String),purchaseMethod, customer.age, items.quantity, items.price from UNWIND(Sales WITH PATH=>
Sales.items) Where items.quantity = 2

_id purchaseMethod customer.age items.price items.quantity

5bd761dcae323e45a93ccff4 Online 59 187.16 2

5bd761dcae323e45a93ccff4 Online 59 22.61 2

5bd761dcae323e45a93ccff4 Store 59 24.75 2

MongoSQL Translation
The components within the Atlas SQL Interface allow for SQL to be translated to MQL. This translation allows for SQL tools and
users to interact with Atlas data. These translations into MQL may not render the most efficient query. While we expose how the SQL
is translated, this may not be the best substitute for the most efficient MQL. The Query Planner Extended can help users to see how
SQL is translated into MQL to then troubleshoot efficiency and performance.
**this can be run in shell

db.aggregate([{$sql: {statement: `SELECT * from Sales where storeLocation='Seattle' limit 2`, format:"jdbc",

dialect:"mongosql"}}]).explain('queryPlannerExtended')

{ ok: 1,

stats: { size: '4.127714157104492 MiB', numberOfPartitions: 1 },

plan:

{ kind: 'region',

region: 'AWS/us-east-1',

node:

{ kind: 'data',

size: '4.127714157104492 MiB',

numberOfPartitions: 1,

partitions:

[{ source: 'TestFree',

provider: 'atlas',

size: '4.127714157104492 MiB',

database: 'sample_supplies',

collection: 'sales',

pipeline:

[{ '$match':

{ '$expr':

{ '$cond':

{ if: { '$lte': ['$storeLocation', null] },

then: null,

else: { '$eq': ['$storeLocation', 'Seattle'] } } } } },

{ '$limit': 2 },

{ '$project': { _id: 0, Sales: '$$ROOT' } }] }] } } }

