
Spike - Superset Monorepo 1

🧐
Spike - Superset Monorepo

Contributors V Ville Brofeldt Yongjie Zhao Michael Molina E Evan Rusackas J Junlin Chen Kamil Gabryjelski

Created

Created
by

V Ville Brofeldt

Last
edited

Last
edited by

V Ville Brofeldt

Stakeholders

Status

Tags

sign off Kamil Gabryjelski

Background
As is well known, the source code for the Apache Superset project resides on the Apache GitHub repo apache/superset . Less
known, however, is that a significant portion of the core frontend logic and all visualization plugins reside on a separate repo
called apache-superset/superset-ui , effectively making Superset a multi-repo project. This fragmented architecture has caused
numerous issues over the years, sparking SIP-58 which aims to move Superset to a monorepo architecture. The SIP
constitutes a high-level proposal for the monorepo and discussion involving people familiar with the current and proposed
architecture. This is a summary of that discussion and a more detailed technical proposal for solving the current situation.

Current architecture
Currently, the superset-frontend package in the apache/superset repo depends on the following external npm packages:

1. @superset-ui/core : Core functionality

2. @superset-ui/chart-controls : Control components and associated functionality

3. @superset-ui/plugin-chart-* : Chart plugins using the V1 chart data API

4. @superset-ui/legacy-(preset|plugin)-chart-* : Legacy chart plugins using the legacy chart data endpoint.

The source code for these reside on repos belonging to the apache-superset GitHub organization (no official affiliation to ASF or
Apache Superset). This code was spun out of the main repo during 2018/2019 (See SIP-4), and has been developed mainly by
Superset committers.

The first three packages are of high quality compared to the frontend code on the main repo, as they are written in 100%
TypeScript (they were fully rewritten during the multi-repo migration), with both @superset-ui/core and @superset-ui/chart-

@October 12, 2021 3:07 PM

@October 27, 2021 9:19 AM

https://github.com/apache/superset/issues/13013
https://en.wikipedia.org/wiki/Monorepo
https://github.com/apache/superset/issues/5667

Spike - Superset Monorepo 2

controls (hereafter referred to as “the core packages”) exhibiting 100% test coverage. The V1 chart plugins are also 100%
TypeScript and have decent code coverage, but have no code coverage requirements on CI.

The legacy plugins, on the other hand, were mostly moved over as-is, and are predominantly written in JavaScript with
practically no unit tests. The majority of these reside on the same superset-ui repo as the core packages, with the exception of
the deck.gl plugin, which is on a monorepo in the same GH org called superset-ui-plugins-deckgl . This monorepo consists of
three plugins; However, only one of these is maintained and referenced by the Superset app (the deck.gl one), and the
monorepo is mostly broken, with failing CI and npm deploys having to be done by hand.

Challenges with the current setup
Working in the current multirepo architecture is difficult for multiple reasons. Here are some of the most problematic aspects of
the current setup.

1. Shared context between main repo and superset-ui
Usually, when a new feature is added to Superset, it requires changes on both the main repo and superset-ui . Typical cases
include adding a new feature flag, new visualization features, or fixing a chart plugin. Usually, the flow goes something like this:

1. Decide on the change to be done and npm link all necessary superset-ui packages. If the change involves changes to one
or multiple plugins, one is usually forced to link at least three packages.

2. Make the change in the main repo.

3. Make the change in superset-ui .

4. Open PRs on both repos with a TODO to bump the superset-ui version once the PR is merged and deployed to npm.

5. Get the superset-ui PR merged and perform an npm deploy.

6. Wait for the npm deploy to finish and bump the package versions on the PR in the main repo.

Sometimes CI won’t pass on the main repo, as something was overlooked in the superset-ui PR and wasn’t caught until
Cypress tests caught the problem on the “bump PR”. In this case steps 3-6 have to be repeated before proceeding.

With over 100 npm releases in the last year alone (!), this additional step causes substantial overhead to the development
process.

It is also worth noting that the dual repository structure has led to some duplicated code. This is easier to avoid when the code
is centralized in one repo.

2. Instability
Over the years npm linking has suddenly stopped working a dozen or so times, usually due to issues related to
shared/conflicting dependencies, the Webpack config, or simply due to unknown errors during linking.

One reason for the instability is most likely due to the massive amount of shared dependencies used in the project, which
causes unexpected behavior and requires careful fine-tuning to related configuration files when linking packages together.
Fixing these is often time-consuming and blocks all development of superset-ui . We are currently in a similar situation making
linking @superset-ui/core very unstable, which is most likely at least caused by the Webpack v5 and npm v7 upgrades.
Research has also revealed that many other projects are struggling with similar problems, indicating that this issue is not
isolated to Superset, but a general problem affecting major multi-repo projects.

While there are several workarounds that make it possible to temporarily fix these problems, this is both a source of
engineering waste and a hindrance to developer inclusivity, as only a handful of developers are able to consistently make their
dev environments work correctly.

3. Cherry picking
Every time a PR is merged on superset-ui , a new npm release has to be made to pull it into the main repo. When a new
release is published, it bumps the version number of all affected monorepo packages. If, for instance, the core packages are
changed, ALL plugins are bumped due to their dependencies having been updated.

Bringing this change into the main repo is mostly a simple chore involving updating the package and lock files. However, this
workflow makes it almost impossible to cherry-pick critical fixes from superset-ui after a cut has been made, since the current
architecture doesn’t support mixing different versions of @superset-ui/core (all plugins pin exact versions of the core packages).
Therefore, cherry-picking PRs from superset-ui would require pulling in ALL changes that have been made on superset-ui
since the cut, which usually isn’t an option due to fixes and features being merged all the time. The same applies to reverting
PRs, which is equally difficult in the current setting.

Spike - Superset Monorepo 3

4. Apache compliance
“The Apache way” mandates that all Apache projects should follow the same process for releases (72 hour vote etc). While the
apache-superset GitHub organization isn’t strictly speaking an Apache project, in practice it’s a core component of the Apache
Superset project. So far nobody from the ASF has raised this issue, but the prudent course of action would be to move all core
functionality from superset-ui into the main repo to avoid potential legal conflicts with ASF policies. Moving the code to the
main repo shouldn’t be an issue, as the superset-ui repos are all Apache 2.0 licensed. However, as part of the migration, ASF
license compliance of dependencies on superset-ui should be verified using a tool such as license-checker .

Benefits of monorepo architecture
By switching to a monorepo architecture, the issues described above would be solved in the following ways:

Changes that previously required multiple PRs could be contained in a single PR.

By centralizing all dependencies in one monorepo, we would avoid issues caused by shared/peer dependencies.

Cherry-picking PRs involving changes to superset-ui into release branches would be possible.

The developer experience would be much simpler, and would totally remove the need to do npm linking.

By removing the need for intermediate npm releases of superset-ui between Apache releases, the formal ASF release
process requirements would be satisfied. This would also add clarity to which changes are breaking/features/fixes, as the
ASF release version number follows semantic versioning much more strictly than superset-ui currently does.

The migration would require practically no code changes, as the core libraries would be aliased in the Webpack config to point
to their respective source directories. Also, as we would no longer need to do interim npm releases, as we could synchronize
the superset-ui releases with the official Apache releases. For example, when a release for 1.4.0 would go out, we would also
publish all @superset-ui packages to npm with the same version. In addition to making the release process more ASF
compliant, it would also be more transparent for plugin developers, as they could pin the versions to their internally used
version of Superset. It would also be possible to deploy a canary release when PRs are merged, which would make it possible
to do plugin development that matches the current master branch.

One potential issue that was brought up by moving to a monorepo is the added burden of moving superset-ui CI tasks to the
main repo (CI on the main repo is often congested). However, bumping the package versions on the main repo requires a
separate PR, which in itself requires running CI on the main repo. The net effect of having a single PR being opened on the
main repo that takes slightly longer vs having two separate PRs running serially for the same functional changes will likely
result in less time wasted waiting for CI and thus increased code velocity.

Requirements
Switching to a monorepo architecture only requires adding lerna as a new dependency on the main repo (MIT license). A large
portion of the monorepo configurations from superset-ui could probably be reused.

Since superset-frontend is using npm, and superset-ui is using yarn, we should also consider migrating to a single toolchain to
simplify the build process. It should now be easier to migrate the monorepo to npm, as npm@7 added support for workspaces.
This change would be in line with SIP-14 which replaced yarn with npm on the main repo. However, migrating a major tool in
the toolchain is always risky, so chances are we may run into surprises. In that case it might be worth considering migrating
superset-frontend to yarn, too.

Since two repos are on different major versions of storybook (superset-ui is on version 5.3.18; the main repo is on 6.3.8), we
need to upgrade storybook to the same version as on the main repo before migration to resolve any compatibility conflicts that
may arise during migartion.

It was also pointed out in the SIP that we don't have admin access to the main repo, which means that any new CI workflows or
npm release automation tasks would need to be coordinated with Apache Infra. These could, however, be done in parallel with
the migration work, so wouldn't necessarily be blocking tasks for completing the code migration.

Options
The following three options have been discussed:

Option 1: No changes

https://www.apache.org/legal/release-policy.html
https://www.apache.org/legal/resolved.html
https://www.npmjs.com/package/license-checker
http://lerna.as/
https://docs.npmjs.com/cli/v7/using-npm/workspaces
https://github.com/apache/superset/issues/6217

Spike - Superset Monorepo 4

In order to maintain the status quo, we would need to fix the current issues blocking npm linking. While probably doable with a
few days of work, we would be stuck with the current challenges described above.

Option 2: Partial/dual monorepo
Another option would be to only move the core packages to the main repo, leaving all plugins in the superset-ui repo, which
would remove the need for npm linking the core packages. This would save some time by limiting the scope of the migration.
However, since the core packages are direct dependencies of all viz plugins, it would create a circular dependency, as
superset-frontend would simultaneously be referencing the new and the old core packages via its own and the plugin
dependencies. And even if this were made to work somehow, it would still leave the majority of the original issues
unaddressed:

Need for multiple PRs when making changes to chart plugins

Difficulty cherry-picking PRs involving changes to charts

The compliance issues would become worse, as we would need to make interim npm releases from the main repo for the
core packages in between Apache releases

Option 3: Full monorepo
The final option is to make a full monorepo migration, as outlined in the original SIP. This would create four new directories
under superset-frontend/src/superset-ui as follows:

/superset-frontend/src/superset-ui/core (alias: @superset-ui/core)

/superset-frontend/src/superset-ui/chart-controls (alias: @superset-ui/chart-controls)

/superset-frontend/src/superset-ui/chart-generator (Yeoman generator for plugins)

/superset-frontend/src/superset-ui/plugins (all plugins that ship with Superset)

The motivation for keeping the superset-ui packages/plugins under a subdirectory under src is to make it clear that they relate
to the @superset-ui npm organization, and to make the initial migration as simple as possible with minimal changes to the
original monorepo configuration. This structure can later be refined as needed in a follow-up PR to minimize risk for regressions
in the initial PR.

We might want to consider leaving out the legacy/deprecated charts, but this would introduce a similar catch-22 as outlined in
Option 2. So omitting the old charts would most likely require removing them as a dependency on master branch.

Doing a full monorepo migration will be more work than the other options and carries with it some risk in the form of potential
regressions and unexpected issues that may surface during the migration. However, this work can be considered an
investment into the future productivity and stability of the product, and is expected to yield a net positive effect on developer
productivity fairly quickly (the required work should be offset in 3-6 months by increased development velocity), along with a
better developer experience.

Recommendation
A summary of the pros/cons of the available options:

Legend: ❌ Unaddressed ☑ Partially resolved ✅ Fully resolved

Issue 1 - No changes 2 - Partial monorepo 3 - Full monorepo

1.
Shared/duplicated
context

❌ ☑ ✅

2. Instability ❌ ☑ ✅

3. Cherry picking ❌ ☑ ✅

4. Apache
compliance

❌ ❌ ✅

https://www.notion.so/1-Shared-duplicated-context-a8bf6315de0a4a899c2666ad75a64e8f
https://www.notion.so/2-Instability-f7017c67787741bb94dbdfc6bb8efdb3
https://www.notion.so/3-Cherry-picking-b0bf1cbc8eef491bb88094d72262990e
https://www.notion.so/4-Apache-compliance-847f28c3bf2e48b6ae38ed3eb79a1dfe

Spike - Superset Monorepo 5

Issue 1 - No changes 2 - Partial monorepo 3 - Full monorepo

Summary

Minimal effort to maintain status
quo, but doesn't solve the
observed problems associated
with the multirepo architecture.

Partially solves the issues for the core
libraries, but doesn't address any issues
affecting the plugins or Apache compliance
(in fact they may become worse).

Solves all observed problems, but is
more resource intensive to carry out
and introduces the risk of
regressions in the short term.

Due to the problems identified with options 1 and 2, the recommendation is to go with the full monorepo approach described in
option 3.

Since doing a full migration at once could block superset-ui development for a long time, the work should be done
incrementally, if possible.

Phase 1 - Migrate core packages to main repo
The core packages should be migrated first, as they are the lowest level dependency, being required by superset-frontend , all
plugins and the storybook. This would make it possible to make changes to the core packages that only affect superset-
frontend , but would exclude changes that require updating the plugins. The lerna workflow would be integrated with the regular
Apache release process, meaning that the version number would match the version of the Superset release.

In addition to migrating the packages to the main repo, the main CI workflows and storybooks for the core packages would be
migrated, along with creating a workflow for deploying the canary release. We should also make sure we retain the current
code coverage requirements for the core libraries.

Phase 2 - Migrate plugins to main repo
In the second phase, the default Superset plugins should be migrated to the monorepo. All plugins that ship with vanilla
Superset should be included to make it easy to make changes to plugins that can be cherry-picked to releases. After this CI
and storybooks would be migrated, similar to the core packages.

Phase 3 - Final cleanup
As a final phase, the old superset-ui repo would be archived. In addition, there is a long tail of docs that need to be updated,
including:

CONTRBUTING.md document on apache/superset

The Hello World blog post

Any affected Preset documentation

Do further cleanup + harmonization work on the Storybook on the main repo, potentially introducing Vercel or similar
workflow that's currently used on superset-ui .

https://www.notion.so/Summary-ee3d1feee2d5474690991f50e159619f
https://github.com/apache/superset/blob/master/CONTRIBUTING.md
https://preset.io/blog/2020-07-02-hello-world/

