diff --git a/sources/platform/integrations/ai/milvus.md b/sources/platform/integrations/ai/milvus.md index a873d11875..dcbbb81a3b 100644 --- a/sources/platform/integrations/ai/milvus.md +++ b/sources/platform/integrations/ai/milvus.md @@ -22,7 +22,7 @@ It can also be connected to a managed Milvus instance on [Zilliz Cloud](https:// Before you begin, ensure that you have the following: -- A Milvus database URL and API token. Optionally, you can use a username and password. You can run Milvus on Docker or Kubernetes, but in this example, we'll use the hosted Milvus service at [Zilliz Cloud](https://cloud.zilliz.com). +- A Milvus database universal resource identifier (URI) and API token. Optionally, you can use a username and password in the URI. You can run Milvus on Docker or Kubernetes, but in this example, we'll use the hosted Milvus service at [Zilliz Cloud](https://cloud.zilliz.com). - An [OpenAI API key](https://openai.com/index/openai-api/) to compute text embeddings. - An [Apify API token](https://docs.apify.com/platform/integrations/api#api-token) to access [Apify Actors](https://apify.com/store). @@ -76,11 +76,8 @@ Another way to interact with Milvus is through the [Apify Python SDK](https://do OPENAI_API_KEY = "YOUR-OPENAI-API-KEY" MILVUS_COLLECTION_NAME = "YOUR-MILVUS-COLLECTION-NAME" - MILVUS_URL = "YOUR-MILVUS-URL" - MILVUS_API_KEY = "YOUR-MILVUS-API-KEY" - MILVUS_USER = "YOUR-MILVUS-USER" - MILVUS_PASSWORD = "YOUR-MILVUS-PASSWORD" - + MILVUS_URI = "YOUR-MILVUS-URI" + MILVUS_TOKEN = "YOUR-MILVUS-TOKEN" client = ApifyClient(APIFY_API_TOKEN) ``` @@ -96,11 +93,9 @@ Another way to interact with Milvus is through the [Apify Python SDK](https://do ```python milvus_integration_inputs = { - "milvusUrl": MILVUS_URL, - "milvusApiKey": MILVUS_API_KEY, + "milvusUri": MILVUS_URI, + "milvusToken": MILVUS_TOKEN, "milvusCollectionName": MILVUS_COLLECTION_NAME, - "milvusUser": MILVUS_USER, - "milvusPassword": MILVUS_PASSWORD, "datasetFields": ["text"], "datasetId": actor_call["defaultDatasetId"], "deltaUpdatesPrimaryDatasetFields": ["url"], @@ -109,7 +104,6 @@ Another way to interact with Milvus is through the [Apify Python SDK](https://do "embeddingsProvider": "OpenAI", } actor_call = client.actor("apify/milvus-integration").call(run_input=milvus_integration_inputs) - ``` Congratulations! You've successfully integrated Apify with Milvus, and the scraped data is now stored in your Milvus database.