
Elements of ListView!!
Something smooth this way comes!
Thomas D Wilkinson, Appcelerator, Inc.!
@CapnAjax!!
Abstract!!
ListView is a bit daunting to anybody who hasn’t used it before. Its structure is completely
different from TableView or any other Titanium UI element. However, anybody who’s used
TableView knows that when a table gets too large, it slows down, it consumes memory, it scrolls
in fits and starts, and the device becomes less responsive.!!
ListView was designed to solve this problem.!!
The biggest mental hurdle with ListView is that you no longer create the elements the ListView
displays, ListView does that for you. Instead of views you have templates, and you provide the
data necessary to fill these templates. The ListView controls the views, and recycles them as
they roll off the screen, so you never have more views than are visible.!!
This white paper describes how to handle the data and templates. We start with a basic list
using the default template, creating your own template, feeding the ListView with live data, and
event handling. When you are done, you’ll be a master of one of the most powerful features of
the Titanium SDK.!!
The example project used in this document is in bitbucket at this address:!
! https://github.com/appcelerator-services/ElementsOfListView/!
In this tutorial, you will follow the development of a real-world cross-platform application that is
centered around a ListView. For your reference, each chapter has a branch in this repository,
check out the branch that corresponds to each chapter to follow along.!!!

Page � of �1 16

https://github.com/appcelerator-services/ElementsOfListView/

The Hello World ListView!
➡Git Branch: 01-HelloWorld !

We start with the most basic ListView possible — a list of words.!

In your view xml, the ListView looks like this.!!
<ListView id="elementsList">!
 <ListSection name="elements">!
 <ListItem title="Hydrogen"/>!
 <ListItem title="Helium"/>!
 <ListItem title=“Lithium"/>!
! ...!
 </ListSection>!
</ListView>!

!
At this point, it doesn’t look any different from any other Alloy element. It’s a ListView, with a
ListSection that contains a series of ListItems. These three elements alone implement a
ListView that scrolls. The appearance of these lists is highly platform-specific.!!
!

Page � of �2 16

The default ListView on iOS and Android

Customizing the Layout with Templates!
➡Git Branch: 02-ListTemplate !

In many cases the default look and feel above is sufficient, but if we want to customize the
appearance of ListItems or create a consistent look and feel across platforms, we will need to
build an ItemTemplate.!

!
An ItemTemplate is looks very much like a code snippet of an Alloy view; it’s a view with
elements inside it. There is one notable difference though - the addition of a bindId. This
bindId is what is used to connect the list data with components.!!

<ListView id="elementsList">!
 <Templates>!
 <ItemTemplate name="elementTemplate">!
 <Label bindId="symbol" id="symbol" />!
 <View id=“atomProperties">!
 <Label bindId="name" id="name" />!
 <View id=“secondLine">!
 <Label class="line2 fieldLabel”!
 text="Number: " />!
 <Label class="line2" bindId=“number"!
 id="number" />!
 <Label class="line2 fieldLabel”!
 text=“Atomic Mass: " />!
! ! <Label class="line2" bindId=“mass"!
 id="mass" />!

Page � of �3 16

A ListView with a customized template

 </View>!
 </View>!
 </ItemTemplate>!
 </Templates>!
 <ListSection name=“elements“/>!
</ListView>!

!!
The elements in the template can be styled the same way as other elements, using the .tss style
sheet using the id or class fields it identify elements for styling.!!
Once you have created your template, you must specify which template to use, or else your
ListView will still look like it did in the previous section. In the style for the ListView, add the
name of the template as defaultItemTemplate:!!

"#elementsList": {!
! backgroundColor:"white",!
! defaultItemTemplate:"elementTemplate",!
! separatorColor: "#999"!

},	
In cases where you have multiple templates, you may specify which template to use by setting
the template attribute of the ListItem.!!
To fill this template, the ListItems need to contain some additional information.!!

<ListItem symbol:text="Ti" name:text="Titanium" number:text="22"
mass:text="47.867"/>!

!
Each attribute in this ListItem refers to a bindId in the template. So what does :text
mean? Each item in this example template that has a bindId is a Label. The text of a label is
the text attribute of the Label element.!!

<Label text="Titanium" />!

!!
The ListItem is not limited to setting text of labels. It can set the value of any attribute of any
Ti.UI component. For example, in the screen shots above, you may notice that gasses have a
symbol coloured green. The ListItem for Hydrogen sets symbol:color to green.!!

<ListItem symbol:text="H" symbol:color="#090"
name:text="Hydrogen" number:text="1"
mass:text="1.00794"/>!

!

Page � of �4 16

In fact, you can set values on more than just Labels. For example, if you wanted a View to
have a shaded background you can give the view a bindId (say, wrapperView) in the
template, and, in the ListItem set the attribute
wrapperView:backgroundColor=“#e8e8ff”.!!!
!

Page � of �5 16

Updating Content!
➡Git Branch: 03-LiveData !

The careful reader will note that in the example above, the ListItems are placed directly in the
view xml. Besides that this does a poor job of separating data from presentation, they don’t
represent live data. We need to update the list programmatically.!!
ListItems are not views like TableViewRow. The actual view that displays the data in a
ListItem are transient, that is, they can be created and destroyed at any time as the user
scrolls. We can only influence the ListItem via the data set we feed into the ListView.!!
Let’s load these elements into the ListView:!!

elements.table = [!
 {“name”:”Hydrogen","number":1,"symbol":"H","mass":1.00794},!
 {"name":"Helium","number":2,"symbol":"He","mass":4.002602},!
 {“name”:”Lithium”,”number”:3,”symbol”:"Li","mass":6.941},!
 ...!
]!

!
This list has to be massaged a bit for the ListView to work with it. The format is pretty simple;
it’s the bindId of the view in the template mapped to all the properties of that view to set.!!

var items = _.map(elements.table, function(element) {!
 return {!
 symbol: {text: element.symbol},!
 name: {text: element.name},!
 number: {text: element.number},!
 mass: {text: element.mass}!
 };});!!

!
And finally to add it to the list, you setItems in the list section.!!

$.elementsList.sections[0].setItems(items);!

!!
Let’s turn up the heat!!!
In the example above, we only set the text of labels, all symbols appear black. It’s easy enough
to see how to colour them, simply add color as a property, ie symbol: {text:
element.symbol, color: “#090”}, but now we want to update the colors in real time.!!
In this example, I am adding a slider to the screen to change the temperature. This will cause
elements to change between solid, liquid and gas. ListView does not add instrumentation to

Page � of �6 16

its dataset to change on the fly, I have to check the data items out, make the changes and
check them in.!!

var changeColor = function(itemIndex, color) {!
 var listSection = $.elementsList.sections[0];!
 var listItem = listSection.getItemAt(itemIndex);!
 listItem.symbol.color = color;!
 listSection.updateItemAt(itemIndex, listItem);!
};!

!!
There is an important hazard to this however - this is not a cheap process. In this example,
when I updated 118 elements one-by-one every time the slider fires a change event, I created a
10-15 seconds of backlog of events on my fastest Android device (HTC One M8).!!
By throttling the updates to 250ms, and only updating the elements that change, the lag was
usually less than a second, depending on how many elements I had to update.!!

var changeColor = function(itemIndex, color) {!
 var listSection = $.elementsList.sections[0];!
 var listItem = listSection.getItemAt(itemIndex);!
 if(listItem.symbol.color != color) {!
 listItem.symbol.color = color;!
 listSection.updateItemAt(itemIndex, listItem);!
 }!
};!

!
However, by completely replacing the data in the list with setData, the lag time dropped to
100ms on my Android device, and usually less than 10ms on the iPhone 5S.!!
For this reason, I recommend replacing the entire list data set instead of updating piecemeal if
there are more than a couple items to update.!!
In the example code, I have included comments to describe the three algorithms: updating all
items, updating only changed, and then replacing the data set. Enable and disable them by
changing if(false) to true and vice versa in the changeTemperatureAction method to
see the performance characteristics of each algorithm.!!!
!

Page � of �7 16

The Marker Event!
➡Git Branch: 04-MarkerEvent !

Let’s make this app even faster.!!
There are many cases where the data available to display will be extremely large or even
infinite, but loading them is slow and it doesn’t make sense to load them all at once. Normally, in
a TableView, you would monitor scroll events, calculate your position, and at some point decide
it’s time to load more data.!!
ListView doesn’t have scroll events, but it does have a marker. The marker is like a tripwire,
the first time the user scrolls past it, the ListView fires an event.!!
In the previous section, the elements data was in a JavaScript file. In this example, I’m going to
break it out into several JSON files, and load them one at a time. Even though I’m not loading
from a web service, there’s still a good use case for splitting the load. Parsing JSON can be
expensive if the data gets too long. Right now the elements file isn’t very big, but I could
potentially add information about elements in the future that could blow the file up. To keep the
startup quick, we want to defer loading as much information as we can until we absolutely need
it.!!
Set up the marker event.!!

<ListView id="elementsList" onMarker="markerReached">!
 ...!
</ListView>!

!
Set up the trigger point for the marker.!!

$.elementsList.setMarker({sectionIndex:0,itemIndex:15});!

!
Note this event will only fire once each time a marker is set, so in the event handler, you must
set the marker to ahead a little.!!

var markerReached = function() {!
 addData();!
 $.elementsList.setMarker({!
 sectionIndex:0,!
 itemIndex: ($.elementsList.sections[0].items.length - 10)!
 });!
};!

!
In earlier sections of this tutorial, we used setItems() to add data to the table. When
setItems() increases the size of the list, the iPhone will use an animation to grow the list.
When you just want new items on the bottom, it looks odd. In this case it’s better to use the
appendItems() method to add the new items on the bottom.!

Page � of �8 16

!
var addData = function() {!
 ...! ! !
 $.elementsList.sections[0].appendItems(newData);!
};!

!!
!

Page � of �9 16

Searching in the table!
➡Git Branch: 05-Search !

On the surface this is very easy to do. Add searchableText to the ListItem and add a
SearchBar to the ListView, and everything you need is done for you. !!
In the view:!!

<ListView id="elementsList" onMarker="markerReached">!
 <Templates>!
 ...!
 </Templates>!
 <SearchBar id="searchBar" />!
 <ListSection name="elements" />!!
</ListView>!

!
And add searchable text to the list item. Note that this is inside and object called properties.
The properties object is for ListItem properties while the other fields are for binding to template
items.!!

var preprocessForListView = function(rawElements) {!
 return _.map(rawElements, function(element) {!
 return {!
 properties: {!
 searchableText: element.name + ' ' + ! !
 element.symbol + ' ' + !
 element.number.toString()!
 },!
 symbol: {text: element.symbol, ... },!
 name: {text: element.name},!
 number: {text: element.number.toString()},!
 mass: {text: element.mass.toString()}!
 };!
 });! !
};!

!!
However, there are some limitations to this. The first limitation is the annoying Android behavior
of always automatically focusing on any available text fields when a window opens, which in this
case is the Search bar. The second is that you can only search things that are already loaded in
the list.!!
There is no really elegant way to prevent Android from automatically focusing on a text field.
There are many kluges however.!!

Page � of �10 16

The example sources show the Android version using a search bar that is outside the
ListView. To get around Android’s focus issue, we’re setting up the SearchBar only when the
user is actually searching. The critical element here is $.elementsList.searchText. This
sets the search text when the ListView’s search view isn’t defined.!!
For the second issue, our example app loads all the remaining items into the list as the user
clicks into the SearchBar. This is only one of a number of acceptable ways to handle this
issue. If loading the entire dataset is impractical, one can attach events to the SearchBar and
use them to send queries to the web service so the additional items can be added to the list.
You can do this automatically, or allow the user to click a button to say “continue this search on
the server”. Whatever makes the most sense depends on the circumstances of the app.!!
!

Page � of �11 16

Clicking on Rows!
➡Git Branch: 06-EventsOnRowsAndElements !

Unlike TableViews, there are no events on ListItems. You must capture itemclick events
in the ListView, then find the item the user clicked on. There are two ways of doing this: by
sectionIndex and itemIndex, or by itemId.!!
The previous section actually has an itemclick which used the idemId to handle the Android
search feature. The ListItem that displayed the message “Click to search” was given the itemId
“clickToSearch”.!!

var clickToSearch = {!
 template: Titanium.UI.LIST_ITEM_TEMPLATE_DEFAULT,!
 properties: {!
 height: 50,!
 title: "Click to search",!
 color: "#009",!
 itemId: "clickToSearch"!
 }!
};!

!
Then the handler for the itemclick event checked the itemId of the event.!!

$.elementsList.addEventListener('itemclick', function(e) {!!
 if(!$.searchBar.visible && "clickToSearch" == e.itemId) {!
 // start search!
 ... !
 }!
});!

!!
!

Page � of �12 16

Events on Elements!!
In this section, we’re going to add two new features to the app. When I click on a ListItem, I will
show the Wikipedia page for the app, but when I click on the element symbol, I will show a
“quick-view” detail of the element in an overlay.!

!
To support the Wikipedia feature, I can use the itemclick described in the previous section, but
for the quick view feature, I need to capture the click event on the symbol.!!
As we already covered the itemclick event, I’m not going to go into create detail on the
Wikipedia feature. However, the quick-view feature requires some attention. To make this work
we need to do three things: !
1. Determine that we clicked on the element symbol,!
2. Prevent the symbol’s click from trigging an itemclick event,!
3. Still be able to capture itemclick events that aren’t on the symbol.!!
The views that display the ListItems only really exist when they are on the screen. They are only
created when they scroll into view and they disappear when they scroll out of view. This is why
ListView is so fast, but it also means ListView cannot give out references to the views of
ListItem. However, in the template we can set event attributes, such as onClick like this:!!

<ItemTemplate name="elementTemplate" >!
 <Label bindId="symbol" id="symbol" onClick="symbolClick" />!
 ...!
</ItemTemplate>!

Page � of �13 16

The QuickView feature on iOS and Android

!
One point to note though, handler must be declared with a Function Declaration, not a
Function Expression or the handler will never be called.!!

// Function Declaration!
function symbolClick(e) {!
 ... // works!
};!!
// Function Expression!
var symbolClick = function(e) {!
 ... // fails quietly!
};!

!
For for details on what Function Declarations vs Function Expressions are, go to:!
! http://kangax.github.io/nfe/!!
This takes care of the first problem. We have captured a click on a symbol. Now we have to
prevent the click on the symbol from triggering the itemclick without disabling the itemclick
altogether.!!
We can’t use cancelBubble to stop the click from becoming and itemclick because those a two
different events. There are, however, a few things we can do. !!
One way is to adjust the template and put a click event on a wrapper view. Then we can have
the handler for that wrapper’s click event do what we were originally using the itemClick to do,
which is, in this case, launching wikipedia.!!
Another way is to drop a flag. The click is processed before the itemclick, we we can simply set
a variable to say the click was just fired, and the itemclick checks that variable before doing its
own work.!!

// the flag!
var symbolClicked = false;!!
// the click handler !
function symbolClick(e) {!
 ...!
 symbolClicked = true;!
};!!
// the itemclick handler!
var elementClick = function(e) {!
 if(symbolClicked) {!
 symbolClicked = false;!
 return;!
 }!
 ...!

Page � of �14 16

http://kangax.github.io/nfe/

};!

!
The event e also carries the itemId of the ListItem as a convenience.!!
Capturing events this way can give you access to the actual view objects that display the
ListItem’s content.!!
CAUTION: The views that display the ListItems get recycled as the user scrolls through the
list. Manipulating views directly can lead to unintended consequences. For example, setting a
view to visible=false to make a label disappear can also make other labels in the list
disappear. Therefore, it is important that, when changing the content of a ListItem, you only
do so by changing the the data you feed it.!!
For example:!!

// breaks things!
function symbolClick(e) {!
 e.source.visible = false;!
}!!
// safe !
function symbolClick(e) {!
 // get the itemId, which is conveniently included in the !
 // click event!
 var itemId = e.itemId;!
 // then scan the list to get the correct data item!
 var items = $.elementsList.sections[0].getItems();!
 for(var i = 0; i < items.length; i++) {!
 if(items[i].properties.itemId == itemId) {!
 // found the item, now update it!
 items[i].symbol.visible = false;!
 $.elementsList.section[0].updateItemAt(i, items[i]);!
 break;!
 }!
 }!
}!

!
!

Page � of �15 16

In conclusion!!
The final warning in the previous section is actually a glimpse into the very source of the
ListItem’s power. By constantly recycling its constituent views, the ListView saves a lot of trips
over the the Titanium native bridge and keeps a lot of objects out of memory. This is what
makes ListView scroll smoothly. Also, by taking over the object creation, it’s much easier to
translate data into content and put it on the screen fast.!!
The troubles are obvious, events and some manipulations can be more effort than if you just
had the views at your disposal. However, these troubles are easily outweighed by the ease of
getting great performance and small memory footprints with limitless datasets. The ListView
represents a strong separation of model view and controller, and the rewards are clear to any
programmer to embrace it.!!
Code strong.!

Page � of �16 16

