MongoSQL Reference

General

SQL Syntax in MongoDB Shell vs. 3rd Party SQL Based Tools (going through ODBC/JDBC driver)

When executing a SQL statement within the MongoDB Shell environment, one must include the proper wrapping syntax that includes
the aggregate command and proper quoting (see Quoting for more details). If executing a SQL statement by way of a 3rd party tool
that would be connected using one of our Atlas SQL drivers (ODBC or JDBC), the MongoDB aggregate command is not necessary
and in some cases the quotes are not needed either. In many cases (though it depends on the tool) the connectors and drivers add
these code wrappers when doing the SQL to MQL translation.

Tool SQL Syntax Additional Info
MongoDB Shell db.sql ("Select username from db.sql is the shortened form of the $sql
Customers where username='fmiller' aggregate.

limit 27)

db.aggregate ([{$sgl: {statement:
"SELECT * from Sales where
storeLocation="'Seattle' limit 2°,
format:"jdbc",

dialect:"mongosgl"}}1)

DBeaver & Tableau Select username from Customers

where username='fmiller' limit 2

Quoting - In some areas, Atlas SQL can be pretty forgiving with quotes and which types can be used. And many times if coming in
from a Bl Tool, you only need to worry about quotes when identifying a string literal (ex. A string within the where clause). But if you
are in Mongo shell, you need to add quotes to the whole statement. And if you need quotes in other areas of your statement (column
names or string filters) this is a general guide for quote usage and the types of quotes to use.
The quote marks you use in SQL Statements matter.

" entire statement tick marks

“” column names double quotes

“ strings single quotes

Using Quotes with Atlas SQL in Mongo Shell
db.sql("Select username from customers where username="fmiller' limit 2")

("Select username from customers where username='fmiller' limit 2°)

db.sgl ("Select "username" from customers where username='fmiller' limit 2°)

Using Quotes with Atlas SQL in DBeaver or Tableau
Quoting Syntax Examples

Select purchaseMethod from Sales
Select purchaseMethod from Sales where purchaseMethod ='Online'
Select "purchaseMethod" from Sales where purchaseMethod ='Online'

Select "Sales"."customer" AS "customer”,"Sales"."customer"."age" AS "customerAge", "Sales"."purchaseMethod" AS
"purchaseMethod" From "Sales" Where "purchaseMethod"='Online'

Construct/Oper [Syntax/Example

ators Examples are displayed for
Mongo Shell, these can be
applied to other tools by Syntax/Example (connecting through a
Type removing the db.sql(") driver and/or connector) Additional Notes

Object

Identifiers

Collection/Table

db.sql("select * from Sales
Limit 27)

select * from Sales Limit 2

Case Sensitive: Sales is
the name of the virtual
collection in the Atlas
Federated Database
(ADF). All MongoDB
namespaces are case
sensitive, the SQL syntax
is not.

Field/Column

db.sql(select saleDate,
items, customer.age from
Sales Limit 27)

select saleDate, items, customer.age from

Sales Limit 2

saleDate is a top level
field, items is an array,
and customer.age is a
part of a nested
document. Customer Age
can be displayed as a
column/top level field by
using dot notation.
Because the items array
is not unwound, it would
display the whole array in
Mongo Shell and in
DBeaver or Tableau it
would display as one
column stringified

String Literals

Single quotes:
db.sql("select * from Sales

Where customer.gender = 'M'

Limit 2°)

select * from Sales Where

customer.gender = 'M' Limit 2

Notice the M, is in single
quotes. While the whole
SQL stmt is surrounded

in ticks.

Query Syntax

SELECT

db.sql("select * from Sales
Limit 27)

db.sql(select
purchaseMethod,customer,
items from Sales Limit 27)

select * from Sales Limit 2

select purchaseMethod,customer, items
from Sales Limit 2

While the commonly used
syntax "Select * from
Table" is supported, the
syntax to combine * plus
column names is not, the
query "Select *, FieldA
from Table" will product
an error

DISTINCT

Count Distinct is working,
Select Distinct is not
supported

db.sql("SELECT
COUNT(DISTINCT
purchaseMethod) FROM
Sales’)

SELECT COUNT(DISTINCT
purchaseMethod) FROM Sales

Count Distinct is working,
Select Distinct is not
supported

CASE

db.sql("SELECT CASE
WHEN customer.age <=20
THEN '20 years old or
younger' WHEN
customer.age >20 AND
customer.age <=30 THEN
'21-30 year olds' WHEN
customer.age >30 AND
customer.age <=40 THEN
'31-40 year olds' WHEN
customer.age >40 AND
customer.age <=50 THEN
'41-50 year olds' WHEN
customer.age >50 AND
customer.age <=60 THEN
'51-60 year olds' WHEN
customer.age >60 AND
customer.age <=70 THEN
'61-70 year olds' WHEN
customer.age >70 THEN '70
years and older' ELSE 'Other’
END AS ageRange,
customer.age,
customer.gender,
customer.email FROM
Sales’)

SELECT CASE WHEN customer.age
<=20 THEN '20 years old or younger'
WHEN customer.age >20 AND
customer.age <=30 THEN '21-30 year
olds' WHEN customer.age >30 AND
customer.age <=40 THEN '31-40 year
olds' WHEN customer.age >40 AND
customer.age <=50 THEN '41-50 year
olds' WHEN customer.age >50 AND
customer.age <=60 THEN '51-60 year
olds' WHEN customer.age >60 AND
customer.age <=70 THEN '61-70 year

olds' WHEN customer.age >70 THEN '70

years and older' ELSE 'Other' END AS
ageRange, customer.age,

customer.gender, customer.email FROM

Sales

This shows a typical
CASE expression using
dot notation to select a
field that is within a
nested document.

FROM

db.sql("select * from Sales
Limit 27)

select * from Sales Limit 2

JOIN SELECT b.ProductSold, CAST(b.”_id" as |[It's best to filter or limit
string) ID, (b.Price * b.Quantity) the data as much as
totalAmount FROM (SELECT * FROM possible to ensure speed
Sales a WHERE customer.gender='F') a |with query execution
Inner Join Transactions b on (Cast(a.”_id"
as string)=Cast(b."_id" as string)) The first example shows
how to form the SQL
query to create a derived

select b.ProductSold,b."_id" as ID, table that joins after the

(b.Price * b.Quantity) as where clause filter

SaleTotal,a.couponUsed from Sales a

inner join Transactions b on Cast(a.”_id" |MongoSQL supports:

as string)=Cast(b."_id" as string) INNER JOIN, (CROSS)

limit 2 JOIN, LEFT OUTER
JOIN, and RIGHT

select b.ProductSold,b.” id" as ID, OUTER JOIN

(b.Price * b.Quantity) as

SaleTotal,a.couponUsed from Sales a

inner join Transactions b on Cast(a.”_id"

as string)=Cast(b.”_id" as string)

where Cast(a.”_id'as

string)="5bd761dcae323e45a93ccff4'

UNION ALL UNION is not supported,

SELECT * FROM Sales UNION ALL SELECT
* FROM Transactions

UNION ALL is supported

The main difference
between UNION and
UNION ALL is that:
UNION: only keeps
unique records. UNION
ALL: keeps all records,

including duplicates

NESTED Mongosql requires nested
SELECTS selects to have an alias.
This is not a SQL-92
SELECT .. FROM (SELECT ..) as subSelect |requirement.
JOINED SELECT ... FROM (SELECT) as sub1 JOIN
SUBQUERIES (SELECT) as sub2 ON
WHERE db.sql("SELECT * from Sales SELECT * from Sales WHERE
WHERE customer.gender='M") [customer.gender="M'
db.sql("SELECT * FROM Sales |SELECT * FROM Sales WHERE
WHERE customer.age>20") customer.age>20
LIKE SELECT purchaseMethod FROM Sales
WHERE purchaseMethod LIKE 'In%'
ESCAPE The ESCAPE clause is

SELECT customer FROM Sales WHERE
customer.email LIKE '%_%' ESCAPE "'

supported in the LIKE
operator to indicate the
escape character. Escape
characters are used in
the pattern string to
indicate that any wildcard
character that occurs
after the escape
character in the pattern
string should be treated
as a regular character.

GROUP BY db.sql("SELECT customerAge,
COUNT(*) FROM Sales GROUP
BY customer.age AS
customerAge”)
db.sql("'SELECT SELECT customerAge, COUNT(*) FROM
customerGender,customerAge, |Sales GROUP BY customer.age AS
COUNT(*) FROM Sales GROUP |customerAge
BY customer.gender AS
customerGender, customer.age [SELECT customerGender,customerAge,
AS customerAge’) COUNT(*) FROM Sales GROUP BY
customer.gender AS customerGender,
db.sql(SELECT customer.age AS customerAge
ProductSold,Sum(Price) FROM
Transactions GROUP BY SELECT ProductSold,Sum(Price) FROM
ProductSold™) Transactions GROUP BY ProductSold
HAVING db.sql(SELECT
customerGender,customerAg
e, COUNT(*) FROM Sales
GROUP BY customer.gender |SELECT customerGender,customerAge,
AS customerGender, COUNT(*) FROM Sales GROUP BY
customer.age AS customer.gender AS customerGender,
customerAge Having customer.age AS customerAge Having
COUNT(*)>17) COUNT(*)>1
ORDER BY db.sql("SELECT SELECT customerGender, COUNT(*) FROM
customerGender, COUNT(*) |Sales GROUP BY customer.gender AS
FROM Sales GROUP BY customerGender ORDER BY
customer.gender AS customerGender
customerGender ORDER BY
customerGender’)
LIMIT db.sql(SELECT * FROM SELECT * FROM Sales LIMIT 3

Sales LIMIT 3)

OFFSET

db.sql("SELECT couponUsed
FROM Sales OFFSET 27)

SELECT couponUsed FROM Sales OFFSET
2

AS db.sql("SELECT couponUsed
AS Coupons FROM Sales
OFFSET 2") Alias assignments work
SELECT couponUsed AS Coupons as expected, though the
db.sql(SELECT FROM Sales OFFSET 2 syntax is a bit unexpected
customerAge, COUNT(*) when using an aggregate
FROM Sales GROUP BY SELECT customerAge, COUNT(*) FROM |with a subdocument
customer.age AS Sales GROUP BY customer.age AS namespace - see 2nd
customerAge’) customerAge example.
Arithmetic
Operators
=+, %1, % + (Addition) — +

db.sql("SELECT
ProductSold,Price,
Quantity,(Price*Quantity) as
TotalCost FROM Transactions
Limit 27)

SELECT ProductSold,Price,
Quantity,(Price*Quantity) as TotalCost
FROM Transactions Limit 2

- (Subtraction) — -

* (Multiplication) — *

/ (Division) — /

% (Modulus remainder)
— MOD({val1},{val2})

These arithmetics
operators all work as the
syntax example shows,
just replace the operator
you need within this
syntax example. Only %
uses a function.

Comparison

Operators
= 1=, <>, %, = Equals
>=, <= I= Not Equal
<> Not Equal
> Greater Than
>= Greater Than & Equal
< Less Than
<= Less Than & Equal
db.sql('SELECT * FROM Sales Theset Com‘l’la”sok” "
WHERE customer.age>20') |SELECT * FROM Sales WHERE operalors afl work as the
customer.age>20 syntax example suggests,
db.sql(" just replace the operator
SELECT * FROM Sales WHERE [SELECT * FROM Sales WHERE you need within this
customer.gender="F") customer.gender="F' syntax example.
Logical/Boolea
n Operators
AND, NOT, OR [db.sql("SELECT * FROM

Sales WHERE
customer.age>20 AND
customer.gender="M")

db.sql("SELECT * FROM
Sales WHERE
customer.age=20 OR
customer.gender="M")

db.sql("'SELECT * FROM
Sales WHERE

SELECT * FROM Sales WHERE
customer.age>20 AND
customer.gender="M'

SELECT * FROM Sales WHERE
customer.age=20 OR
customer.gender="M'

SELECT * FROM Sales WHERE
customer.age>20 AND NOT
customer.gender="M'

customer.age>20 AND NOT
customer.gender="M")

Aggregate
Expressions

SUM() db.sql("SELECT
ProductSold,SUM(Price)
FROM Transactions GROUP [SELECT ProductSold,SUM(Price) FROM
BY ProductSold") Transactions GROUP BY ProductSold
AVG() db.sql("SELECT
ProductSold,AVG(Price)
FROM Transactions GROUP [SELECT ProductSold,AVG(Price) FROM
BY ProductSold") Transactions GROUP BY ProductSold
COUNT() db.sql("SELECT
ProductSold,COUNT(Price) |SELECT ProductSold,COUNT(Price)
FROM Transactions GROUP [FROM Transactions GROUP BY
BY ProductSold’) ProductSold
MIN() db.sql("SELECT
ProductSold,MIN(Price)
FROM Transactions GROUP [(SELECT ProductSold,MIN(Price) FROM
BY ProductSold") Transactions GROUP BY ProductSold
MAX() db.sql("SELECT

ProductSold,MAX(Price)
FROM Transactions GROUP
BY ProductSold

SELECT ProductSold,MAX(Price) FROM
Transactions GROUP BY ProductSold

COUNT(DISTIN
CT)

db.sql("SELECT
COUNT(DISTINCT
purchaseMethod) FROM
Sales’)

SELECT COUNT(DISTINCT
purchaseMethod) FROM Sales

Does not work if the
aggregated field is not
comparable to itself.
Document, Array, no
schema set or polymorphic

schema.

SUM(DISTINCT)

db.sql("SELECT
ProductSold, SUM(DISTINCT
Price) FROM Transactions
GROUP BY ProductSold™)

SELECT ProductSold,SUM(DISTINCT
Price) FROM Transactions GROUP BY
ProductSold

db.sql("SELECT
DATETRUNC(DAY,saleDate)
from Sales’)

SELECT DATETRUNC(DAY,saleDate)
from Sales

GROUP_CONC
AT()
Scalar
Functions
CONCAT || operator for
db.sql(' SELECT concatenating strings
pu.rchaseMethodH' SELECT purchaseMethod||' This example shows how
'|IstoreLocation as '||storeLocation as to concatenate 2 strings,
purchaseDetails,purchaseMetho |purchaseDetails,purchaseMethod, while adding a space
d, storeLocation from Sales) storeLocation from Sales between them.
DATETRUNC The DATETRUNC

function shortens
timestamps so they are
easier to read.

We support
DATETRUNC((<date_part
>, <timestamp>) and
DATETRUNC(<date_part
>, <timestamp>,
'<start_of_week>")

Supported date parts are
YEAR | MONTH | DAY |
HOUR | MINUTE |
SECOND | WEEK |

DAY_OF YEAR |

ISO_WEEK |
ISO_WEEKDAY
DATEADD Supported date parts are
YEAR | MONTH | DAY |
HOUR | MINUTE |
SECOND | WEEK |
db.sql(SELECT DAY_OF_YEAR |
DATEADD(YEAR,1,saleDate), SELECT DATEADD(YEAR,1,saleDate), [|ISO_WEEK|
saleDate from Sales’) saleDate from Sales ISO_WEEKDAY
DATEDIFF Supported date_parts are
YEAR | MONTH | DAY |
HOUR | MINUTE |
db.sql(SELECT SECOND | WEEK |
DATEDIFF(YEAR,CURRENT TI |SELECT DAY_OF_YEAR |
MESTAMP,saleDate),saleDate |DATEDIFF(YEAR,CURRENT_TIMESTAM|(ISO_WEEK |
from Sales’) P,saleDate),saleDate from Sales ISO_WEEKDAY
TO_STRING SELECT CAST(saleDate as string), saleDate
from Sales
SELECT saleDate::STRING as salesDateStr,
saleDate from Sales
db.sql(' SELECT CAST(saleDate |SELECT CAST(EXTRACT(YEAR FROM CAST(<expr> AS
as string), saleDate from Sales’) |saleDate)as string), saleDate from Sales STRING) or ::STRING
TO/FROM This can be done with
EPOCH CAST.

To Epoch ==
CAST(<timestamp> AS
LONG)

From Epoch ==
CAST(<epoch> AS

TIMESTAMP)

CASTING db.sql("SELECT
TO/FROM CAST(EXTRACT(YEAR FROM
DATE, saleDate)as integer), saleDate
TIMESTAMP |from Sales’)
SELECT CAST(EXTRACT(YEAR FROM
db.sql('SELECT saleDate)as integer), saleDate from Sales
CAST(EXTRACT(YEAR FROM
fg'f:;i:s) string), saleDate | g EoT CAST(EXTRACT(YEAR FROM
saleDate)as string), saleDate from Sales [MongoDB only supports
CAST('1975-01-23' as SELECT CAST('1975-01-23" as supports: "cast from
TIMESTAMP) as Birthdate, TIMESTAMP) as Birthdate, saleDate from |date/timestamp to/from
saleDate from Sales’) Sales other types"
DAY OF WEEK |db.sql("SELECT
EXTRACT(ISO_WEEKDAY
FROM saleDate), saleDate from |SELECT EXTRACT(ISO_WEEKDAY EXTRACT(ISO_WEEKD
Sales’) FROM saleDate), saleDate from Sales AY FROM <timestamp>)
TIMEZONE
CONVERSION
CURRENT db.sql("SELECT
DATE TIME CURRENT_TIMESTAMP from [SELECT CURRENT_TIMESTAMP from
Sales’) Sales
EXTRACT db.sql("SELECT

EXTRACT(YEAR FROM
saleDate), saleDate from Sales”)

SELECT EXTRACT(YEAR FROM
saleDate), saleDate from Sales

RANDOM()

SUBSTRING()

db.sql("SELECT ProductSold,
SUBSTRING
(ProductSold,0,2)FROM
Transactions’)

SELECT ProductSold, SUBSTRING
(ProductSold,0,2)FROM Transactions

SUBSTRING(string, start
position, length)

MongoSQL uses 0-indexing,
so start should be 0 to start
at the first character, 1 to
start at the second, and so
on

UPPER db.sql("SELECT ProductSold,
UPPER(SUBSTRING SELECT ProductSold,
(ProductSold,0,2))FROM UPPER(SUBSTRING
Transactions") (ProductSold,0,2))FROM Transactions UPPER(string)
LOWER db.sql("'SELECT ProductSold,
LOWER(SUBSTRING SELECT ProductSold,
(ProductSold,0,2))FROM LOWER(SUBSTRING
Transactions") (ProductSold,0,2))FROM Transactions LOWER(string)
TRIM db.sql(SELECT oadi d/
TRIM(purchaseMethod) FROM removes leading and/or
Sales’) SELECT TRIM(purchaseMethod) FROM |[trailing spaces, or an
db.sql(SELECT TRIM('In' Sales optionally specified
FROM purchaseMethod) FROM |SELECT TRIM('In' FROM substring, from the
Sales’) purchaseMethod) FROM Sales argued string
LEFT Use Substring with a

db.sql("SELECT ProductSold,
SUBSTRING
(ProductSold,0,2)FROM
Transactions’)

SELECT ProductSold, SUBSTRING
(ProductSold,0,2)FROM Transactions

starting position of 0

or use: (CASE WHEN %2
<= 0 THEN NULL ELSE
SUBSTRING(%1,0,%2)
END)

RIGHT

db.sql(SELECT SUBSTRING
(ProductSold,(CHAR_LENGTH(
ProductSold)-2),2)FROM
Transactions”)

SELECT SUBSTRING

(ProductSold,(CHAR_LENGTH(ProductS

old)-2),2)FROM Transactions

Use a combo of Substring
and Char_length minus the
length from the substring
argument or use: (CASE
WHEN %2 <= 0 THEN
(CASE WHEN %1 1S NULL
THEN NULL ELSE " END)
WHEN %2 >=
CHAR_LENGTH(%1) THEN
%1 ELSE SUBSTRING(%1
FROM
(CHAR_LENGTH(%1) - %2)
FOR %2) END)

CHAR_LENGTH

db.sql("SELECT
CHAR_LENGTH(ProductSold)
FROM Transactions’)

SELECT CHAR_LENGTH(ProductSold)

FROM Transactions

POSITION POSITION(substring IN
string)
db.sql(SELECT returns the position of the
purchaseMethod, POSITION ('i' first occurrence of
IN purchaseMethod) FROM SELECT purchaseMethod, POSITION ('i* |substring in the string, or
Sales’) IN purchaseMethod) FROM Sales -1 if it does not occur
SIMILAR TO

MongoDB commands:
Flatten & Unwind

How can | flatten all of the data within a nested object?

Initial view of data within Tableau

Tableau Table View: Select * from Sales where customer.age=59

_id

Coupon Used

Customer

_Id False {"gender": "F", "age": 59, "satisfaction": 4}

{"$oid": "5bd761dcae323e45a93ccff4"}

_Id False Customer

{"$0id": "5bd761dcae323e45a93ccff4"} {"gender": "M", "age": 59, "satisfaction": 5}

_ld True Customer

{"$0id": "5bd761dcae323e45a93ccfee"} {"gender": "F", "age": 59, "email": "pan@cak.zm",
"satisfaction": 5}

Flatten Command:
This selects and flattens all nested fields within the customer object and presents them as top level fields (aka columns):

Tableau Table View:

Select * from FLATTEN(Sales) where customer_age=59

_id Coupon Used customer_age customer_gender customer_satisfacti
on

Id

FSoid™ False 59 F 4

"5bd761dcae323e45a93ccff4"}

Id

FSoid™ False 59 M 5

"5bd761dcae323e45a93ccff4"}

_Id

Fhoid™ True 59 F 5

"5bd761dcae323e45a93ccfee”

}

How do | only flatten some fields, | don’t need them all?
Initial view of data within Tableau
Tableau Table View: Select * from Sales where purchaseMethod ='Online’

_id

{"$0id": "5bd761dcae323e45a93ccff3"}

Coupon Used Customer
_Id False {"gender": "F", "age": 59, "satisfaction": 4}
{"$oid": "5bd761dcae323e45a93ccff4"}
_Id False Customer

{"gender": "M", "age": 59, "satisfaction": 5}

_Id
{"$0id": "5bd761dcae323e45a93ccfee"}

True

Customer
{"gender": "F", "age": 59, "email": "pan@cak.zm",
"satisfaction": 5}

Use dot notation:

This selects customer name and email (which are nested within the customer object) and presents them as top level fields (aka columns):

Select CAST(_id as String) as ID_new, customer.age, customer.gender from Sales where purchaseMethod ='Online’

_id Coupon customer.age customer.gender
Used
5bd761dcae323e45a93ccff4 False 59 F
5bd761dcae323e45a93ccff3 False 59 M
5bd761dcae323e45a93ccfee True 59 F
How can | unwind array data?
The ‘items” column is an array data type
Tableau Table View: Select * from Sales
_id Coupon | Customer items
Used
_Id False {"gender": "F", "age": 59, "satisfaction": 4} [{"name": "backpack", "price":
{"$oid": {"$numberDecimal": "187.16"}, "quantity": 2},
"5bd761dc "name": "printer paper", "price":
ae323e45a {"$numberDecimal": "20.61"}, "quantity": 10},
93ccff4"} {"name": "notepad", "price": {"$numberDecimal":

"23.75"}, "quantity": 5}]

This unwinds and flattens all of the “items” array and presents all nested object data as top level fields (columns):

Select * from FLATTEN(UNWIND(Sales WITH PATH=> Sales.items))

_id Coupo | custome | customer | customer_sati | items_name items_price items_quantity
n Used | r_age _gender | sfaction

{—,,'é’oid,h False 59 F 4 backpack 187.16 2

"5bd761dcae32

3e45a93ccff4"}

f"lsgoid“ False 59 F 4 printer paper 20.61 10

"5bd761dcae32

3e45a93ccff4"}

_ld False 59 F 4 notepad 23.75 5

{"$oid":
"5bd761dcae32
3e45a93ccff4"}

This unwinds the “items” array but only selects some of the fields within the array (the quantity, price, and tags) this also shows how to use a

where clause (note that you do not have to flatten the data when not returning *):

Select CAST(_id as String),items.quantity, items.name, items.price from UNWIND(Sales WITH PATH=> Sales.items)

_id items_name items_price items_quantity
5bd761dcae323e45a93ccff4 backpack 187.16 2
5bd761dcae323e45a93ccff4 printer paper 20.61 10
5bd761dcae323e45a93ccff4 notepad 23.75 5

This unwinds the “items” array but only selects some of the fields within the array (the quantity and price), selects some top level fields (_id and
purchaseMethod) and also selects a nested object field (customer_age) plus this also shows how fo use a where clause with an integer data type:

***Notice the Flatten command can be omitted, since we are not intending to Flatten every nested object as we are using dot notation to

select specific fields (both nested objects and array types)

Select CAST(_id as String),purchaseMethod, customer.age, items.quantity, items.price from UNWIND(Sales WITH PATH=>

Sales.items) Where items.quantity = 2

_id purchaseMethod customer.age items.price items.quantity

5bd761dcae323e45a93ccff4 Online 59 187.16 2
5bd761dcae323e45a93ccff4 Online 59 22.61 2
5bd761dcae323e45a93ccff4 Store 59 24.75 2

MongoSQL Translation

The components within the Atlas SQL Interface allow for SQL to be translated to MQL. This translation allows for SQL tools and
users to interact with Atlas data. These translations into MQL may not render the most efficient query. While we expose how the SQL
is translated, this may not be the best substitute for the most efficient MQL. The Query Planner Extended can help users to see how
SQL is translated into MQL to then troubleshoot efficiency and performance.

**this can be run in shell

db.aggregate([{$sql: {statement: "'SELECT * from Sales where storeLocation='Seattle' limit 2°, format:"jdbc",

dialect:"mongosql"}}]).explain(‘queryPlannerExtended")

4.127714157104492 MiB',

'Slte':

null,

