diff --git a/genindex.html b/genindex.html index 83d3b8a16..002b06d5a 100644 --- a/genindex.html +++ b/genindex.html @@ -222,90 +222,6 @@

_

  • (coremltools.models.tree_ensemble.TreeEnsembleRegressor method)
  • -
  • _check_fp16_weight_param_exists() (coremltools.models.neural_network.builder.NeuralNetworkBuilder method) -
  • -
  • _check_fp16_weight_params_lstms() (coremltools.models.neural_network.builder.NeuralNetworkBuilder method) -
  • -
  • _convert_1bit_array_to_byte_array() (in module coremltools.models.neural_network.quantization_utils) -
  • -
  • _convert_neural_network_weights_to_fp16() (in module coremltools.models.utils) -
  • -
  • _convert_to_spec() (in module coremltools.converters.keras._keras_converter) -
  • -
  • _convert_training_info() (in module coremltools.converters.keras._keras2_converter) -
  • -
  • _decompose_bytes_to_bit_arr() (in module coremltools.models.neural_network.quantization_utils) -
  • -
  • _dequantize_nn_spec() (in module coremltools.models.neural_network.quantization_utils) -
  • -
  • _determine_source() (in module coremltools.converters._converters_entry) -
  • -
  • _element_equal() (in module coremltools.models.utils) -
  • -
  • _fill_tensor_fields() (in module coremltools.models.neural_network.builder) -
  • -
  • _get_custom_layer_names() (in module coremltools.models.utils) -
  • - - diff --git a/objects.inv b/objects.inv index e5813b9d0..484d26d72 100644 Binary files a/objects.inv and b/objects.inv differ diff --git a/searchindex.js b/searchindex.js index 21fae1d72..f49b29e54 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["index","source/coremltools.converters","source/coremltools.converters.caffe","source/coremltools.converters.keras","source/coremltools.converters.libsvm","source/coremltools.converters.mil","source/coremltools.converters.mil.input_types","source/coremltools.converters.mil.mil.ops.defs","source/coremltools.converters.onnx","source/coremltools.converters.sklearn","source/coremltools.converters.xgboost","source/coremltools.models","source/coremltools.models.neural_network","source/modules"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":2,sphinx:56},filenames:["index.rst","source/coremltools.converters.rst","source/coremltools.converters.caffe.rst","source/coremltools.converters.keras.rst","source/coremltools.converters.libsvm.rst","source/coremltools.converters.mil.rst","source/coremltools.converters.mil.input_types.rst","source/coremltools.converters.mil.mil.ops.defs.rst","source/coremltools.converters.onnx.rst","source/coremltools.converters.sklearn.rst","source/coremltools.converters.xgboost.rst","source/coremltools.models.rst","source/coremltools.models.neural_network.rst","source/modules.rst"],objects:{"coremltools.converters":{_converters_entry:[5,0,0,"-"]},"coremltools.converters._converters_entry":{_determine_source:[5,1,1,""],_validate_inputs:[5,1,1,""],convert:[5,1,1,""]},"coremltools.converters.caffe":{_caffe_converter:[2,0,0,"-"]},"coremltools.converters.caffe._caffe_converter":{convert:[2,1,1,""]},"coremltools.converters.keras":{_keras2_converter:[3,0,0,"-"],_keras_converter:[3,0,0,"-"]},"coremltools.converters.keras._keras2_converter":{_convert_training_info:[3,1,1,""],_get_layer_converter_fn:[3,1,1,""],_load_keras_model:[3,1,1,""]},"coremltools.converters.keras._keras_converter":{_convert_to_spec:[3,1,1,""],_get_layer_converter_fn:[3,1,1,""],_load_keras_model:[3,1,1,""],convert:[3,1,1,""]},"coremltools.converters.libsvm":{_libsvm_converter:[4,0,0,"-"]},"coremltools.converters.libsvm._libsvm_converter":{convert:[4,1,1,""]},"coremltools.converters.mil":{input_types:[6,0,0,"-"]},"coremltools.converters.mil.input_types":{ClassifierConfig:[6,2,1,""],EnumeratedShapes:[6,2,1,""],ImageType:[6,2,1,""],RangeDim:[6,2,1,""],Shape:[6,2,1,""],TensorType:[6,2,1,""]},"coremltools.converters.mil.input_types.ClassifierConfig":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.EnumeratedShapes":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.ImageType":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.RangeDim":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.Shape":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.TensorType":{__init__:[6,3,1,""]},"coremltools.converters.mil.mil.ops.defs":{activation:[7,0,0,"-"],control_flow:[7,0,0,"-"],conv:[7,0,0,"-"],elementwise_binary:[7,0,0,"-"],elementwise_unary:[7,0,0,"-"],image_resizing:[7,0,0,"-"],linear:[7,0,0,"-"],normalization:[7,0,0,"-"],pool:[7,0,0,"-"],random:[7,0,0,"-"],recurrent:[7,0,0,"-"],reduction:[7,0,0,"-"],scatter_gather:[7,0,0,"-"],tensor_operation:[7,0,0,"-"],tensor_transformation:[7,0,0,"-"]},"coremltools.converters.mil.mil.ops.defs.activation":{clamped_relu:[7,2,1,""],elu:[7,2,1,""],gelu:[7,2,1,""],leaky_relu:[7,2,1,""],linear_activation:[7,2,1,""],prelu:[7,2,1,""],relu6:[7,2,1,""],relu:[7,2,1,""],scaled_tanh:[7,2,1,""],sigmoid:[7,2,1,""],sigmoid_hard:[7,2,1,""],softmax:[7,2,1,""],softplus:[7,2,1,""],softplus_parametric:[7,2,1,""],softsign:[7,2,1,""],thresholded_relu:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.control_flow":{"const":[7,2,1,""],cond:[7,2,1,""],list_gather:[7,2,1,""],list_length:[7,2,1,""],list_read:[7,2,1,""],list_scatter:[7,2,1,""],list_write:[7,2,1,""],make_list:[7,2,1,""],select:[7,2,1,""],while_loop:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.conv":{conv:[7,2,1,""],conv_transpose:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.elementwise_binary":{add:[7,2,1,""],equal:[7,2,1,""],floor_div:[7,2,1,""],greater:[7,2,1,""],greater_equal:[7,2,1,""],less:[7,2,1,""],less_equal:[7,2,1,""],logical_and:[7,2,1,""],logical_or:[7,2,1,""],logical_xor:[7,2,1,""],maximum:[7,2,1,""],minimum:[7,2,1,""],mod:[7,2,1,""],mul:[7,2,1,""],not_equal:[7,2,1,""],pow:[7,2,1,""],real_div:[7,2,1,""],sub:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.elementwise_unary":{abs:[7,2,1,""],acos:[7,2,1,""],asin:[7,2,1,""],atan:[7,2,1,""],atanh:[7,2,1,""],cast:[7,2,1,""],ceil:[7,2,1,""],clip:[7,2,1,""],cos:[7,2,1,""],cosh:[7,2,1,""],erf:[7,2,1,""],exp2:[7,2,1,""],exp:[7,2,1,""],floor:[7,2,1,""],inverse:[7,2,1,""],log:[7,2,1,""],logical_not:[7,2,1,""],round:[7,2,1,""],rsqrt:[7,2,1,""],sign:[7,2,1,""],sin:[7,2,1,""],sinh:[7,2,1,""],sqrt:[7,2,1,""],square:[7,2,1,""],tan:[7,2,1,""],tanh:[7,2,1,""],threshold:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.image_resizing":{crop:[7,2,1,""],crop_resize:[7,2,1,""],resize_bilinear:[7,2,1,""],upsample_bilinear:[7,2,1,""],upsample_nearest_neighbor:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.linear":{linear:[7,2,1,""],matmul:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.normalization":{batch_norm:[7,2,1,""],instance_norm:[7,2,1,""],l2_norm:[7,2,1,""],layer_norm:[7,2,1,""],local_response_norm:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.pool":{avg_pool:[7,2,1,""],l2_pool:[7,2,1,""],max_pool:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.random":{random_bernoulli:[7,2,1,""],random_categorical:[7,2,1,""],random_normal:[7,2,1,""],random_uniform:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.recurrent":{gru:[7,2,1,""],lstm:[7,2,1,""],rnn:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.reduction":{reduce_arg:[7,2,1,""],reduce_argmax:[7,2,1,""],reduce_argmin:[7,2,1,""],reduce_l1_norm:[7,2,1,""],reduce_l2_norm:[7,2,1,""],reduce_log_sum:[7,2,1,""],reduce_log_sum_exp:[7,2,1,""],reduce_max:[7,2,1,""],reduce_mean:[7,2,1,""],reduce_min:[7,2,1,""],reduce_prod:[7,2,1,""],reduce_sum:[7,2,1,""],reduce_sum_square:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.scatter_gather":{gather:[7,2,1,""],gather_along_axis:[7,2,1,""],gather_nd:[7,2,1,""],scatter:[7,2,1,""],scatter_along_axis:[7,2,1,""],scatter_nd:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.tensor_operation":{argsort:[7,2,1,""],band_part:[7,2,1,""],concat:[7,2,1,""],cumsum:[7,2,1,""],fill:[7,2,1,""],flatten2d:[7,2,1,""],identity:[7,2,1,""],non_maximum_suppression:[7,2,1,""],non_zero:[7,2,1,""],one_hot:[7,2,1,""],pad:[7,2,1,""],range_1d:[7,2,1,""],shape:[7,2,1,""],split:[7,2,1,""],stack:[7,2,1,""],tile:[7,2,1,""],topk:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.tensor_transformation":{depth_to_space:[7,2,1,""],expand_dims:[7,2,1,""],pixel_shuffle:[7,2,1,""],reshape:[7,2,1,""],reverse:[7,2,1,""],reverse_sequence:[7,2,1,""],slice_by_index:[7,2,1,""],slice_by_size:[7,2,1,""],sliding_windows:[7,2,1,""],space_to_depth:[7,2,1,""],squeeze:[7,2,1,""],transpose:[7,2,1,""]},"coremltools.converters.onnx":{_converter:[8,0,0,"-"]},"coremltools.converters.onnx._converter":{_make_coreml_input_features:[8,1,1,""],_transform_coreml_dtypes:[8,1,1,""],convert:[8,1,1,""]},"coremltools.converters.sklearn":{_converter:[9,0,0,"-"]},"coremltools.converters.sklearn._converter":{convert:[9,1,1,""]},"coremltools.converters.xgboost":{_tree:[10,0,0,"-"]},"coremltools.converters.xgboost._tree":{convert:[10,1,1,""]},"coremltools.models":{array_feature_extractor:[11,0,0,"-"],feature_vectorizer:[11,0,0,"-"],model:[11,0,0,"-"],pipeline:[11,0,0,"-"],tree_ensemble:[11,0,0,"-"],utils:[11,0,0,"-"]},"coremltools.models.array_feature_extractor":{create_array_feature_extractor:[11,1,1,""]},"coremltools.models.feature_vectorizer":{create_feature_vectorizer:[11,1,1,""]},"coremltools.models.model":{MLModel:[11,2,1,""]},"coremltools.models.model.MLModel":{__init__:[11,3,1,""],get_spec:[11,3,1,""],predict:[11,3,1,""],save:[11,3,1,""]},"coremltools.models.nearest_neighbors":{builder:[11,0,0,"-"]},"coremltools.models.nearest_neighbors.builder":{KNearestNeighborsClassifierBuilder:[11,2,1,""]},"coremltools.models.nearest_neighbors.builder.KNearestNeighborsClassifierBuilder":{__init__:[11,3,1,""],_is_valid_number_type:[11,3,1,""],_is_valid_text_type:[11,3,1,""],_validate_label_types:[11,3,1,""],add_samples:[11,3,1,""],author:[11,3,1,""],description:[11,3,1,""],index_type:[11,3,1,""],is_updatable:[11,3,1,""],leaf_size:[11,3,1,""],license:[11,3,1,""],number_of_dimensions:[11,3,1,""],number_of_neighbors:[11,3,1,""],number_of_neighbors_allowed_range:[11,3,1,""],number_of_neighbors_allowed_set:[11,3,1,""],set_index_type:[11,3,1,""],set_number_of_neighbors_with_bounds:[11,3,1,""],weighting_scheme:[11,3,1,""]},"coremltools.models.neural_network":{builder:[12,0,0,"-"],flexible_shape_utils:[12,0,0,"-"],quantization_utils:[12,0,0,"-"],update_optimizer_utils:[12,0,0,"-"]},"coremltools.models.neural_network.builder":{NeuralNetworkBuilder:[12,2,1,""],_fill_tensor_fields:[12,1,1,""],_get_lstm_weight_fields:[12,1,1,""]},"coremltools.models.neural_network.builder.NeuralNetworkBuilder":{__init__:[12,3,1,""],_check_fp16_weight_param_exists:[12,3,1,""],_check_fp16_weight_params_lstms:[12,3,1,""],add_acos:[12,3,1,""],add_acosh:[12,3,1,""],add_activation:[12,3,1,""],add_add_broadcastable:[12,3,1,""],add_argmax:[12,3,1,""],add_argmin:[12,3,1,""],add_argsort:[12,3,1,""],add_asin:[12,3,1,""],add_asinh:[12,3,1,""],add_atan:[12,3,1,""],add_atanh:[12,3,1,""],add_batched_mat_mul:[12,3,1,""],add_batchnorm:[12,3,1,""],add_bias:[12,3,1,""],add_bidirlstm:[12,3,1,""],add_branch:[12,3,1,""],add_broadcast_to_dynamic:[12,3,1,""],add_broadcast_to_like:[12,3,1,""],add_broadcast_to_static:[12,3,1,""],add_categorical_distribution:[12,3,1,""],add_ceil:[12,3,1,""],add_clamped_relu:[12,3,1,""],add_clip:[12,3,1,""],add_concat_nd:[12,3,1,""],add_constant_pad:[12,3,1,""],add_convolution3d:[12,3,1,""],add_convolution:[12,3,1,""],add_copy:[12,3,1,""],add_cos:[12,3,1,""],add_cosh:[12,3,1,""],add_crop:[12,3,1,""],add_crop_resize:[12,3,1,""],add_cumsum:[12,3,1,""],add_custom:[12,3,1,""],add_divide_broadcastable:[12,3,1,""],add_elementwise:[12,3,1,""],add_embedding:[12,3,1,""],add_embedding_nd:[12,3,1,""],add_equal:[12,3,1,""],add_erf:[12,3,1,""],add_exp2:[12,3,1,""],add_expand_dims:[12,3,1,""],add_fill_dynamic:[12,3,1,""],add_fill_like:[12,3,1,""],add_fill_static:[12,3,1,""],add_flatten:[12,3,1,""],add_flatten_to_2d:[12,3,1,""],add_floor:[12,3,1,""],add_floor_div_broadcastable:[12,3,1,""],add_gather:[12,3,1,""],add_gather_along_axis:[12,3,1,""],add_gather_nd:[12,3,1,""],add_gelu:[12,3,1,""],add_get_shape:[12,3,1,""],add_global_pooling3d:[12,3,1,""],add_greater_than:[12,3,1,""],add_gru:[12,3,1,""],add_inner_product:[12,3,1,""],add_l2_normalize:[12,3,1,""],add_layer_normalization:[12,3,1,""],add_less_than:[12,3,1,""],add_load_constant:[12,3,1,""],add_load_constant_nd:[12,3,1,""],add_logical:[12,3,1,""],add_loop:[12,3,1,""],add_loop_break:[12,3,1,""],add_loop_continue:[12,3,1,""],add_lower_triangular:[12,3,1,""],add_lrn:[12,3,1,""],add_matrix_band_part:[12,3,1,""],add_max_broadcastable:[12,3,1,""],add_min_broadcastable:[12,3,1,""],add_mod_broadcastable:[12,3,1,""],add_multiply_broadcastable:[12,3,1,""],add_mvn:[12,3,1,""],add_nms:[12,3,1,""],add_not_equal:[12,3,1,""],add_one_hot:[12,3,1,""],add_optionals:[12,3,1,""],add_padding:[12,3,1,""],add_permute:[12,3,1,""],add_pooling3d:[12,3,1,""],add_pooling:[12,3,1,""],add_pow_broadcastable:[12,3,1,""],add_random_bernoulli_dynamic:[12,3,1,""],add_random_bernoulli_like:[12,3,1,""],add_random_bernoulli_static:[12,3,1,""],add_random_normal_dynamic:[12,3,1,""],add_random_normal_like:[12,3,1,""],add_random_normal_static:[12,3,1,""],add_random_uniform_dynamic:[12,3,1,""],add_random_uniform_like:[12,3,1,""],add_random_uniform_static:[12,3,1,""],add_range_dynamic:[12,3,1,""],add_range_static:[12,3,1,""],add_rank_preserving_reshape:[12,3,1,""],add_reduce:[12,3,1,""],add_reduce_l1:[12,3,1,""],add_reduce_l2:[12,3,1,""],add_reduce_logsum:[12,3,1,""],add_reduce_logsumexp:[12,3,1,""],add_reduce_max:[12,3,1,""],add_reduce_mean:[12,3,1,""],add_reduce_min:[12,3,1,""],add_reduce_prod:[12,3,1,""],add_reduce_sum:[12,3,1,""],add_reduce_sumsquare:[12,3,1,""],add_reorganize_data:[12,3,1,""],add_reshape:[12,3,1,""],add_reshape_dynamic:[12,3,1,""],add_reshape_like:[12,3,1,""],add_reshape_static:[12,3,1,""],add_resize_bilinear:[12,3,1,""],add_reverse:[12,3,1,""],add_reverse_sequence:[12,3,1,""],add_round:[12,3,1,""],add_scale:[12,3,1,""],add_scatter:[12,3,1,""],add_scatter_along_axis:[12,3,1,""],add_scatter_nd:[12,3,1,""],add_sequence_repeat:[12,3,1,""],add_sign:[12,3,1,""],add_simple_rnn:[12,3,1,""],add_sin:[12,3,1,""],add_sinh:[12,3,1,""],add_slice:[12,3,1,""],add_slice_by_size:[12,3,1,""],add_slice_dynamic:[12,3,1,""],add_slice_static:[12,3,1,""],add_sliding_windows:[12,3,1,""],add_softmax:[12,3,1,""],add_softmax_nd:[12,3,1,""],add_split:[12,3,1,""],add_split_nd:[12,3,1,""],add_squeeze:[12,3,1,""],add_stack:[12,3,1,""],add_subtract_broadcastable:[12,3,1,""],add_tan:[12,3,1,""],add_tanh:[12,3,1,""],add_tile:[12,3,1,""],add_topk:[12,3,1,""],add_transpose:[12,3,1,""],add_unary:[12,3,1,""],add_unilstm:[12,3,1,""],add_upper_triangular:[12,3,1,""],add_upsample:[12,3,1,""],add_where_broadcastable:[12,3,1,""],add_where_nonzero:[12,3,1,""],inspect_conv_channels:[12,3,1,""],inspect_innerproduct_channels:[12,3,1,""],inspect_input_features:[12,3,1,""],inspect_layers:[12,3,1,""],inspect_loss_layers:[12,3,1,""],inspect_optimizer:[12,3,1,""],inspect_output_features:[12,3,1,""],inspect_updatable_layers:[12,3,1,""],make_updatable:[12,3,1,""],set_categorical_cross_entropy_loss:[12,3,1,""],set_class_labels:[12,3,1,""],set_input:[12,3,1,""],set_mean_squared_error_loss:[12,3,1,""],set_optional_input:[12,3,1,""],set_output:[12,3,1,""],set_pre_processing_parameters:[12,3,1,""],set_training_input:[12,3,1,""]},"coremltools.models.neural_network.flexible_shape_utils":{NeuralNetworkImageSize:[12,2,1,""],NeuralNetworkImageSizeRange:[12,2,1,""],NeuralNetworkMultiArrayShape:[12,2,1,""],NeuralNetworkMultiArrayShapeRange:[12,2,1,""],add_enumerated_image_sizes:[12,1,1,""],add_enumerated_multiarray_shapes:[12,1,1,""],add_multiarray_ndshape_enumeration:[12,1,1,""],set_multiarray_ndshape_range:[12,1,1,""],update_image_size_range:[12,1,1,""],update_multiarray_shape_range:[12,1,1,""]},"coremltools.models.neural_network.flexible_shape_utils.NeuralNetworkMultiArrayShapeRange":{isFlexible:[12,3,1,""]},"coremltools.models.neural_network.quantization_utils":{AdvancedQuantizedLayerSelector:[12,2,1,""],MatrixMultiplyLayerSelector:[12,2,1,""],ModelMetrics:[12,2,1,""],OutputMetric:[12,2,1,""],QuantizedLayerSelector:[12,2,1,""],_convert_1bit_array_to_byte_array:[12,1,1,""],_decompose_bytes_to_bit_arr:[12,1,1,""],_dequantize_nn_spec:[12,1,1,""],_get_kmeans_lookup_table_and_weight:[12,1,1,""],_get_linear_lookup_table_and_weight:[12,1,1,""],_quantize_channelwise_linear:[12,1,1,""],_quantize_nn_spec:[12,1,1,""],_quantize_wp:[12,1,1,""],_quantize_wp_field:[12,1,1,""],activate_int8_int8_matrix_multiplications:[12,1,1,""],compare_models:[12,1,1,""],quantize_weights:[12,1,1,""]},"coremltools.models.neural_network.quantization_utils.AdvancedQuantizedLayerSelector":{do_quantize:[12,3,1,""]},"coremltools.models.neural_network.quantization_utils.MatrixMultiplyLayerSelector":{do_quantize:[12,3,1,""]},"coremltools.models.neural_network.update_optimizer_utils":{AdamParams:[12,2,1,""],Batch:[12,2,1,""],RangeParam:[12,2,1,""],SgdParams:[12,2,1,""]},"coremltools.models.pipeline":{Pipeline:[11,2,1,""],PipelineClassifier:[11,2,1,""],PipelineRegressor:[11,2,1,""]},"coremltools.models.pipeline.Pipeline":{__init__:[11,3,1,""],add_model:[11,3,1,""],set_training_input:[11,3,1,""]},"coremltools.models.pipeline.PipelineClassifier":{__init__:[11,3,1,""],add_model:[11,3,1,""],set_training_input:[11,3,1,""]},"coremltools.models.pipeline.PipelineRegressor":{__init__:[11,3,1,""],add_model:[11,3,1,""],set_training_input:[11,3,1,""]},"coremltools.models.tree_ensemble":{TreeEnsembleBase:[11,2,1,""],TreeEnsembleClassifier:[11,2,1,""],TreeEnsembleRegressor:[11,2,1,""]},"coremltools.models.tree_ensemble.TreeEnsembleBase":{__init__:[11,3,1,""],add_branch_node:[11,3,1,""],add_leaf_node:[11,3,1,""],set_default_prediction_value:[11,3,1,""],set_post_evaluation_transform:[11,3,1,""]},"coremltools.models.tree_ensemble.TreeEnsembleClassifier":{__init__:[11,3,1,""]},"coremltools.models.tree_ensemble.TreeEnsembleRegressor":{__init__:[11,3,1,""]},"coremltools.models.utils":{_convert_neural_network_weights_to_fp16:[11,1,1,""],_element_equal:[11,1,1,""],_get_custom_layer_names:[11,1,1,""],_get_custom_layers:[11,1,1,""],_get_input_names:[11,1,1,""],_get_model:[11,1,1,""],_get_nn_layers:[11,1,1,""],_has_custom_layer:[11,1,1,""],_is_macos:[11,1,1,""],_macos_version:[11,1,1,""],_python_version:[11,1,1,""],_replace_custom_layer_name:[11,1,1,""],_sanitize_value:[11,1,1,""],convert_double_to_float_multiarray_type:[11,1,1,""],evaluate_classifier:[11,1,1,""],evaluate_classifier_with_probabilities:[11,1,1,""],evaluate_regressor:[11,1,1,""],evaluate_transformer:[11,1,1,""],load_spec:[11,1,1,""],rename_feature:[11,1,1,""],save_spec:[11,1,1,""]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method"},terms:{"044715x":7,"0b1":12,"100":2,"1000":[11,12],"105":2,"110":2,"120":2,"1240":11,"125":2,"128":12,"1651":5,"1st":12,"224":7,"227":2,"256":[5,12],"299":12,"2nd":12,"32argb":[2,3],"32bgra":[2,3],"3rd":12,"4096":12,"4th":12,"50000":12,"5th":12,"702x":7,"999":12,"boolean":[7,12],"byte":12,"case":[5,7,9,11,12],"class":[2,3,4,5,6,7,8,9,10,11,12],"const":7,"default":[2,3,6,7,8,9,10,11,12],"enum":[5,12],"export":2,"final":[7,9,11,12],"float":[2,3,6,10,11,12],"function":[3,5,7,8,11,12],"import":[2,3,9,10,11,12],"int":[3,6,10,11,12],"long":7,"new":[7,11,12],"return":[2,3,4,5,7,8,9,10,11,12],"short":7,"static":[8,11],"super":12,"switch":7,"throw":11,"true":[2,3,6,7,8,10,11,12],"try":11,"var":7,"while":[3,7,12],AND:[7,12],AVE:12,And:9,Axes:7,COS:12,For:[0,5,6,7,8,9,11,12],Its:7,NMS:[7,12],NOT:[7,12],Not:12,One:[5,7,9,11,12],Ops:0,That:[7,12],The:[2,3,5,6,7,8,9,11,12],These:[3,10],Use:[7,11],Used:12,With:[7,11],__init__:[6,11,12],_activ:7,_bodi:7,_caffe_convert:2,_check_fp16_weight_param_exist:12,_check_fp16_weight_params_lstm:12,_cond:7,_convert:[8,9],_convert_1bit_array_to_byte_arrai:12,_convert_neural_network_weights_to_fp16:11,_convert_to_spec:3,_convert_training_info:3,_converters_entri:5,_decompose_bytes_to_bit_arr:12,_dequantize_nn_spec:12,_determine_sourc:5,_element_equ:11,_error_util:8,_false_fn:7,_fill_tensor_field:12,_get_custom_lay:11,_get_custom_layer_nam:11,_get_input_nam:11,_get_kmeans_lookup_table_and_weight:12,_get_layer_converter_fn:3,_get_linear_lookup_table_and_weight:12,_get_lstm_weight_field:12,_get_model:11,_get_nn_lay:11,_graph:8,_has_custom_lay:11,_is_maco:11,_is_valid_number_typ:11,_is_valid_text_typ:11,_keras2_convert:3,_keras_convert:3,_libsvm_convert:4,_load_keras_model:3,_macos_vers:11,_make_coreml_input_featur:8,_mlmodel_full_precis:[2,3],_neuralnetwork_pb2:12,_python_vers:11,_quantization_mode_custom_lookup_t:12,_quantize_channelwise_linear:12,_quantize_nn_spec:12,_quantize_wp:12,_quantize_wp_field:12,_replace_custom_layer_nam:11,_sanitize_valu:11,_transform_coreml_dtyp:8,_tree:10,_true_fn:7,_validate_input:5,_validate_label_typ:11,abl:2,about:[2,3,11],abov:[7,12],abs:[7,12],absent:2,absolut:[7,12],acceler:12,accept:6,accommod:12,accord:[7,9,12],accumul:12,achiev:7,aco:[7,12],acosh:12,acoshlayerparam:12,acoslayerparam:12,across:[7,12],across_channel:12,activ:[5,11,12],activate_int8_int8_matrix_multipl:12,adam:12,adamparam:12,add:[2,3,7,11,12],add_aco:12,add_acosh:12,add_activ:12,add_add_broadcast:12,add_argmax:12,add_argmin:12,add_argsort:12,add_asin:12,add_asinh:12,add_atan:12,add_atanh:12,add_batched_mat_mul:12,add_batchnorm:12,add_bia:12,add_bidirlstm:12,add_branch:12,add_branch_nod:11,add_broadcast:12,add_broadcast_to_dynam:12,add_broadcast_to_lik:12,add_broadcast_to_stat:12,add_categorical_distribut:12,add_ceil:12,add_channel_rang:12,add_clamped_relu:12,add_clip:12,add_co:12,add_concat_nd:12,add_constant_pad:12,add_convolut:12,add_convolution3d:12,add_copi:12,add_cosh:12,add_crop:12,add_crop_res:12,add_cumsum:12,add_custom:12,add_custom_lay:[3,8],add_divide_broadcast:12,add_elementwis:12,add_embed:12,add_embedding_nd:12,add_enumerated_image_s:12,add_enumerated_multiarray_shap:12,add_equ:12,add_erf:12,add_exp2:12,add_expand_dim:12,add_fill_dynam:12,add_fill_lik:12,add_fill_stat:12,add_flatten:12,add_flatten_to_2d:12,add_floor:12,add_floor_div_broadcast:12,add_gath:12,add_gather_along_axi:12,add_gather_nd:12,add_gelu:12,add_get_shap:12,add_global_pooling3d:12,add_greater_than:12,add_gru:12,add_height_rang:12,add_inner_product:12,add_l2_norm:12,add_layer_norm:12,add_leaf_nod:11,add_less_than:12,add_load_const:12,add_load_constant_nd:12,add_log:12,add_loop:12,add_loop_break:12,add_loop_continu:12,add_lower_triangular:12,add_lrn:12,add_matrix_band_part:12,add_max_broadcast:12,add_min_broadcast:12,add_mod_broadcast:12,add_model:11,add_multiarray_ndshape_enumer:12,add_multiply_broadcast:12,add_mvn:12,add_nm:12,add_not_equ:12,add_one_hot:12,add_opt:12,add_pad:12,add_permut:12,add_pool:12,add_pooling3d:12,add_pow_broadcast:12,add_random_bernoulli_dynam:12,add_random_bernoulli_lik:12,add_random_bernoulli_stat:12,add_random_normal_dynam:12,add_random_normal_lik:12,add_random_normal_stat:12,add_random_uniform_dynam:12,add_random_uniform_lik:12,add_random_uniform_stat:12,add_range_dynam:12,add_range_stat:12,add_rank_preserving_reshap:12,add_reduc:12,add_reduce_l1:12,add_reduce_l2:12,add_reduce_logsum:12,add_reduce_logsumexp:12,add_reduce_max:12,add_reduce_mean:12,add_reduce_min:12,add_reduce_prod:12,add_reduce_sum:12,add_reduce_sumsquar:12,add_reorganize_data:12,add_reshap:12,add_reshape_dynam:12,add_reshape_lik:12,add_reshape_stat:12,add_resize_bilinear:12,add_revers:12,add_reverse_sequ:12,add_round:12,add_sampl:11,add_scal:12,add_scatt:12,add_scatter_along_axi:12,add_scatter_nd:12,add_sequence_repeat:12,add_sign:12,add_simple_rnn:12,add_sin:12,add_sinh:12,add_slic:12,add_slice_by_s:12,add_slice_dynam:12,add_slice_stat:12,add_sliding_window:12,add_softmax:12,add_softmax_nd:12,add_split:12,add_split_nd:12,add_squeez:12,add_stack:12,add_subtract_broadcast:12,add_tan:12,add_tanh:12,add_til:12,add_topk:12,add_transpos:12,add_unari:12,add_unilstm:12,add_upper_triangular:12,add_upsampl:12,add_where_broadcast:12,add_where_nonzero:12,add_width_rang:12,addbroadcastablelayerparam:12,added:[2,3,7,11,12],adding:[8,12],addit:[7,8,11,12],adjust:12,advanc:[2,5],advancedquantizedlayerselector:12,after:[7,11,12],against:11,aim:5,algorithm:[11,12],alias:5,align:[7,12],align_corn:7,align_corners_:12,align_corners_fals:12,align_corners_tru:12,align_endpoints_mod:12,all:[2,3,5,6,7,11,12],allow:[7,11,12],allow_set:12,allowed_rang:11,allowed_set:[11,12],allowed_valu:11,along:[7,12],alpha:[7,12],alpha_i:7,alreadi:12,also:[2,3,7,11,12],alter:12,although:7,alwai:11,amount:[7,12],ani:[2,3,7,11,12],annot:12,api:11,appear:[7,11],append:[7,12],appli:[2,3,7,8,11,12],applic:[2,3,12],approxim:7,arc:12,architectur:[2,3],area:[11,12],argmax:[7,12],argmaxlayerparam:12,argmin:[7,12],argminlayerparam:12,argsort:[7,12],argsortlayerparam:12,argument:[2,7,8,12],arr:12,arrai:[2,3,7,9,11,12],array_shap:12,as_default:5,ascend:7,asin:[7,12],asinh:12,asinhlayerparam:12,asinlayerparam:12,assign:2,assum:[2,3,6,7,9,12],astyp:11,asymmetr:12,atan:[7,12],atanh:[7,12],atanhlayerparam:12,atanlayerparam:12,attach:12,attribut:[7,8,12],author:11,auto:[5,7],auto_set_specification_vers:11,autogener:6,automat:[3,5,11,12],avail:12,averag:[7,12],average_pooling_count_excludes_pad:12,avg:12,avg_pool:7,avoid:[7,12],axes:[7,12],axi:[7,12],b_back:12,b_f:12,b_i:12,b_o:12,b_r:12,b_z:12,back:12,backend:7,backward:12,band:[7,12],band_part:7,base:[5,7,11,12],basic:6,batch:[2,7,8,12],batch_axi:[7,12],batch_norm:7,batchedmatmullayerparam:12,batchnorm:12,batchnormlayerparam:12,bath:[9,11],bathroom:11,becaus:7,becom:7,bedroom:[9,11],been:[11,12],befor:[2,3,7,12],begin:[2,7,12],begin_id:12,begin_mask:[7,12],behav:[11,12],behavior:[7,11,12],being:[11,12],below:[5,7,12],bernoulli:[7,12],beta1:12,beta2:12,beta:[7,12],beta_i:7,between:[5,7,9,11,12],bgr:[2,3,6,12],bia:[2,3,6,7,12],bias:[7,12],biaslayerparam:12,bidirect:7,bidirectionallstmlayerparam:12,bilinear:[7,12],binari:[2,11,12],binaryproto:2,bit:[10,12],bit_arr:12,blank:12,blob:[2,3,6,12],block:[7,12],block_siz:[7,12],blue:[2,3,6,12],blue_bia:[2,3,8,12],bodi:[7,12],body_network:12,bodynetwork:12,bool:[2,3,6,7,8,10,11,12],boost:9,booster:10,border_mod:12,border_mor:12,both:[2,7,12],bottom:[2,7,12],bottom_right_heavi:12,bound:[7,12],boundari:7,box:[7,12],box_coordinate_mod:7,box_height:[7,12],box_indices_mod:12,box_width:[7,12],branch:[7,11,12],branch_mod:11,branchlayerparam:12,branchonvalueequ:11,branchonvaluegreaterthan:11,branchonvaluegreaterthanequ:11,branchonvaluelessthan:11,branchonvaluelessthanequ:11,branchonvaluenotequ:11,broadcast:[7,12],broadcast_to_dynam:12,broadcast_to_lik:12,broadcast_to_stat:12,broadcasttodynamiclayerparam:12,broadcasttolikelayerparam:12,broadcasttostaticlayerparam:12,bsd:11,build:[11,12],builder:[3,8,11],built:12,c_in:7,c_input:12,c_out:7,c_output:12,c_reverse_input:12,c_reverse_output:12,c_t:7,caff:1,caffemodel:2,calcul:12,call:11,callabl:12,can:[2,3,5,6,7,9,10,11,12],cannot:[5,7],cast:7,cat:3,categor:[7,11,12],categori:[8,12],categorical_distribut:12,categoricaldistributionlayerparam:12,caus:7,ceil:[7,12],ceillayerparam:12,cell:[7,12],cell_activ:7,cell_clip_threshold:12,cell_gat:7,cell_state_update_activ:12,center:[7,12],center_size_height_first:[7,12],center_size_width_first:[7,12],central:12,certain:12,channel:[2,3,6,7,8,12],channel_first:[6,12],channel_last:12,channel_multipli:12,character:12,check:[11,12],child:11,chosen:7,chw:12,clamp:12,clamped_relu:7,clampedrelulayerparam:12,class_label:[2,3,6,8,10,11,12],classif:[8,10,11],classifi:[2,3,5,6,8,9,10,11,12],classification_softmax:11,classifier_config:5,classifierconfig:5,classlabel:[2,3,6,8,9,12],classnam:11,classprob:11,classscor:9,clean:11,clip:[7,12],cliplayerparam:12,cluster:12,color:[2,3,6],color_layout:6,column:[4,7,11],come:3,compar:[11,12],compare_model:12,comparison:[11,12],compat:[6,7,8,12],compil:[5,7,11],compress:12,comput:[7,11,12],compute_mean_var:12,concat:[7,12],concat_nd:12,concaten:[7,12],concatndlayerparam:12,concret:5,cond:7,condit:[7,11,12],condition_network:12,configur:[5,6],consid:[6,7],consist:11,constant:[7,12],constant_v:7,constant_valu:12,constantpaddinglayerparam:12,construct:[8,11,12],contain:[2,3,5,7,8,11,12],content:7,contigu:9,continu:12,control:[7,8,12],conv_in:7,conv_out:7,conv_transpos:7,convent:[2,7,8],convers:[2,5,8,11,12],convert:[0,2,3,4,5,6,7,8,9,10,11,12],convert_double_to_float_multiarray_typ:11,convert_to:5,convolut:[7,12],convolution3dlayerparam:12,convolutionlayerparam:12,convolv:7,coordin:[7,12],copi:[11,12],copylayerparam:12,core:[0,2,3,5,6,8,9,10,11,12],coreml:[6,8,10,11],coreml_model:[2,3,9,10],coremltool:[2,3,4,5,6,7,8,9,10,11,12],corner:7,corners_height_first:[7,12],corners_width_first:[7,12],correct:11,correctli:11,correspond:[3,5,7,8,9,11,12],cos:[7,12],cosh:7,coshlayerparam:12,cosin:[7,12],coslayerparam:12,could:8,count:[7,11],coupl:12,coupled_input_forget_g:12,cpu:11,creat:[7,11,12],create_array_feature_extractor:11,create_feature_vector:11,criterion:12,critic:2,crop:[7,12],crop_height:7,crop_res:[7,8],crop_width:7,croplayerparam:12,cropresizelayerparam:12,cross:12,csv:[9,11],cum:12,cumsum:[7,12],cumsumlayerparam:12,cumul:[7,12],current:[2,3,4,5,7,9,11,12],current_nam:11,custom:[2,3,7,8,11,12],custom_conversion_funct:[3,8],custom_lut:12,custom_object:3,custom_padding_back:12,custom_padding_bottom:12,custom_padding_front:12,custom_padding_left:12,custom_padding_right:12,custom_padding_top:12,custom_proto_spec:12,customlayerparam:[3,12],d_axi:7,d_axis_i:7,d_axis_out:7,d_in:7,d_n:7,d_out:7,d_post:7,d_prior:7,dangl:2,data1:12,data2:12,data:[2,7,8,9,11,12],data_and_predict:11,data_point:11,datafram:11,datatyp:[3,9,11,12],deal:11,debug:5,decai:12,decis:9,decision_tre:10,decompos:12,deconv:12,deconvolut:[7,12],decreas:12,deep:11,def:[7,12],default_class_label:11,default_label:11,default_valu:6,defin:[7,11,12],definit:2,delta:7,denomin:[7,12],denot:[7,11],dens:[3,5,6],dense_2:12,depend:[7,12],deploi:2,deploy:[5,8],deprocessing_arg:8,depth:[7,12],depth_to_spac:[7,12],depthwis:[7,12],depthwiseconv:12,dequant:12,deriv:12,descend:[7,12],descent:12,describ:12,descript:[2,11,12],design:11,detail:[7,12],determin:[2,3,5,7,9,11,12],deviat:[7,12],dfrac:7,diagon:[7,12],dict:[2,3,8,9,11,12],dictionari:[2,3,8,9,11,12],dictvector:9,differ:[2,3,5,12],dilat:[7,12],dilation_depth:12,dilation_factor:12,dilation_height:12,dilation_width:12,dim:[6,7,12],dimens:[2,7,9,11,12],dimension:[7,11,12],direct:[7,11,12],directli:11,directori:[5,12],disable_coreml_rank5_map:8,disable_rank5_shape_map:12,discret:11,disk:[2,3,11],displai:12,distinct:12,distribut:[7,12],div:[7,12],divid:[7,12],divide_broadcast:12,dividebroadcastablelayerparam:12,divis:[7,12],do_quant:12,doc:[],doe:[7,8,11],doesn:11,dog:3,domain:7,don:11,dot:[7,12],doubl:[3,9,11,12],down:12,draw:7,dtype:[6,7,12],dure:[2,12],dynam:7,dynamic_length:7,each:[2,3,4,6,7,9,11,12],easi:11,easili:[2,7],edit:2,editor:2,effect:7,either:[7,11,12],elem_shap:7,element:[6,7,11,12],elementari:7,elementwis:[7,12],els:[7,12],else_branch:12,elu:[7,12],embed:[9,11,12],embedding_s:12,embeddinglayerparam:12,embeddingndlayerparam:12,empti:[11,12],enabl:12,encod:[9,11,12],end:[7,11,12],end_id:12,end_index:12,end_mask:[7,12],ensembl:11,ensur:11,entir:[7,11,12],entri:[7,11],entropi:12,enumer:[5,12],enumerated_shap:12,eps:12,epsilon:[4,7,12],equal:[7,11,12],equallayerparam:12,equival:[7,8,11,12],erf:[7,12],erflayerparam:12,error:[7,11,12],errorhandl:8,estim:12,etc:7,eval:5,evalu:[7,11,12],evaluate_classifi:11,evaluate_classifier_with_prob:11,evaluate_regressor:11,evaluate_transform:11,even:7,evenli:12,event:7,eventu:7,everi:[7,12],everyth:[7,11,12],exact:[7,12],exact_array_map:12,exact_sourc:5,exactli:[6,7,12],exampl:[0,2,3,5,6,7,8,9,10,11,12],example_input:5,except:[6,7,12],exclud:[7,12],exclude_pad_area:12,exclude_padding_from_averag:7,exclus:[7,12],execut:[5,7,11,12],exist:[11,12],exp2:[7,12],exp2layerparam:12,exp:[7,12],expand:[7,11,12],expand_dim:7,expanddimslayerparam:12,expect:[7,10,11,12],expected_output:11,experienti:12,expon:[7,12],exponenti:[7,12],expos:[2,3,6,8,9,10,11,12],express:[3,7],ext:7,extend:7,extract:[7,12],extract_indic:11,extractor:11,f32:7,f_t:7,factor:[6,7,12],fail:5,fals:[2,3,6,7,8,11,12],false_child_id:11,featur:[2,3,4,6,8,9,10,11,12],feature1:12,feature2:12,feature_index:11,feature_nam:[4,10,12],feature_valu:11,feed:2,feet:11,field:[6,11,12],file:[2,3,5,6,8,10,11],file_valu:7,filenam:11,filepath:[2,3],fill:[3,7,12],fill_dynam:12,fill_lik:12,fill_stat:12,filldynamiclayerparam:12,filllikelayerparam:12,fillstaticlayerparam:12,filter:[7,12],first:[2,3,6,7,11,12],fit:9,fix:7,flag:[2,3,8,11,12],flat:5,flatten2d:7,flatten:[7,12],flatten_to_2d:12,flattenlayerparam:12,flattento2dlayerparam:12,flexibl:12,flexible_shape_util:11,float16:[2,3,11,12],float32:[2,3,5,6,11,12],floor:[7,12],floor_div:7,floor_div_broadcast:12,floordivbroadcastablelayerparam:12,floorlayerparam:12,flow:12,follow:[2,3,5,7,10,11,12],forc:12,force_32bit_float:10,forest:9,forget:[7,12],forget_bia:12,forget_g:7,form:[9,11],format:[0,2,3,5,6,7,9,10,11,12],formula:[7,12],forward:[7,12],found:12,four:[7,12],fp16:12,fp32:[6,7],fp64:7,frac:[7,11],fraction:7,framework:[5,11],from:[2,3,6,7,9,10,11,12],front:12,frozen:5,full:[2,3,8,11,12],full_precision_model:[11,12],gain:3,gamma:[7,12],gamma_i:7,gate:[7,12],gather:[7,12],gather_along_axi:[7,12],gather_nd:7,gatheralongaxislayerparam:12,gatherlayerparam:12,gatherndlayerparam:12,gauss:7,gaussian:[7,12],gelu:[7,12],gelulayerparam:12,gener:[6,7,12],get:[2,3,8,11,12],get_shap:12,get_spec:[11,12],getshapelayerparam:12,github:0,give:[6,9,11],given:[3,5,6,7,8,9,11,12],global:12,global_pool:7,globalpooling3dlayerparam:12,gradient:[7,9,12],graph:[5,6,8],gray_bia:[2,3,8,12],grayscal:[2,3,6,12],greater:[7,12],greater_equ:7,greater_than:12,greaterequallayerparam:12,greaterthanlayerparam:12,green:[2,3,6,12],green_bia:[2,3,8,12],grid:[7,12],grid_point:[7,12],group:[7,12],gru:[7,12],grulayerparam:12,guarante:7,guid:0,h5_path:5,h_center:[7,12],h_end:[7,12],h_in:[7,12],h_input:12,h_output:12,h_reverse_input:12,h_reverse_output:12,h_start:[7,12],h_t:7,half:[2,3,7,11,12],half_pixel_cent:7,handl:[9,12],happen:2,hard:12,has:[7,11,12],has_bia:12,has_peephol:12,hasn:11,have:[2,5,6,7,8,11,12],hd5:3,hdf5:5,height:[2,7,8,12],height_rang:12,held:12,help:12,henc:7,here:[9,11],hidden:[7,12],hidden_s:12,high:[7,11],higher:7,highest:11,hint:11,hit:11,hold:12,horizont:12,hot:[7,9,12],hous:[9,11],housepric:[9,11],how:[2,3,7,8],http:[],hyperbol:[7,12],i32:7,i64:7,iOS:[8,12],i_0:7,i_t:7,ident:[5,7,9],idx:7,if_branch:12,iff:7,ignor:[7,8,11,12],illeg:7,illustr:7,imag:[2,3,6,7,12],image1:2,image2:2,image_format:12,image_input:2,image_input_nam:[2,3,8,12],image_output_nam:8,image_s:12,image_scal:[2,3,8,12],imagetyp:5,img_size_rang:12,immediate_valu:7,implement:[7,11,12],impli:6,imput:9,in1:7,in2:7,includ:[3,7,11,12],include_last_pixel:12,include_layers_with_nam:12,inclus:[7,12],increas:[7,12],increment:[7,11,12],independ:7,index:[0,2,3,6,7,8,11,12],index_typ:11,indic:[2,3,7,9,11,12],inf:7,infer:[2,5,6],infin:7,info:7,inform:[2,3,11,12],inherit:[7,12],init:12,init_length:7,initi:[6,7],initial_c:7,initial_h:7,inner:12,inner_activ:12,innermost:7,innerproduct:12,innerproductlayerparam:12,input1:3,input2:3,input:[0,2,3,5,7,8,9,10,11,12],input_1:11,input_2:11,input_channel:12,input_data:11,input_descript:11,input_dim:[2,3,12],input_featur:[9,11,12],input_g:7,input_height:12,input_idx:12,input_interv:7,input_length:4,input_nam:[3,5,11,12],input_name_shape_dict:3,input_rang:12,input_rank:12,input_s:12,input_shap:[3,7,12],input_tensor:12,input_typ:6,input_width:12,inputn:3,inputtyp:6,insensit:12,insert:7,insid:12,inspect:[11,12],inspect_conv_channel:12,inspect_innerproduct_channel:12,inspect_input_featur:12,inspect_lay:12,inspect_loss_lay:12,inspect_optim:12,inspect_output_featur:12,inspect_updatable_lay:12,instal:0,instanc:[7,9,10,11,12],instance_norm:[7,12],instanti:11,instead:[3,6,12],instruct:0,int32:[6,7],int64:[7,9,11],int8:12,int_8_dynamic_quant:12,integ:[7,8,11,12],intend:[5,7],interest:[7,12],interfac:[2,3,10,11,12],interleav:[7,12],intermedi:[6,7],intern:[2,3,7,10],interpol:[7,12],interpret:[3,9,11,12],intersect:[7,12],interv:[7,12],introduc:7,invalid:12,invers:[7,12],inverse_dist:11,invok:7,involv:7,ios12:8,iou:7,iou_threshold:[7,12],ip_lay:12,is_bgr:[2,3,8,12],is_deconv:12,is_glob:12,is_logit:12,is_quantized_weight:12,is_updat:11,isflex:12,iso:8,iter:12,its:[3,7,11,12],itself:11,jit:5,json:3,just:10,kd_tree:11,keep:[7,12],keep_dim:7,keepdim:12,kei:[2,3,8,9,11,12],kera:[1,5],keras_model:5,kernel:[7,12],kernel_channel:12,kernel_depth:12,kernel_height:12,kernel_s:7,kernel_width:12,keyword:12,kmeans_lut:12,knearestneighborsclassifi:11,knearestneighborsclassifierbuild:11,kneighborsclassifi:9,knnclassifi:11,known:[2,7,12],known_size_map:11,kwarg:[5,7,11,12],l1_normal:12,l2_norm:7,l2_normal:12,l2_pool:7,l2normalizelayerparam:12,label:[2,3,6,8,10,11,12],languag:[6,7],larg:7,largest:12,last:[6,7,9,11,12],later:12,layer:[2,3,5,6,7,8,11,12],layer_nam:12,layer_norm:7,layer_typ:12,layernormalizationlayerparam:12,layout:[2,3,6],lead:7,leaf:11,leaf_siz:11,leaki:12,leaky_relu:7,leakyrelu:12,learn:[9,12],least:[7,12],leav:[11,12],left:[7,12],leftarrow:7,len:[7,12],length:[7,8,9,11,12],less:[7,12],less_equ:7,less_than:12,lessequallayerparam:12,lessthanl_ayerparam:12,let:[3,12],level:11,libsvm:1,libsvm_model:4,licens:11,like:[7,11,12],limit:[6,7,12],line:8,linear:[9,11,12],linear_activ:7,linear_lut:12,linear_model:9,linear_symmetr:12,linear_upsample_mod:12,linearli:12,linearregress:9,linearsvc:9,linearsvr:9,list:[2,3,5,6,7,8,9,10,11,12],list_gath:7,list_length:7,list_read:7,list_scatt:7,list_writ:7,load:[3,8,9,11,12],load_const:12,load_model:11,load_spec:[11,12],loadconstantlayerparam:12,loadconstantndlayerparam:12,loaded_model:11,local:[7,12],local_response_norm:7,local_s:12,locat:[7,11,12],log:[7,12],logarithm:7,logic:12,logical_and:7,logical_not:7,logical_or:7,logical_xor:7,logicalandlayerparam:12,logicalnotlayerparam:12,logicalorlayerparam:12,logist:[9,11],logit:7,logsum:12,longer:12,look:12,lookup:12,lookup_t:12,loop:12,loop_break:12,loop_continu:12,loop_var:7,loopbreaklayerparam:12,loopcontinuelayerparam:12,looplayerparam:12,loss:[3,12],low:7,lower:[7,12],lower_bound:[6,12],lower_triangular:12,lowertriangularlayerparam:12,lrn:12,lrnlayerparam:12,lstm:[7,12],lstm_wp:12,lstmweightparam:12,lut:12,lut_funct:12,mac:11,maco:[8,11,12],mai:[5,6,7,9,11],main:12,make:[2,3,7,8,11,12],make_list:7,make_updat:12,mani:9,manner:[7,12],manual:11,map:[2,3,6,7,8,9,11,12],mark:[2,3,12],mask:12,match:[2,6,7,11],math:7,mathemat:7,matmul:[7,12],matric:12,matrix:[7,12],matrix_band_part:12,matrixbandpartlayerparam:12,matrixmultiplylayerselector:12,max:[7,12],max_box:[7,12],max_broadcast:12,max_error:11,max_iter:12,max_pool:7,max_valu:[11,12],maxbroadcastablelayerparam:12,maximum:[6,7,12],maximum_input_channel:12,maximum_output_channel:12,maxval:12,mean:[2,7,8,12],mean_i:7,mean_imag:2,mean_image1:2,mean_image2:2,meanvariancenormalizelayerparam:12,member:5,memori:7,messag:[2,11,12],met:12,metadata:[6,11],method:[7,11,12],metric:[11,12],might:2,mil:[0,5],min:[7,12],min_broadcast:12,min_valu:[11,12],minbroadcastablelayerparam:12,mini:12,minim:11,minimum:[5,6,7,12],minimum_conv_kernel_channel:12,minimum_conv_weight_count:12,minimum_deployment_target:5,minimum_input_channel:12,minimum_ios_deployment_target:8,minimum_output_channel:12,minimum_weight_count:12,minval:12,miss:[2,11],missing_value_tracks_true_child:11,mlmodel:[2,3,5,9,10,12],mlmultiarrai:12,mobilenet_v2:5,mod:7,mod_broadcast:12,modbroadcastablelayerparam:12,mode:[7,8,10,11,12],model:[0,2,3,4,5,6,7,8,9,10,12],model_network_path:3,model_path:[4,11],model_pb2:[11,12],model_pb:[4,11],model_precis:[2,3],model_spec:[4,11],model_weight_path:3,modelmetr:12,modifi:[2,11,12],modul:[0,11],modular:12,moment:12,momentum:12,more:[5,7,11,12],most:[5,7,11,12],move:12,mul:[7,12],multi:12,multiarrai:[2,3,11,12],multiclass:11,multidimension:11,multipl:[2,3,6,7,12],multipli:[7,12],multiply_broadcast:12,multiplybroadcastablelayerparam:12,must:[2,3,5,6,7,11,12],mvn:12,my_caffe_model:2,my_deploi:2,my_image_input:2,my_input_1:3,my_input_2:3,my_model:[2,3,10,12],my_model_fil:11,my_multiarray_featurenam:12,my_output:3,mylayerselector:12,mymodel:12,n_class:10,n_init:12,name:[2,3,4,5,6,8,9,10,11,12],nan:11,natur:7,nbit:12,nchw:12,ndarrai:6,nearest:[7,11,12],need:[7,12],neg:[7,11,12],neglect:7,neighbor:[7,9,11],neighborhood:12,neighbour:12,neither:7,nest:[5,12],network:[2,3,5,6,7,8,11,12],neural:[2,3,5,6,7,8,11,12],neuralnetwork:[5,12],neuralnetwork_pb2:12,neuralnetworkbuild:[8,12],neuralnetworkclassifi:[8,12],neuralnetworkimages:12,neuralnetworkimageshapemap:12,neuralnetworkimagesizerang:12,neuralnetworkmultiarrayshap:12,neuralnetworkmultiarrayshapemap:12,neuralnetworkmultiarrayshaperang:12,neuralnetworkregressor:[8,12],neutralnetworkbuild:3,new_feature_nam:11,new_nam:11,newlin:[2,3],newnam:11,next:[11,12],nhwc:12,nn_proto:5,nn_spec:12,node:[5,8,11],node_id:11,non:[7,11,12],non_linear:12,non_maximum_suppress:7,non_zero:7,none:[2,3,5,6,7,8,9,10,11,12],nonmaximumsuppressionlayerparam:12,norm:12,normal:[9,11,12],normalize_vari:12,normalized_coordin:7,normalized_roi:12,normalized_shap:12,not_equ:[7,12],note:[2,3,5,7,9,11,12],notequallayerparam:12,noth:8,notransform:11,nrep:12,num_channel:3,num_dimens:[9,11],num_error:11,num_low:12,num_sampl:12,num_split:[7,12],num_upd:7,num_upp:12,number:[7,9,10,11,12],number_of_dimens:11,number_of_neighbor:11,number_of_neighbors_allowed_rang:11,number_of_neighbors_allowed_set:11,numberofneighbor:11,numer:7,numpi:[5,6,7,11,12],nusvc:9,nusvr:9,o_t:7,obj:11,object:[3,4,5,6,8,11,12],occur:7,off_valu:[7,12],offici:7,offset:[7,12],offset_corn:7,old_featur:11,oldnam:11,omit:6,on_valu:[7,12],one:[3,5,6,7,8,9,10,11,12],one_got_vector_s:7,one_hot:7,one_hot_vector_s:12,onehotlayerparam:12,ones:7,onli:[2,3,4,7,8,11,12],onnx:1,onnx_coreml_input_shape_map:8,onward:12,open:7,oper:[7,12],opposit:12,ops:[7,8],optim:[3,11,12],option:[3,5,6,7,8,9,11,12],optionals_in:12,optionals_out:12,order:[2,3,7,9,10,12],organ:12,origin:11,osh:12,other:[2,3,7,11,12],otherwis:[2,3,7,11,12],our:12,out:[7,11,12],outcom:11,output1:3,output2:3,output:[2,3,5,6,7,8,9,10,11,12],output_activ:12,output_al:12,output_channel:12,output_descript:11,output_dim:12,output_featur:[3,11,12],output_feature_nam:[9,11],output_g:7,output_height:12,output_nam:[3,11,12],output_rank:12,output_sequ:7,output_shap:[3,7,12],output_tensor:12,output_typ:11,output_width:12,outputchannel:12,outputmetr:12,outputn:3,outsid:[7,12],over:[7,12],overal:[9,12],overflow:7,overlap:[7,12],overrid:12,own:7,p_0:7,p_d:7,p_f:12,p_i:12,p_o:12,pack:7,packag:[8,11],pad:[7,12],pad_amount:12,pad_to_given_output_size_mod:12,pad_typ:7,padding_back:12,padding_bottom:12,padding_front:12,padding_left:12,padding_mod:12,padding_right:12,padding_top:12,padding_typ:12,paddinglayerparam:12,pair:3,panda:9,param:[11,12],paramet:[2,3,4,5,6,7,8,9,10,11,12],parametr:12,parametricsoftplu:12,pars:[2,3],part:7,partial:7,pass:[2,3,7,11,12],patch:[7,12],path:[2,3,5,8,11,12],peep:12,peep_back:12,peephol:[7,12],per:[8,12],per_class_suppress:[7,12],perform:[7,11,12],perm:7,permut:[7,12],permutelayerparam:12,pipelin:[9,12],pipelineclassifi:11,pipelineregressor:11,pixel:[2,3,7],pixel_shuffl:[7,12],pixelshuffl:7,place:11,placehold:[5,6],plane:12,platform:11,pleas:11,point:[6,7,11,12],pool:12,pooling3dlayerparam:12,pooling_typ:12,poolinglayerparam:12,popul:[11,12],posit:[6,7,12],possibl:[5,7,11],post:11,postprocess:3,pow:7,pow_broadcast:12,powbroadcastablelayerparam:12,power:12,pre:[8,12],precis:[2,3,5,7,11,12],pred:7,predic:7,predict:[2,3,4,5,9,11],predicted_class:11,predicted_feature_nam:[2,3,6,8,12],predicted_probabilities_output:[3,6],predicted_valu:11,predictedfeaturenam:11,prediction_blob:12,prelu:[7,12],prepend:7,preprocess:2,preprocessing_arg:8,present:[2,3,7,9,12],prevent:12,previou:11,previous:[7,12],price:[9,11],primarili:5,print:[5,11,12],prior:12,prob:[7,12],probabl:[3,4,6,7,11,12],process:[2,5,8,9,11,12],prod:12,produc:[7,8,11,12],product:[7,12],program:5,progress:12,promot:7,proper:11,properti:11,proto:[5,12],protobuf:[3,4,11,12],prototxt:2,provid:[2,3,5,6,7,10,11,12],pure:7,purpos:[5,11],put:11,python:[7,11,12],pytorch:[1,6,7],quanatizedlayerselector:12,quant_bia:12,quant_lut:12,quant_scal:12,quantiz:12,quantization_mod:12,quantization_typ:12,quantization_util:11,quantize_weight:12,quantized_model:12,quantized_weight:12,quantized_wp:12,quantizedlayerselector:12,r_f:12,r_i:12,r_o:12,r_r:12,r_t:7,r_z:12,rais:[5,7,11],rand:5,rand_se:12,random:[5,9,12],random_bernoulli:7,random_bernoulli_dynam:12,random_bernoulli_lik:12,random_bernoulli_stat:12,random_categor:7,random_norm:7,random_normal_dynam:12,random_normal_lik:12,random_normal_stat:12,random_uniform:7,random_uniform_dynam:12,random_uniform_lik:12,random_uniform_stat:12,randombernoullidynamiclayerparam:12,randombernoullilikelayerparam:12,randombernoullistaticlayerparam:12,randomnormaldynamiclayerparam:12,randomnormallikelayerparam:12,randomnormastaticlayerparam:12,randomuniformdynamiclayerparam:12,randomuniformlikelayerparam:12,randomuniformstaticlayerparam:12,rang:[6,7,9,10,11,12],range_1d:7,range_dynam:12,range_stat:12,rangedynamiclayerparam:12,rangeparam:12,rangestaticlayerparam:12,rank4_image_map:12,rank:[7,8,12],rank_preserving_reshap:12,rankpreservingreshapelayerparam:12,rat:3,rate:12,rather:7,raw_op:7,read:[2,7,12],read_csv:9,readm:[],real:[7,11],real_div:7,rearrang:7,reciproc:7,rectifi:[7,12],recurr:12,recurrent_activ:7,recurs:12,red:[2,3,6,12],red_bia:[2,3,8,12],reduc:[7,12],reduce_al:12,reduce_arg:7,reduce_argmax:7,reduce_argmin:7,reduce_l1:12,reduce_l1_norm:7,reduce_l2:12,reduce_l2_norm:7,reduce_log_sum:7,reduce_log_sum_exp:7,reduce_logsum:12,reduce_logsumexp:[7,12],reduce_max:[7,12],reduce_mean:[7,12],reduce_min:[7,12],reduce_prod:[7,12],reduce_sum:[7,12],reduce_sum_squar:7,reduce_sumsquar:12,reducel1layerparam:12,reducel2layerparam:12,reducelayerparam:12,reducelogsumexplayerparam:12,reducelogsumlayerparam:12,reducemaxlayerparam:12,reducemeanlayerparam:12,reduceminlayerparam:12,reduceprodlayerparam:12,reducesumlayerparam:12,reducesumsquarelayerparam:12,reduct:12,refer:[0,3,7,12],referenc:11,reference_output:11,reflect:[7,12],region:[7,12],regress:[9,11],regression_logist:11,regressor:[8,9,10,11,12],regular:12,reject:7,rel:11,relat:12,relative_hit_r:11,releas:8,relu6:7,relu:[5,7,12],remain:7,remedi:7,remov:[7,12],renam:11,rename_featur:11,rename_input:11,rename_output:11,reorgan:12,rep:[7,12],repeat:12,repeatedli:7,repetit:12,replac:11,replic:[7,12],repres:[2,3,5,7,8,9,10,11,12],represent:[2,3,4,11,12],reproduc:7,requir:[2,5,6,7,11,12],reset:[7,12],reshap:[7,12],reshape_dynam:12,reshape_lik:12,reshape_stat:12,reshapedynamiclayerparam:12,reshapelayerparam:12,reshapelikelayerparam:12,reshapestaticlayerparam:12,resid:12,resiz:[7,12],resize_bilinear:[7,8],resizebilinear:7,resizebilinearlayerparam:12,resnet:2,resolut:7,resolv:9,respect:[7,12],respect_train:3,respons:[7,8,12],rest:12,restrict:11,result:[3,5,7,10,11,12],ret:12,retain:[7,12],revers:[7,12],reverse_dim:12,reverse_input:12,reverse_sequ:7,reverselayerparam:12,reverseseqlayerparam:12,rgb:[2,3,6,12],right:[3,7,12],rmse:11,rnn:7,robust:11,roi:[7,12],roi_align_mod:12,root:[7,12],round:[7,12],roundlayerparam:12,row:7,rsqrt:[7,12],rule:7,run:12,runtim:[6,7],sai:12,same:[2,3,6,7,8,10,12],same_padding_asymmetry_mod:12,sampl:[7,11,12],sample_data:12,sampling_mod:7,save:[2,3,5,9,10,11,12],save_spec:[11,12],savedmodel:5,sbchw:12,scalar:[7,11,12],scale:[2,3,6,7,11,12],scale_factor_height:7,scale_factor_width:7,scaled_tanh:[7,12],scalelayerparam:12,scaler:9,scaler_spec:11,scaling_factor_h:12,scaling_factor_w:12,scatter:[7,12],scatter_along_axi:[7,12],scatter_nd:7,scatteralongaxislayerparam:12,scatterlayerparam:12,scatterndlayerparam:12,scheme:11,scikit:9,score:[7,9,11],score_threshold:[7,12],scratch:12,search:11,seattl:11,second:[2,3,7,11,12],second_shap:12,section:7,see:[0,5,7,8,11,12],seed:[7,12],select:[7,11,12],selector:12,self:12,separ:[2,3,7,12],seq:[8,12],seq_axi:[7,12],sequenc:[7,8,9,11,12],sequence_concat:12,sequencerepeatlayerparam:12,sequenti:[3,11],set:[2,3,6,7,8,9,10,11,12],set_batch:12,set_beta1:12,set_beta2:12,set_categorical_cross_entropy_loss:12,set_channel_shap:12,set_class_label:12,set_default_prediction_valu:11,set_ep:12,set_height_shap:12,set_index_typ:11,set_input:12,set_lr:12,set_mean_squared_error_loss:12,set_momentum:12,set_multiarray_ndshape_rang:12,set_number_of_neighbors_with_bound:11,set_optional_input:12,set_output:12,set_post_evaluation_transform:11,set_pre_processing_paramet:12,set_training_input:[11,12],set_width_shap:12,sgd:12,sgdparam:12,shape:[3,5,7,8,12],shape_bia:12,shape_rang:12,shape_scal:12,share:12,shift:12,short_descript:11,should:[2,7,9,10,11,12],side:[7,12],sigmoid:[7,12],sigmoid_approxim:[7,12],sigmoid_hard:[7,12],sign:[7,12],signlayerparam:12,similar:[2,7,12],similarli:7,simpl:12,simplerecurrentlayerparam:12,simpli:2,sin:[7,12],sine:[7,12],singl:[3,7,9,11,12],sinh:[7,12],sinhlayerparam:12,sinlayerparam:12,size:[2,7,9,11,12],size_rang:12,sizess:12,sk_obj:9,skip:12,skip_layer_typ:12,sklearn:1,slice:[7,12],slice_by_index:7,slice_by_s:7,slice_dynam:12,slice_stat:12,slicebysizelayerparam:12,slicedynamiclayerparam:12,slicelayerparam:12,slicestaticlayerparam:12,slide:[7,12],sliding_window:[7,12],slidingwindowslayerparam:12,slope:12,small:[7,12],smaller:7,smallest:12,smooth:7,snippet:2,softmax:[3,5,6,7,11,12],softmax_nd:12,softmaxlayerparam:12,softmaxndlayerparam:12,softplu:[7,12],softplus_parametr:7,softsign:[7,12],some:[2,5,11,12],sometim:2,sort:[7,12],sourc:[3,5],space:[7,12],space_to_depth:[7,12],spars:11,spatial:[7,12],spatial_scal:[7,12],spec:[4,8,11,12],special:[7,12],specif:[0,2,3,7,11,12],specifi:[2,3,5,6,7,8,9,11,12],split:[7,11,12],split_siz:[7,12],splitlayerparam:12,splitndlayerparam:12,sqrt:[7,12],squar:[7,11,12],squeez:[7,12],squeeze_al:12,squeeze_mask:[7,12],squeezelayerparam:12,ssa:7,stabil:7,stabl:7,stack:[7,12],stacklayerparam:12,standard:[7,9,12],start:[7,12],start_index:12,state:[7,12],stddev:[7,12],step:[2,7,11,12],stochast:12,stop:12,store:[3,6,7,12],str:[2,3,4,5,6,7,8,9,10,11,12],stream:12,strict_align_corn:7,strict_align_endpoints_mod:12,stride:[7,12],stride_depth:12,stride_height:12,stride_width:12,string:[2,3,5,6,7,8,9,11,12],style:7,sub:[7,12],subset:[3,7],substitut:11,subtract:[2,11,12],subtract_broadcast:12,subtractbroadcastablelayerparam:12,sum:[7,11,12],sum_j:[7,11],summari:12,summat:12,sumsquar:12,suppli:7,support:[2,3,4,6,7,8,9,11,12],suppos:7,suppress:[7,12],sure:8,surviv:7,svc:[4,9],svm:4,svr:[4,9],symbol:[6,7],symmetr:12,tabl:12,take:[3,7,8,11,12],taken:[2,12],tan:[7,12],tang:7,tangent:[7,12],tanh:[7,12],tanh_approxim:[7,12],tanhlayerparam:12,tanlayerparam:12,target:[3,4,5,7,8,10,11,12],target_height:[7,12],target_shap:12,target_size_height:7,target_size_width:7,target_width:[7,12],temperatur:12,tenor:7,tensor:[3,6,7,12],tensor_field:12,tensorflow:[1,6],tensortyp:5,term:[7,12],termin:[5,12],test:11,test_input:[5,11],text:[2,7,11],than:[7,12],thei:[2,9,12],them:[3,7,9,11,12],themselv:11,therefor:7,thi:[0,2,3,4,5,6,7,8,9,11,12],third:2,those:[2,3,7,12],three:[2,12],threshold:[7,12],thresholded_relu:7,thresholdedrelu:12,through:[2,11],throughout:7,thrown:12,ties:7,tile:[7,12],tilelayerparam:12,time:[7,12],togeth:7,tol:12,tool:8,top:[7,9,12],top_left_heavi:12,topk:[7,12],topklayerparam:12,torch:[5,7],torchscript:5,torchvis:5,total:[7,11,12],toward:7,trace:5,traced_model:5,train:[2,3,9,10,11,12],trainabl:[3,12],training_featur:[11,12],training_input:[11,12],transform:[9,11],translat:11,transpos:[7,12],transpose_a:12,transpose_b:12,transpose_i:7,transpose_x:7,transposelayerparam:12,travers:11,treat:[2,3,7],tree:[9,10,11],tree_id:11,treeensemblebas:11,treeensembleclassifi:11,treeensembleregressor:11,triangl:[7,12],triangular:[7,12],true_child_id:11,truth:7,tupl:[2,3,5,6,7,9,11,12],turn:8,tutori:5,twice:12,two:[2,7,11,12],txt:[2,3],type:[0,2,3,4,7,8,9,11,12],typeerror:11,typic:[3,6,7,12],uint8:12,unalign_corn:7,unari:12,unaryfunctionlayerparam:12,unbound:12,unchang:11,undefin:7,under:11,underdetermin:7,underflow:7,understand:7,uneven:7,uni:[7,12],unidirectionallstmlayerparam:12,unifi:1,uniform:[7,11,12],uniformli:[7,12],union:[7,12],uniqu:11,unit:[7,12],unknown:3,unless:7,unnorm:[7,12],unpack:12,unsupport:8,updat:[3,7,11,12],update_image_size_rang:12,update_multiarray_shape_rang:12,update_optimizer_util:11,upper:[6,7,12],upper_bound:[6,12],upper_triangular:12,uppertriangularlayerparam:12,upsampl:[7,12],upsample_bilinear:7,upsample_mod:12,upsample_nearest_neighbor:7,upsamplelayerparam:12,upscal:7,upscale_factor:7,usag:2,use:[7,10,11],use_bottom_k:12,use_float_arraytyp:[3,12],use_greater_than_equ:12,use_less_than_equ:12,usecpuonli:11,used:[2,3,4,5,6,7,8,9,11,12],useful:[11,12],user:12,uses:[2,3,7,12],using:[2,7,9,10,11,12],usual:6,util:[8,12],val:7,valid:[5,6,7,11,12],valu:[2,3,6,7,8,9,11,12],valueerror:5,variabl:[7,12],variad:7,varianc:[7,12],variance_i:7,variou:11,vector:[7,11,12],verbos:[11,12],veri:12,version:[5,8,11,12],vertic:12,via:[2,8],visual:7,vocab_s:12,vocabulari:12,volum:7,w_center:[7,12],w_end:[7,12],w_f:12,w_h:12,w_h_back:12,w_i:12,w_in:[7,12],w_o:12,w_r:12,w_start:[7,12],w_x:12,w_x_back:12,w_z:12,watcho:8,weight:[3,7,11,12],weight_matrix_column:12,weight_matrix_row:12,weight_param:12,weighting_schem:11,weightparam:12,well:12,when:[2,3,5,7,10,11,12],where:[2,3,7,9,11,12],where_broadcast:12,where_nonzero:12,wherea:12,wherebroadcastablelayerparam:12,wherenonzerolayerparam:12,whether:[5,9,12],which:[2,3,5,6,7,8,9,11,12],while_loop:7,whose:[7,12],width:[2,7,8,12],width_rang:12,window:[7,12],window_s:12,wise:[7,12],within:[7,8,11,12],without:12,won:7,word:12,work:[7,12],would:[6,7,8,12],wrap:12,write:7,x_i:[7,11],x_j:[7,11],x_t:7,xgboost:[1,11],xin:[7,12],xor:[7,12],xout:[7,12],y_i:7,yes:3,you:[2,3,7,11],z_t:7,zero:[7,12]},titles:["coremltools API","Converters","Caffe","Keras","LibSVM","Unified (TensorFlow and Pytorch)","MIL Input Types","MIL Ops","ONNX","SKLearn","XGBoost","Models","neural_network.builder","coremltools"],titleterms:{Ops:7,activ:7,api:0,array_feature_extractor:11,builder:12,caff:2,classifierconfig:6,content:0,control_flow:7,conv:7,convert:1,coremltool:[0,13],elementwise_binari:7,elementwise_unari:7,enumeratedshap:6,feature_vector:11,flexible_shape_util:12,image_res:7,imagetyp:6,input:6,kera:3,libsvm:4,linear:7,mil:[6,7],mlmodel:11,model:11,nearest_neighbor:11,neural_network:[11,12],normal:7,onnx:8,pipelin:11,pool:7,pytorch:5,quantization_util:12,random:7,rangedim:6,recurr:7,reduct:7,resourc:0,scatter_gath:7,shape:6,sklearn:9,tensor_oper:7,tensor_transform:7,tensorflow:5,tensortyp:6,tree_ensembl:11,type:6,unifi:5,update_optimizer_util:12,util:11,xgboost:10}}) \ No newline at end of file +Search.setIndex({docnames:["index","source/coremltools.converters","source/coremltools.converters.caffe","source/coremltools.converters.keras","source/coremltools.converters.libsvm","source/coremltools.converters.mil","source/coremltools.converters.mil.input_types","source/coremltools.converters.mil.mil.ops.defs","source/coremltools.converters.onnx","source/coremltools.converters.sklearn","source/coremltools.converters.xgboost","source/coremltools.models","source/coremltools.models.neural_network","source/modules"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":2,sphinx:56},filenames:["index.rst","source/coremltools.converters.rst","source/coremltools.converters.caffe.rst","source/coremltools.converters.keras.rst","source/coremltools.converters.libsvm.rst","source/coremltools.converters.mil.rst","source/coremltools.converters.mil.input_types.rst","source/coremltools.converters.mil.mil.ops.defs.rst","source/coremltools.converters.onnx.rst","source/coremltools.converters.sklearn.rst","source/coremltools.converters.xgboost.rst","source/coremltools.models.rst","source/coremltools.models.neural_network.rst","source/modules.rst"],objects:{"coremltools.converters":{_converters_entry:[5,0,0,"-"]},"coremltools.converters._converters_entry":{convert:[5,1,1,""]},"coremltools.converters.caffe":{_caffe_converter:[2,0,0,"-"]},"coremltools.converters.caffe._caffe_converter":{convert:[2,1,1,""]},"coremltools.converters.keras":{_keras2_converter:[3,0,0,"-"],_keras_converter:[3,0,0,"-"]},"coremltools.converters.keras._keras_converter":{convert:[3,1,1,""]},"coremltools.converters.libsvm":{_libsvm_converter:[4,0,0,"-"]},"coremltools.converters.libsvm._libsvm_converter":{convert:[4,1,1,""]},"coremltools.converters.mil":{input_types:[6,0,0,"-"]},"coremltools.converters.mil.input_types":{ClassifierConfig:[6,2,1,""],EnumeratedShapes:[6,2,1,""],ImageType:[6,2,1,""],RangeDim:[6,2,1,""],Shape:[6,2,1,""],TensorType:[6,2,1,""]},"coremltools.converters.mil.input_types.ClassifierConfig":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.EnumeratedShapes":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.ImageType":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.RangeDim":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.Shape":{__init__:[6,3,1,""]},"coremltools.converters.mil.input_types.TensorType":{__init__:[6,3,1,""]},"coremltools.converters.mil.mil.ops.defs":{activation:[7,0,0,"-"],control_flow:[7,0,0,"-"],conv:[7,0,0,"-"],elementwise_binary:[7,0,0,"-"],elementwise_unary:[7,0,0,"-"],image_resizing:[7,0,0,"-"],linear:[7,0,0,"-"],normalization:[7,0,0,"-"],pool:[7,0,0,"-"],random:[7,0,0,"-"],recurrent:[7,0,0,"-"],reduction:[7,0,0,"-"],scatter_gather:[7,0,0,"-"],tensor_operation:[7,0,0,"-"],tensor_transformation:[7,0,0,"-"]},"coremltools.converters.mil.mil.ops.defs.activation":{clamped_relu:[7,2,1,""],elu:[7,2,1,""],gelu:[7,2,1,""],leaky_relu:[7,2,1,""],linear_activation:[7,2,1,""],prelu:[7,2,1,""],relu6:[7,2,1,""],relu:[7,2,1,""],scaled_tanh:[7,2,1,""],sigmoid:[7,2,1,""],sigmoid_hard:[7,2,1,""],softmax:[7,2,1,""],softplus:[7,2,1,""],softplus_parametric:[7,2,1,""],softsign:[7,2,1,""],thresholded_relu:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.control_flow":{"const":[7,2,1,""],cond:[7,2,1,""],list_gather:[7,2,1,""],list_length:[7,2,1,""],list_read:[7,2,1,""],list_scatter:[7,2,1,""],list_write:[7,2,1,""],make_list:[7,2,1,""],select:[7,2,1,""],while_loop:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.conv":{conv:[7,2,1,""],conv_transpose:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.elementwise_binary":{add:[7,2,1,""],equal:[7,2,1,""],floor_div:[7,2,1,""],greater:[7,2,1,""],greater_equal:[7,2,1,""],less:[7,2,1,""],less_equal:[7,2,1,""],logical_and:[7,2,1,""],logical_or:[7,2,1,""],logical_xor:[7,2,1,""],maximum:[7,2,1,""],minimum:[7,2,1,""],mod:[7,2,1,""],mul:[7,2,1,""],not_equal:[7,2,1,""],pow:[7,2,1,""],real_div:[7,2,1,""],sub:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.elementwise_unary":{abs:[7,2,1,""],acos:[7,2,1,""],asin:[7,2,1,""],atan:[7,2,1,""],atanh:[7,2,1,""],cast:[7,2,1,""],ceil:[7,2,1,""],clip:[7,2,1,""],cos:[7,2,1,""],cosh:[7,2,1,""],erf:[7,2,1,""],exp2:[7,2,1,""],exp:[7,2,1,""],floor:[7,2,1,""],inverse:[7,2,1,""],log:[7,2,1,""],logical_not:[7,2,1,""],round:[7,2,1,""],rsqrt:[7,2,1,""],sign:[7,2,1,""],sin:[7,2,1,""],sinh:[7,2,1,""],sqrt:[7,2,1,""],square:[7,2,1,""],tan:[7,2,1,""],tanh:[7,2,1,""],threshold:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.image_resizing":{crop:[7,2,1,""],crop_resize:[7,2,1,""],resize_bilinear:[7,2,1,""],upsample_bilinear:[7,2,1,""],upsample_nearest_neighbor:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.linear":{linear:[7,2,1,""],matmul:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.normalization":{batch_norm:[7,2,1,""],instance_norm:[7,2,1,""],l2_norm:[7,2,1,""],layer_norm:[7,2,1,""],local_response_norm:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.pool":{avg_pool:[7,2,1,""],l2_pool:[7,2,1,""],max_pool:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.random":{random_bernoulli:[7,2,1,""],random_categorical:[7,2,1,""],random_normal:[7,2,1,""],random_uniform:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.recurrent":{gru:[7,2,1,""],lstm:[7,2,1,""],rnn:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.reduction":{reduce_arg:[7,2,1,""],reduce_argmax:[7,2,1,""],reduce_argmin:[7,2,1,""],reduce_l1_norm:[7,2,1,""],reduce_l2_norm:[7,2,1,""],reduce_log_sum:[7,2,1,""],reduce_log_sum_exp:[7,2,1,""],reduce_max:[7,2,1,""],reduce_mean:[7,2,1,""],reduce_min:[7,2,1,""],reduce_prod:[7,2,1,""],reduce_sum:[7,2,1,""],reduce_sum_square:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.scatter_gather":{gather:[7,2,1,""],gather_along_axis:[7,2,1,""],gather_nd:[7,2,1,""],scatter:[7,2,1,""],scatter_along_axis:[7,2,1,""],scatter_nd:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.tensor_operation":{argsort:[7,2,1,""],band_part:[7,2,1,""],concat:[7,2,1,""],cumsum:[7,2,1,""],fill:[7,2,1,""],flatten2d:[7,2,1,""],identity:[7,2,1,""],non_maximum_suppression:[7,2,1,""],non_zero:[7,2,1,""],one_hot:[7,2,1,""],pad:[7,2,1,""],range_1d:[7,2,1,""],shape:[7,2,1,""],split:[7,2,1,""],stack:[7,2,1,""],tile:[7,2,1,""],topk:[7,2,1,""]},"coremltools.converters.mil.mil.ops.defs.tensor_transformation":{depth_to_space:[7,2,1,""],expand_dims:[7,2,1,""],pixel_shuffle:[7,2,1,""],reshape:[7,2,1,""],reverse:[7,2,1,""],reverse_sequence:[7,2,1,""],slice_by_index:[7,2,1,""],slice_by_size:[7,2,1,""],sliding_windows:[7,2,1,""],space_to_depth:[7,2,1,""],squeeze:[7,2,1,""],transpose:[7,2,1,""]},"coremltools.converters.onnx":{_converter:[8,0,0,"-"]},"coremltools.converters.onnx._converter":{convert:[8,1,1,""]},"coremltools.converters.sklearn":{_converter:[9,0,0,"-"]},"coremltools.converters.sklearn._converter":{convert:[9,1,1,""]},"coremltools.converters.xgboost":{_tree:[10,0,0,"-"]},"coremltools.converters.xgboost._tree":{convert:[10,1,1,""]},"coremltools.models":{array_feature_extractor:[11,0,0,"-"],feature_vectorizer:[11,0,0,"-"],model:[11,0,0,"-"],pipeline:[11,0,0,"-"],tree_ensemble:[11,0,0,"-"],utils:[11,0,0,"-"]},"coremltools.models.array_feature_extractor":{create_array_feature_extractor:[11,1,1,""]},"coremltools.models.feature_vectorizer":{create_feature_vectorizer:[11,1,1,""]},"coremltools.models.model":{MLModel:[11,2,1,""]},"coremltools.models.model.MLModel":{__init__:[11,3,1,""],get_spec:[11,3,1,""],predict:[11,3,1,""],save:[11,3,1,""]},"coremltools.models.nearest_neighbors":{builder:[11,0,0,"-"]},"coremltools.models.nearest_neighbors.builder":{KNearestNeighborsClassifierBuilder:[11,2,1,""]},"coremltools.models.nearest_neighbors.builder.KNearestNeighborsClassifierBuilder":{__init__:[11,3,1,""],add_samples:[11,3,1,""],author:[11,3,1,""],description:[11,3,1,""],index_type:[11,3,1,""],is_updatable:[11,3,1,""],leaf_size:[11,3,1,""],license:[11,3,1,""],number_of_dimensions:[11,3,1,""],number_of_neighbors:[11,3,1,""],number_of_neighbors_allowed_range:[11,3,1,""],number_of_neighbors_allowed_set:[11,3,1,""],set_index_type:[11,3,1,""],set_number_of_neighbors_with_bounds:[11,3,1,""],weighting_scheme:[11,3,1,""]},"coremltools.models.neural_network":{builder:[12,0,0,"-"],flexible_shape_utils:[12,0,0,"-"],quantization_utils:[12,0,0,"-"],update_optimizer_utils:[12,0,0,"-"]},"coremltools.models.neural_network.builder":{NeuralNetworkBuilder:[12,2,1,""]},"coremltools.models.neural_network.builder.NeuralNetworkBuilder":{__init__:[12,3,1,""],add_acos:[12,3,1,""],add_acosh:[12,3,1,""],add_activation:[12,3,1,""],add_add_broadcastable:[12,3,1,""],add_argmax:[12,3,1,""],add_argmin:[12,3,1,""],add_argsort:[12,3,1,""],add_asin:[12,3,1,""],add_asinh:[12,3,1,""],add_atan:[12,3,1,""],add_atanh:[12,3,1,""],add_batched_mat_mul:[12,3,1,""],add_batchnorm:[12,3,1,""],add_bias:[12,3,1,""],add_bidirlstm:[12,3,1,""],add_branch:[12,3,1,""],add_broadcast_to_dynamic:[12,3,1,""],add_broadcast_to_like:[12,3,1,""],add_broadcast_to_static:[12,3,1,""],add_categorical_distribution:[12,3,1,""],add_ceil:[12,3,1,""],add_clamped_relu:[12,3,1,""],add_clip:[12,3,1,""],add_concat_nd:[12,3,1,""],add_constant_pad:[12,3,1,""],add_convolution3d:[12,3,1,""],add_convolution:[12,3,1,""],add_copy:[12,3,1,""],add_cos:[12,3,1,""],add_cosh:[12,3,1,""],add_crop:[12,3,1,""],add_crop_resize:[12,3,1,""],add_cumsum:[12,3,1,""],add_custom:[12,3,1,""],add_divide_broadcastable:[12,3,1,""],add_elementwise:[12,3,1,""],add_embedding:[12,3,1,""],add_embedding_nd:[12,3,1,""],add_equal:[12,3,1,""],add_erf:[12,3,1,""],add_exp2:[12,3,1,""],add_expand_dims:[12,3,1,""],add_fill_dynamic:[12,3,1,""],add_fill_like:[12,3,1,""],add_fill_static:[12,3,1,""],add_flatten:[12,3,1,""],add_flatten_to_2d:[12,3,1,""],add_floor:[12,3,1,""],add_floor_div_broadcastable:[12,3,1,""],add_gather:[12,3,1,""],add_gather_along_axis:[12,3,1,""],add_gather_nd:[12,3,1,""],add_gelu:[12,3,1,""],add_get_shape:[12,3,1,""],add_global_pooling3d:[12,3,1,""],add_greater_than:[12,3,1,""],add_gru:[12,3,1,""],add_inner_product:[12,3,1,""],add_l2_normalize:[12,3,1,""],add_layer_normalization:[12,3,1,""],add_less_than:[12,3,1,""],add_load_constant:[12,3,1,""],add_load_constant_nd:[12,3,1,""],add_logical:[12,3,1,""],add_loop:[12,3,1,""],add_loop_break:[12,3,1,""],add_loop_continue:[12,3,1,""],add_lower_triangular:[12,3,1,""],add_lrn:[12,3,1,""],add_matrix_band_part:[12,3,1,""],add_max_broadcastable:[12,3,1,""],add_min_broadcastable:[12,3,1,""],add_mod_broadcastable:[12,3,1,""],add_multiply_broadcastable:[12,3,1,""],add_mvn:[12,3,1,""],add_nms:[12,3,1,""],add_not_equal:[12,3,1,""],add_one_hot:[12,3,1,""],add_optionals:[12,3,1,""],add_padding:[12,3,1,""],add_permute:[12,3,1,""],add_pooling3d:[12,3,1,""],add_pooling:[12,3,1,""],add_pow_broadcastable:[12,3,1,""],add_random_bernoulli_dynamic:[12,3,1,""],add_random_bernoulli_like:[12,3,1,""],add_random_bernoulli_static:[12,3,1,""],add_random_normal_dynamic:[12,3,1,""],add_random_normal_like:[12,3,1,""],add_random_normal_static:[12,3,1,""],add_random_uniform_dynamic:[12,3,1,""],add_random_uniform_like:[12,3,1,""],add_random_uniform_static:[12,3,1,""],add_range_dynamic:[12,3,1,""],add_range_static:[12,3,1,""],add_rank_preserving_reshape:[12,3,1,""],add_reduce:[12,3,1,""],add_reduce_l1:[12,3,1,""],add_reduce_l2:[12,3,1,""],add_reduce_logsum:[12,3,1,""],add_reduce_logsumexp:[12,3,1,""],add_reduce_max:[12,3,1,""],add_reduce_mean:[12,3,1,""],add_reduce_min:[12,3,1,""],add_reduce_prod:[12,3,1,""],add_reduce_sum:[12,3,1,""],add_reduce_sumsquare:[12,3,1,""],add_reorganize_data:[12,3,1,""],add_reshape:[12,3,1,""],add_reshape_dynamic:[12,3,1,""],add_reshape_like:[12,3,1,""],add_reshape_static:[12,3,1,""],add_resize_bilinear:[12,3,1,""],add_reverse:[12,3,1,""],add_reverse_sequence:[12,3,1,""],add_round:[12,3,1,""],add_scale:[12,3,1,""],add_scatter:[12,3,1,""],add_scatter_along_axis:[12,3,1,""],add_scatter_nd:[12,3,1,""],add_sequence_repeat:[12,3,1,""],add_sign:[12,3,1,""],add_simple_rnn:[12,3,1,""],add_sin:[12,3,1,""],add_sinh:[12,3,1,""],add_slice:[12,3,1,""],add_slice_by_size:[12,3,1,""],add_slice_dynamic:[12,3,1,""],add_slice_static:[12,3,1,""],add_sliding_windows:[12,3,1,""],add_softmax:[12,3,1,""],add_softmax_nd:[12,3,1,""],add_split:[12,3,1,""],add_split_nd:[12,3,1,""],add_squeeze:[12,3,1,""],add_stack:[12,3,1,""],add_subtract_broadcastable:[12,3,1,""],add_tan:[12,3,1,""],add_tanh:[12,3,1,""],add_tile:[12,3,1,""],add_topk:[12,3,1,""],add_transpose:[12,3,1,""],add_unary:[12,3,1,""],add_unilstm:[12,3,1,""],add_upper_triangular:[12,3,1,""],add_upsample:[12,3,1,""],add_where_broadcastable:[12,3,1,""],add_where_nonzero:[12,3,1,""],inspect_conv_channels:[12,3,1,""],inspect_innerproduct_channels:[12,3,1,""],inspect_input_features:[12,3,1,""],inspect_layers:[12,3,1,""],inspect_loss_layers:[12,3,1,""],inspect_optimizer:[12,3,1,""],inspect_output_features:[12,3,1,""],inspect_updatable_layers:[12,3,1,""],make_updatable:[12,3,1,""],set_categorical_cross_entropy_loss:[12,3,1,""],set_class_labels:[12,3,1,""],set_input:[12,3,1,""],set_mean_squared_error_loss:[12,3,1,""],set_optional_input:[12,3,1,""],set_output:[12,3,1,""],set_pre_processing_parameters:[12,3,1,""],set_training_input:[12,3,1,""]},"coremltools.models.neural_network.flexible_shape_utils":{NeuralNetworkImageSize:[12,2,1,""],NeuralNetworkImageSizeRange:[12,2,1,""],NeuralNetworkMultiArrayShape:[12,2,1,""],NeuralNetworkMultiArrayShapeRange:[12,2,1,""],add_enumerated_image_sizes:[12,1,1,""],add_enumerated_multiarray_shapes:[12,1,1,""],add_multiarray_ndshape_enumeration:[12,1,1,""],set_multiarray_ndshape_range:[12,1,1,""],update_image_size_range:[12,1,1,""],update_multiarray_shape_range:[12,1,1,""]},"coremltools.models.neural_network.flexible_shape_utils.NeuralNetworkMultiArrayShapeRange":{isFlexible:[12,3,1,""]},"coremltools.models.neural_network.quantization_utils":{AdvancedQuantizedLayerSelector:[12,2,1,""],MatrixMultiplyLayerSelector:[12,2,1,""],ModelMetrics:[12,2,1,""],OutputMetric:[12,2,1,""],QuantizedLayerSelector:[12,2,1,""],activate_int8_int8_matrix_multiplications:[12,1,1,""],compare_models:[12,1,1,""],quantize_weights:[12,1,1,""]},"coremltools.models.neural_network.quantization_utils.AdvancedQuantizedLayerSelector":{do_quantize:[12,3,1,""]},"coremltools.models.neural_network.quantization_utils.MatrixMultiplyLayerSelector":{do_quantize:[12,3,1,""]},"coremltools.models.neural_network.update_optimizer_utils":{AdamParams:[12,2,1,""],Batch:[12,2,1,""],RangeParam:[12,2,1,""],SgdParams:[12,2,1,""]},"coremltools.models.pipeline":{Pipeline:[11,2,1,""],PipelineClassifier:[11,2,1,""],PipelineRegressor:[11,2,1,""]},"coremltools.models.pipeline.Pipeline":{__init__:[11,3,1,""],add_model:[11,3,1,""],set_training_input:[11,3,1,""]},"coremltools.models.pipeline.PipelineClassifier":{__init__:[11,3,1,""],add_model:[11,3,1,""],set_training_input:[11,3,1,""]},"coremltools.models.pipeline.PipelineRegressor":{__init__:[11,3,1,""],add_model:[11,3,1,""],set_training_input:[11,3,1,""]},"coremltools.models.tree_ensemble":{TreeEnsembleBase:[11,2,1,""],TreeEnsembleClassifier:[11,2,1,""],TreeEnsembleRegressor:[11,2,1,""]},"coremltools.models.tree_ensemble.TreeEnsembleBase":{__init__:[11,3,1,""],add_branch_node:[11,3,1,""],add_leaf_node:[11,3,1,""],set_default_prediction_value:[11,3,1,""],set_post_evaluation_transform:[11,3,1,""]},"coremltools.models.tree_ensemble.TreeEnsembleClassifier":{__init__:[11,3,1,""]},"coremltools.models.tree_ensemble.TreeEnsembleRegressor":{__init__:[11,3,1,""]},"coremltools.models.utils":{convert_double_to_float_multiarray_type:[11,1,1,""],evaluate_classifier:[11,1,1,""],evaluate_classifier_with_probabilities:[11,1,1,""],evaluate_regressor:[11,1,1,""],evaluate_transformer:[11,1,1,""],load_spec:[11,1,1,""],rename_feature:[11,1,1,""],save_spec:[11,1,1,""]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method"},terms:{"044715x":7,"0b1":12,"100":2,"1000":[11,12],"105":2,"110":2,"120":2,"1240":11,"125":2,"128":12,"1651":5,"1st":12,"224":7,"227":2,"256":[5,12],"299":12,"2nd":12,"32argb":[2,3],"32bgra":[2,3],"3rd":12,"4096":12,"4th":12,"50000":12,"5th":12,"702x":7,"999":12,"boolean":[7,12],"byte":12,"case":[5,7,9,11,12],"class":[2,3,4,5,6,7,8,9,10,11,12],"const":7,"default":[2,3,6,7,8,9,10,11,12],"enum":[5,12],"export":2,"final":[7,9,11,12],"float":[2,3,6,10,11,12],"function":[3,5,7,8,11,12],"import":[2,3,9,10,11,12],"int":[3,6,10,11,12],"long":7,"new":[7,11,12],"return":[2,3,4,5,7,8,9,10,11,12],"short":7,"super":12,"switch":7,"true":[2,3,6,7,10,11,12],"try":11,"var":7,"while":[3,7,12],AND:[7,12],AVE:12,And:9,Axes:7,COS:12,For:[0,5,6,7,8,9,11,12],Its:7,NMS:[7,12],NOT:[7,12],Not:12,One:[5,7,9,11,12],Ops:0,That:[7,12],The:[2,5,6,7,8,9,11,12],These:[3,10],Use:[7,11],Used:12,With:[7,11],__init__:[6,11,12],_activ:7,_bodi:7,_caffe_convert:2,_cond:7,_convert:[8,9],_converters_entri:5,_error_util:8,_false_fn:7,_get_linear_lookup_table_and_weight:12,_graph:8,_keras_convert:3,_libsvm_convert:4,_mlmodel_full_precis:[2,3],_quantization_mode_custom_lookup_t:12,_tree:10,_true_fn:7,abl:2,about:[2,3,11],abov:[7,12],abs:[7,12],absent:2,absolut:[7,12],acceler:12,accept:6,accommod:12,accord:[7,9,12],accumul:12,achiev:7,aco:[7,12],acosh:12,acoshlayerparam:12,acoslayerparam:12,across:[7,12],across_channel:12,activ:[5,11,12],activate_int8_int8_matrix_multipl:12,adam:12,adamparam:12,add:[2,3,7,11,12],add_aco:12,add_acosh:12,add_activ:12,add_add_broadcast:12,add_argmax:12,add_argmin:12,add_argsort:12,add_asin:12,add_asinh:12,add_atan:12,add_atanh:12,add_batched_mat_mul:12,add_batchnorm:12,add_bia:12,add_bidirlstm:12,add_branch:12,add_branch_nod:11,add_broadcast:12,add_broadcast_to_dynam:12,add_broadcast_to_lik:12,add_broadcast_to_stat:12,add_categorical_distribut:12,add_ceil:12,add_channel_rang:12,add_clamped_relu:12,add_clip:12,add_co:12,add_concat_nd:12,add_constant_pad:12,add_convolut:12,add_convolution3d:12,add_copi:12,add_cosh:12,add_crop:12,add_crop_res:12,add_cumsum:12,add_custom:12,add_custom_lay:[3,8],add_divide_broadcast:12,add_elementwis:12,add_embed:12,add_embedding_nd:12,add_enumerated_image_s:12,add_enumerated_multiarray_shap:12,add_equ:12,add_erf:12,add_exp2:12,add_expand_dim:12,add_fill_dynam:12,add_fill_lik:12,add_fill_stat:12,add_flatten:12,add_flatten_to_2d:12,add_floor:12,add_floor_div_broadcast:12,add_gath:12,add_gather_along_axi:12,add_gather_nd:12,add_gelu:12,add_get_shap:12,add_global_pooling3d:12,add_greater_than:12,add_gru:12,add_height_rang:12,add_inner_product:12,add_l2_norm:12,add_layer_norm:12,add_leaf_nod:11,add_less_than:12,add_load_const:12,add_load_constant_nd:12,add_log:12,add_loop:12,add_loop_break:12,add_loop_continu:12,add_lower_triangular:12,add_lrn:12,add_matrix_band_part:12,add_max_broadcast:12,add_min_broadcast:12,add_mod_broadcast:12,add_model:11,add_multiarray_ndshape_enumer:12,add_multiply_broadcast:12,add_mvn:12,add_nm:12,add_not_equ:12,add_one_hot:12,add_opt:12,add_pad:12,add_permut:12,add_pool:12,add_pooling3d:12,add_pow_broadcast:12,add_random_bernoulli_dynam:12,add_random_bernoulli_lik:12,add_random_bernoulli_stat:12,add_random_normal_dynam:12,add_random_normal_lik:12,add_random_normal_stat:12,add_random_uniform_dynam:12,add_random_uniform_lik:12,add_random_uniform_stat:12,add_range_dynam:12,add_range_stat:12,add_rank_preserving_reshap:12,add_reduc:12,add_reduce_l1:12,add_reduce_l2:12,add_reduce_logsum:12,add_reduce_logsumexp:12,add_reduce_max:12,add_reduce_mean:12,add_reduce_min:12,add_reduce_prod:12,add_reduce_sum:12,add_reduce_sumsquar:12,add_reorganize_data:12,add_reshap:12,add_reshape_dynam:12,add_reshape_lik:12,add_reshape_stat:12,add_resize_bilinear:12,add_revers:12,add_reverse_sequ:12,add_round:12,add_sampl:11,add_scal:12,add_scatt:12,add_scatter_along_axi:12,add_scatter_nd:12,add_sequence_repeat:12,add_sign:12,add_simple_rnn:12,add_sin:12,add_sinh:12,add_slic:12,add_slice_by_s:12,add_slice_dynam:12,add_slice_stat:12,add_sliding_window:12,add_softmax:12,add_softmax_nd:12,add_split:12,add_split_nd:12,add_squeez:12,add_stack:12,add_subtract_broadcast:12,add_tan:12,add_tanh:12,add_til:12,add_topk:12,add_transpos:12,add_unari:12,add_unilstm:12,add_upper_triangular:12,add_upsampl:12,add_where_broadcast:12,add_where_nonzero:12,add_width_rang:12,addbroadcastablelayerparam:12,added:[2,3,7,11,12],adding:[8,12],addit:[7,8,11,12],adjust:12,advanc:[2,5],advancedquantizedlayerselector:12,after:[7,11,12],against:11,aim:5,algorithm:[11,12],alias:5,align:[7,12],align_corn:7,align_corners_:12,align_corners_fals:12,align_corners_tru:12,align_endpoints_mod:12,all:[2,3,5,6,7,11,12],allow:[7,11,12],allow_set:12,allowed_rang:11,allowed_set:[11,12],allowed_valu:11,along:[7,12],alpha:[7,12],alpha_i:7,alreadi:12,also:[2,3,7,11,12],alter:12,although:7,alwai:11,amount:[7,12],ani:[2,3,7,11,12],annot:12,api:11,appear:7,append:[7,12],appli:[2,3,7,8,11,12],applic:[2,3,12],approxim:7,arc:12,architectur:[2,3],area:[11,12],argmax:[7,12],argmaxlayerparam:12,argmin:[7,12],argminlayerparam:12,argsort:[7,12],argsortlayerparam:12,argument:[2,7,8,12],arrai:[2,3,7,9,11,12],array_shap:12,as_default:5,ascend:7,asin:[7,12],asinh:12,asinhlayerparam:12,asinlayerparam:12,assign:2,assum:[2,3,6,7,9,12],astyp:11,asymmetr:12,atan:[7,12],atanh:[7,12],atanhlayerparam:12,atanlayerparam:12,attach:12,attribut:[7,8,12],author:11,auto:[5,7],auto_set_specification_vers:11,autogener:6,automat:[3,5,11,12],avail:12,averag:[7,12],average_pooling_count_excludes_pad:12,avg:12,avg_pool:7,avoid:[7,12],axes:[7,12],axi:[7,12],b_back:12,b_f:12,b_i:12,b_o:12,b_r:12,b_z:12,back:12,backend:7,backward:12,band:[7,12],band_part:7,base:[7,11,12],basic:6,batch:[2,7,8,12],batch_axi:[7,12],batch_norm:7,batchedmatmullayerparam:12,batchnorm:12,batchnormlayerparam:12,bath:[9,11],bathroom:11,becaus:7,becom:7,bedroom:[9,11],been:[11,12],befor:[2,3,7,12],begin:[2,7,12],begin_id:12,begin_mask:[7,12],behav:[11,12],behavior:[7,11,12],being:[11,12],below:[5,7,12],bernoulli:[7,12],beta1:12,beta2:12,beta:[7,12],beta_i:7,between:[5,7,9,11,12],bgr:[2,3,6,12],bia:[2,3,6,7,12],bias:[7,12],biaslayerparam:12,bidirect:7,bidirectionallstmlayerparam:12,bilinear:[7,12],binari:[2,11,12],binaryproto:2,bit:[10,12],blank:12,blob:[2,3,6,12],block:[7,12],block_siz:[7,12],blue:[2,3,6,12],blue_bia:[2,3,8,12],bodi:[7,12],body_network:12,bodynetwork:12,bool:[2,3,6,7,8,10,11,12],boost:9,booster:10,border_mod:12,border_mor:12,both:[2,7,12],bottom:[2,7,12],bottom_right_heavi:12,bound:[7,12],boundari:7,box:[7,12],box_coordinate_mod:7,box_height:[7,12],box_indices_mod:12,box_width:[7,12],branch:[7,11,12],branch_mod:11,branchlayerparam:12,branchonvalueequ:11,branchonvaluegreaterthan:11,branchonvaluegreaterthanequ:11,branchonvaluelessthan:11,branchonvaluelessthanequ:11,branchonvaluenotequ:11,broadcast:[7,12],broadcast_to_dynam:12,broadcast_to_lik:12,broadcast_to_stat:12,broadcasttodynamiclayerparam:12,broadcasttolikelayerparam:12,broadcasttostaticlayerparam:12,bsd:11,build:[11,12],builder:11,built:12,c_in:7,c_input:12,c_out:7,c_output:12,c_reverse_input:12,c_reverse_output:12,c_t:7,caff:1,caffemodel:2,calcul:12,call:11,callabl:12,can:[2,3,6,7,9,10,11,12],cannot:[5,7],cast:7,cat:3,categor:[7,11,12],categori:[8,12],categorical_distribut:12,categoricaldistributionlayerparam:12,caus:7,ceil:[7,12],ceillayerparam:12,cell:[7,12],cell_activ:7,cell_clip_threshold:12,cell_gat:7,cell_state_update_activ:12,center:[7,12],center_size_height_first:[7,12],center_size_width_first:[7,12],central:12,certain:12,channel:[2,3,6,7,8,12],channel_first:[6,12],channel_last:12,channel_multipli:12,character:12,check:11,child:11,chosen:7,chw:12,clamp:12,clamped_relu:7,clampedrelulayerparam:12,class_label:[2,3,6,8,10,11,12],classif:[8,10,11],classifi:[2,3,5,6,8,9,10,11,12],classification_softmax:11,classifier_config:5,classifierconfig:5,classlabel:[2,3,6,8,9,12],classprob:11,classscor:9,clip:[7,12],cliplayerparam:12,cluster:12,color:[2,3,6],color_layout:6,column:[4,7,11],come:3,compar:[11,12],compare_model:12,comparison:[11,12],compat:[6,7,8,12],compil:[5,7,11],compress:12,comput:[7,11,12],compute_mean_var:12,concat:[7,12],concat_nd:12,concaten:[7,12],concatndlayerparam:12,concret:5,cond:7,condit:[7,11,12],condition_network:12,configur:[5,6],consid:[6,7],consist:11,constant:[7,12],constant_v:7,constant_valu:12,constantpaddinglayerparam:12,construct:[8,11,12],contain:[2,3,5,7,8,11,12],content:7,contigu:9,continu:12,control:[7,8,12],conv_in:7,conv_out:7,conv_transpos:7,convent:[2,7,8],convers:[2,5,8,11,12],convert:[0,2,3,4,5,6,7,8,9,10,11,12],convert_double_to_float_multiarray_typ:11,convert_to:5,convolut:[7,12],convolution3dlayerparam:12,convolutionlayerparam:12,convolv:7,coordin:[7,12],copi:[11,12],copylayerparam:12,core:[0,2,3,5,6,8,9,10,11,12],coreml:[6,8,10,11],coreml_model:[2,3,9,10],coremltool:[2,3,4,5,6,7,8,9,10,11,12],corner:7,corners_height_first:[7,12],corners_width_first:[7,12],correct:11,correspond:[3,5,7,8,9,11,12],cos:[7,12],cosh:7,coshlayerparam:12,cosin:[7,12],coslayerparam:12,could:8,count:[7,11],coupl:12,coupled_input_forget_g:12,cpu:11,creat:[7,11,12],create_array_feature_extractor:11,create_feature_vector:11,criterion:12,critic:2,crop:[7,12],crop_height:7,crop_res:[7,8],crop_width:7,croplayerparam:12,cropresizelayerparam:12,cross:12,csv:[9,11],cum:12,cumsum:[7,12],cumsumlayerparam:12,cumul:[7,12],current:[2,3,4,5,7,9,11,12],current_nam:11,custom:[2,3,7,8,12],custom_conversion_funct:[3,8],custom_lut:12,custom_padding_back:12,custom_padding_bottom:12,custom_padding_front:12,custom_padding_left:12,custom_padding_right:12,custom_padding_top:12,custom_proto_spec:12,customlayerparam:12,d_axi:7,d_axis_i:7,d_axis_out:7,d_in:7,d_n:7,d_out:7,d_post:7,d_prior:7,dangl:2,data1:12,data2:12,data:[2,7,9,11,12],data_and_predict:11,data_point:11,datafram:11,datatyp:[3,9,11,12],deal:11,debug:5,decai:12,decis:9,decision_tre:10,deconv:12,deconvolut:[7,12],decreas:12,deep:11,def:[7,12],default_class_label:11,default_label:11,default_valu:6,defin:[7,11,12],definit:2,delta:7,denomin:[7,12],denot:[7,11],dens:[3,5,6],dense_2:12,depend:[7,12],deploi:2,deploy:[5,8],deprocessing_arg:8,depth:[7,12],depth_to_spac:[7,12],depthwis:[7,12],depthwiseconv:12,dequant:12,deriv:12,descend:[7,12],descent:12,describ:12,descript:[2,11,12],design:11,detail:[7,12],determin:[2,3,5,7,9,11,12],deviat:[7,12],dfrac:7,diagon:[7,12],dict:[2,3,8,9,11,12],dictionari:[2,3,8,9,11,12],dictvector:9,differ:[2,3,5,12],dilat:[7,12],dilation_depth:12,dilation_factor:12,dilation_height:12,dilation_width:12,dim:[6,7,12],dimens:[2,7,9,11,12],dimension:[7,11,12],direct:[7,11,12],directli:11,directori:[5,12],disable_rank5_shape_map:12,discret:11,disk:[2,3,11],displai:12,distinct:12,distribut:[7,12],div:[7,12],divid:[7,12],divide_broadcast:12,dividebroadcastablelayerparam:12,divis:[7,12],do_quant:12,doe:[7,8,11],doesn:11,dog:3,domain:7,don:11,dot:[7,12],doubl:[3,9,11,12],down:12,draw:7,dtype:[6,7,12],dure:[2,12],dynam:7,dynamic_length:7,each:[2,3,4,6,7,9,11,12],easili:[2,7],edit:2,editor:2,effect:7,either:[7,11,12],elem_shap:7,element:[6,7,12],elementari:7,elementwis:[7,12],els:[7,12],else_branch:12,elu:[7,12],embed:[9,12],embedding_s:12,embeddinglayerparam:12,embeddingndlayerparam:12,empti:12,enabl:12,encod:[9,11,12],end:[7,11,12],end_id:12,end_index:12,end_mask:[7,12],ensembl:11,entir:[7,11,12],entri:[7,11],entropi:12,enumer:[5,12],enumerated_shap:12,eps:12,epsilon:[4,7,12],equal:[7,11,12],equallayerparam:12,equival:[7,8,11,12],erf:[7,12],erflayerparam:12,error:[7,11,12],errorhandl:8,estim:12,etc:7,eval:5,evalu:[7,11,12],evaluate_classifi:11,evaluate_classifier_with_prob:11,evaluate_regressor:11,evaluate_transform:11,even:7,evenli:12,event:7,eventu:7,everi:[7,12],everyth:[7,11,12],exact:[7,12],exact_array_map:12,exactli:[6,7,12],exampl:[0,2,3,5,6,7,8,9,10,11,12],example_input:5,except:[6,7,12],exclud:[7,12],exclude_pad_area:12,exclude_padding_from_averag:7,exclus:[7,12],execut:[5,7,11,12],exist:[11,12],exp2:[7,12],exp2layerparam:12,exp:[7,12],expand:[7,11,12],expand_dim:7,expanddimslayerparam:12,expect:[7,10,11,12],expected_output:11,experienti:12,expon:[7,12],exponenti:[7,12],expos:[2,3,6,8,9,10,11,12],express:7,ext:7,extend:7,extract:[7,12],extract_indic:11,extractor:11,f32:7,f_t:7,factor:[6,7,12],fail:5,fals:[2,3,6,7,8,11,12],false_child_id:11,featur:[2,3,4,6,8,9,10,11,12],feature1:12,feature2:12,feature_index:11,feature_nam:[4,10,12],feature_valu:11,feed:2,feet:11,field:[6,12],file:[2,3,5,6,8,10,11],file_valu:7,filenam:11,filepath:[2,3],fill:[3,7,12],fill_dynam:12,fill_lik:12,fill_stat:12,filldynamiclayerparam:12,filllikelayerparam:12,fillstaticlayerparam:12,filter:[7,12],first:[2,3,6,7,11,12],fit:9,fix:7,flag:[2,3,8,11,12],flat:5,flatten2d:7,flatten:[7,12],flatten_to_2d:12,flattenlayerparam:12,flattento2dlayerparam:12,flexibl:12,flexible_shape_util:11,float16:[2,3,12],float32:[2,3,5,6,11,12],floor:[7,12],floor_div:7,floor_div_broadcast:12,floordivbroadcastablelayerparam:12,floorlayerparam:12,flow:12,follow:[2,3,5,7,10,11,12],forc:12,force_32bit_float:10,forest:9,forget:[7,12],forget_bia:12,forget_g:7,form:[9,11],format:[0,2,3,5,6,7,9,10,11,12],formula:[7,12],forward:[7,12],found:12,four:[7,12],fp32:[6,7],fp64:7,frac:[7,11],fraction:7,framework:[5,11],from:[2,3,6,7,9,10,11,12],front:12,frozen:5,full:[2,3,8,12],full_precision_model:12,gamma:[7,12],gamma_i:7,gate:[7,12],gather:[7,12],gather_along_axi:[7,12],gather_nd:7,gatheralongaxislayerparam:12,gatherlayerparam:12,gatherndlayerparam:12,gauss:7,gaussian:[7,12],gelu:[7,12],gelulayerparam:12,gener:[6,7,12],get:[2,3,8,11],get_shap:12,get_spec:[11,12],getshapelayerparam:12,github:0,give:[6,9,11],given:[3,5,6,7,8,9,11,12],global:12,global_pool:7,globalpooling3dlayerparam:12,gradient:[7,9,12],graph:[5,6,8],gray_bia:[2,3,8,12],grayscal:[2,3,6,12],greater:[7,12],greater_equ:7,greater_than:12,greaterequallayerparam:12,greaterthanlayerparam:12,green:[2,3,6,12],green_bia:[2,3,8,12],grid:[7,12],grid_point:[7,12],group:[7,12],gru:[7,12],grulayerparam:12,guarante:7,guid:0,h5_path:5,h_center:[7,12],h_end:[7,12],h_in:[7,12],h_input:12,h_output:12,h_reverse_input:12,h_reverse_output:12,h_start:[7,12],h_t:7,half:[2,3,7,12],half_pixel_cent:7,handl:[9,12],happen:2,hard:12,has:[7,12],has_bia:12,hasn:11,have:[2,5,6,7,8,11,12],hdf5:5,height:[2,7,8,12],height_rang:12,help:12,henc:7,here:[9,11],hidden:[7,12],hidden_s:12,high:[7,11],higher:7,highest:11,hint:11,hit:11,hold:12,horizont:12,hot:[7,9,12],hous:[9,11],housepric:[9,11],how:[2,3,7,8],hyperbol:[7,12],i32:7,i64:7,iOS:[8,12],i_0:7,i_t:7,ident:[5,7,9],idx:7,if_branch:12,iff:7,ignor:[7,8,11,12],illeg:7,illustr:7,imag:[2,3,6,7,12],image1:2,image2:2,image_format:12,image_input:2,image_input_nam:[2,3,8,12],image_output_nam:8,image_s:12,image_scal:[2,3,8,12],imagetyp:5,img_size_rang:12,immediate_valu:7,implement:[7,12],impli:6,imput:9,in1:7,in2:7,includ:[7,12],include_last_pixel:12,include_layers_with_nam:12,inclus:[7,12],increas:[7,12],increment:[7,11,12],independ:7,index:[0,2,3,6,7,8,11,12],index_typ:11,indic:[2,3,7,9,11,12],inf:7,infer:[2,5,6],infin:7,info:7,inform:[2,11,12],inherit:[7,12],init_length:7,initi:[6,7],initial_c:7,initial_h:7,inner:12,inner_activ:12,innermost:7,innerproduct:12,innerproductlayerparam:12,input1:3,input2:3,input:[0,2,3,5,7,8,9,10,11,12],input_1:11,input_2:11,input_channel:12,input_data:11,input_descript:11,input_dim:[2,3,12],input_featur:[9,11,12],input_g:7,input_height:12,input_idx:12,input_interv:7,input_length:4,input_nam:[3,5,11,12],input_name_shape_dict:3,input_rang:12,input_rank:12,input_s:12,input_shap:[3,7,12],input_tensor:12,input_typ:6,input_width:12,inputn:3,inputtyp:6,insensit:12,insert:7,insid:12,inspect:[11,12],inspect_conv_channel:12,inspect_innerproduct_channel:12,inspect_input_featur:12,inspect_lay:12,inspect_loss_lay:12,inspect_optim:12,inspect_output_featur:12,inspect_updatable_lay:12,instal:0,instanc:[7,9,10,11,12],instance_norm:[7,12],instanti:11,instead:[3,6,12],instruct:0,int32:[6,7],int64:[7,9,11],int8:12,int_8_dynamic_quant:12,integ:[7,8,11,12],intend:[5,7],interest:[7,12],interfac:[2,3,10,11,12],interleav:[7,12],intermedi:[6,7],intern:[2,3,7,10],interpol:[7,12],interpret:[3,9,11,12],intersect:[7,12],interv:[7,12],introduc:7,invalid:12,invers:[7,12],inverse_dist:11,invok:7,involv:7,ios12:8,iou:7,iou_threshold:[7,12],ip_lay:12,is_bgr:[2,3,8,12],is_deconv:12,is_glob:12,is_logit:12,is_quantized_weight:12,is_updat:11,isflex:12,iso:8,iter:12,its:[3,7,11,12],itself:11,jit:5,json:3,just:10,kd_tree:11,keep:[7,12],keep_dim:7,keepdim:12,kei:[2,3,8,9,11,12],kera:[1,5],keras_model:5,kernel:[7,12],kernel_channel:12,kernel_depth:12,kernel_height:12,kernel_s:7,kernel_width:12,keyword:12,kmeans_lut:12,knearestneighborsclassifi:11,knearestneighborsclassifierbuild:11,kneighborsclassifi:9,knnclassifi:11,known:[2,7,12],known_size_map:11,kwarg:[5,7,11,12],l1_normal:12,l2_norm:7,l2_normal:12,l2_pool:7,l2normalizelayerparam:12,label:[2,3,6,8,10,11,12],languag:[6,7],larg:7,largest:12,last:[6,7,9,11,12],later:12,layer:[2,3,5,6,7,8,12],layer_nam:12,layer_norm:7,layer_typ:12,layernormalizationlayerparam:12,layout:[2,3,6],lead:7,leaf:11,leaf_siz:11,leaki:12,leaky_relu:7,leakyrelu:12,learn:[9,12],least:[7,12],leav:[11,12],left:[7,12],leftarrow:7,len:7,length:[7,9,11,12],less:[7,12],less_equ:7,less_than:12,lessequallayerparam:12,lessthanl_ayerparam:12,let:[3,12],level:11,libsvm:1,libsvm_model:4,licens:11,like:[7,11,12],limit:[6,7,12],line:8,linear:[9,11,12],linear_activ:7,linear_lut:12,linear_model:9,linear_symmetr:12,linear_upsample_mod:12,linearregress:9,linearsvc:9,linearsvr:9,list:[2,3,5,6,7,8,9,10,11,12],list_gath:7,list_length:7,list_read:7,list_scatt:7,list_writ:7,load:[8,9,11,12],load_const:12,load_model:11,load_spec:[11,12],loadconstantlayerparam:12,loadconstantndlayerparam:12,loaded_model:11,local:[7,12],local_response_norm:7,local_s:12,locat:[7,11,12],log:[7,12],logarithm:7,logic:12,logical_and:7,logical_not:7,logical_or:7,logical_xor:7,logicalandlayerparam:12,logicalnotlayerparam:12,logicalorlayerparam:12,logist:[9,11],logit:7,logsum:12,longer:12,look:12,lookup:12,loop:12,loop_break:12,loop_continu:12,loop_var:7,loopbreaklayerparam:12,loopcontinuelayerparam:12,looplayerparam:12,loss:12,low:7,lower:[7,12],lower_bound:[6,12],lower_triangular:12,lowertriangularlayerparam:12,lrn:12,lrnlayerparam:12,lstm:[7,12],lut:12,lut_funct:12,maco:[8,12],mai:[5,6,7,9,11],main:12,make:[2,3,7,11,12],make_list:7,make_updat:12,mani:9,manner:[7,12],manual:11,map:[2,3,6,7,8,9,11,12],mark:[2,3,12],mask:12,match:[2,6,7,11],math:7,mathemat:7,matmul:[7,12],matric:12,matrix:[7,12],matrix_band_part:12,matrixbandpartlayerparam:12,matrixmultiplylayerselector:12,max:[7,12],max_box:[7,12],max_broadcast:12,max_error:11,max_iter:12,max_pool:7,max_valu:[11,12],maxbroadcastablelayerparam:12,maximum:[6,7,12],maximum_input_channel:12,maximum_output_channel:12,maxval:12,mean:[2,7,8,12],mean_i:7,mean_imag:2,mean_image1:2,mean_image2:2,meanvariancenormalizelayerparam:12,member:5,memori:7,messag:[2,11,12],met:12,metadata:[6,11],method:[7,11,12],metric:[11,12],might:2,mil:[0,5],min:[7,12],min_broadcast:12,min_valu:[11,12],minbroadcastablelayerparam:12,mini:12,minim:11,minimum:[5,6,7,12],minimum_conv_kernel_channel:12,minimum_conv_weight_count:12,minimum_deployment_target:5,minimum_input_channel:12,minimum_ios_deployment_target:8,minimum_output_channel:12,minimum_weight_count:12,minval:12,miss:[2,11],missing_value_tracks_true_child:11,mlmodel:[2,3,5,9,10,12],mlmultiarrai:12,mobilenet_v2:5,mod:7,mod_broadcast:12,modbroadcastablelayerparam:12,mode:[7,8,10,11,12],model:[0,2,3,4,5,6,7,8,9,10,12],model_path:[4,11],model_pb2:[11,12],model_pb:[4,11],model_precis:[2,3],model_spec:[4,11],modelmetr:12,modifi:[2,11,12],modul:[0,11],modular:12,moment:12,momentum:12,more:[5,7,11,12],most:[5,7,11,12],move:12,mul:[7,12],multi:12,multiarrai:[2,3,11,12],multiclass:11,multidimension:11,multipl:[2,3,6,7,12],multipli:[7,12],multiply_broadcast:12,multiplybroadcastablelayerparam:12,must:[2,3,5,6,7,11,12],mvn:12,my_caffe_model:2,my_deploi:2,my_image_input:2,my_input_1:3,my_input_2:3,my_model:[2,3,10,12],my_model_fil:11,my_multiarray_featurenam:12,my_output:3,mylayerselector:12,mymodel:12,n_class:10,name:[2,3,4,5,6,8,9,10,11,12],nan:11,natur:7,nbit:12,nchw:12,ndarrai:6,nearest:[7,11,12],need:[7,12],neg:[7,11,12],neglect:7,neighbor:[7,9,11],neighborhood:12,neighbour:12,neither:7,nest:[5,12],network:[2,3,5,6,7,8,11,12],neural:[2,3,5,6,7,8,12],neuralnetwork:[5,12],neuralnetwork_pb2:12,neuralnetworkbuild:[8,12],neuralnetworkclassifi:[8,12],neuralnetworkimages:12,neuralnetworkimageshapemap:12,neuralnetworkimagesizerang:12,neuralnetworkmultiarrayshap:12,neuralnetworkmultiarrayshapemap:12,neuralnetworkmultiarrayshaperang:12,neuralnetworkregressor:[8,12],new_feature_nam:11,new_nam:11,newlin:[2,3],next:[11,12],nhwc:12,nn_proto:5,nn_spec:12,node:[5,8,11],node_id:11,non:[7,11,12],non_linear:12,non_maximum_suppress:7,non_zero:7,none:[2,3,5,6,7,8,9,10,11,12],nonmaximumsuppressionlayerparam:12,norm:12,normal:[9,11,12],normalize_vari:12,normalized_coordin:7,normalized_roi:12,normalized_shap:12,not_equ:[7,12],note:[2,3,5,7,9,11,12],notequallayerparam:12,noth:8,notransform:11,nrep:12,num_channel:3,num_dimens:[9,11],num_error:11,num_low:12,num_sampl:12,num_split:[7,12],num_upd:7,num_upp:12,number:[7,9,10,11,12],number_of_dimens:11,number_of_neighbor:11,number_of_neighbors_allowed_rang:11,number_of_neighbors_allowed_set:11,numberofneighbor:11,numer:7,numpi:[5,6,7,11,12],nusvc:9,nusvr:9,o_t:7,object:[3,4,5,6,8,11,12],occur:7,off_valu:[7,12],offici:7,offset:[7,12],offset_corn:7,old_featur:11,omit:6,on_valu:[7,12],one:[3,5,6,7,8,9,10,11,12],one_got_vector_s:7,one_hot:7,one_hot_vector_s:12,onehotlayerparam:12,ones:7,onli:[2,3,4,7,8,11,12],onnx:1,onnx_coreml_input_shape_map:8,onward:12,open:7,oper:[7,12],opposit:12,ops:[7,8],optim:[11,12],option:[3,5,6,7,8,9,11,12],optionals_in:12,optionals_out:12,order:[2,3,7,9,10,12],organ:12,origin:11,osh:12,other:[2,3,7,11,12],otherwis:[2,3,7,11,12],our:12,out:[7,11,12],outcom:11,output1:3,output2:3,output:[2,3,5,6,7,8,9,10,11,12],output_activ:12,output_al:12,output_channel:12,output_descript:11,output_dim:12,output_featur:[11,12],output_feature_nam:[9,11],output_g:7,output_height:12,output_nam:[3,11,12],output_rank:12,output_sequ:7,output_shap:[3,7,12],output_tensor:12,output_typ:11,output_width:12,outputchannel:12,outputmetr:12,outputn:3,outsid:[7,12],over:[7,12],overal:[9,12],overflow:7,overlap:[7,12],overrid:12,own:7,p_0:7,p_d:7,p_f:12,p_i:12,p_o:12,pack:7,packag:[8,11],pad:[7,12],pad_amount:12,pad_to_given_output_size_mod:12,pad_typ:7,padding_back:12,padding_bottom:12,padding_front:12,padding_left:12,padding_mod:12,padding_right:12,padding_top:12,padding_typ:12,paddinglayerparam:12,panda:9,param:12,paramet:[2,3,4,5,6,7,8,9,10,11,12],parametr:12,parametricsoftplu:12,pars:[2,3],part:7,partial:7,pass:[2,3,7,11,12],patch:[7,12],path:[2,3,5,8,11,12],peep:12,peep_back:12,peephol:[7,12],per:[8,12],per_class_suppress:[7,12],perform:[7,12],perm:7,permut:[7,12],permutelayerparam:12,pipelin:[9,12],pipelineclassifi:11,pipelineregressor:11,pixel:[2,3,7],pixel_shuffl:[7,12],pixelshuffl:7,place:11,placehold:[5,6],plane:12,platform:11,pleas:11,point:[6,7,11,12],pool:12,pooling3dlayerparam:12,pooling_typ:12,poolinglayerparam:12,popul:[11,12],posit:[6,7,12],possibl:[5,7,11],post:11,postprocess:3,pow:7,pow_broadcast:12,powbroadcastablelayerparam:12,power:12,pre:[8,12],precis:[2,3,7,12],pred:7,predic:7,predict:[2,3,4,5,9,11],predicted_class:11,predicted_feature_nam:[2,3,6,8,12],predicted_probabilities_output:[3,6],predicted_valu:11,predictedfeaturenam:11,prediction_blob:12,prelu:[7,12],prepend:7,preprocess:2,preprocessing_arg:8,present:[2,3,7,9,12],prevent:12,previou:11,previous:[7,12],price:[9,11],primarili:5,print:[5,11,12],prior:12,prob:[7,12],probabl:[3,4,6,7,11,12],process:[2,8,9,11,12],prod:12,produc:[7,8,11,12],product:[7,12],program:5,progress:12,promot:7,properti:11,proto:[5,12],protobuf:[3,4,11,12],prototxt:2,provid:[2,3,5,6,7,10,11,12],pure:7,purpos:[5,11],put:11,python:[7,11],pytorch:[1,6,7],quanatizedlayerselector:12,quant_bia:12,quant_lut:12,quant_scal:12,quantiz:12,quantization_mod:12,quantization_typ:12,quantization_util:11,quantize_weight:12,quantized_model:12,quantizedlayerselector:12,r_f:12,r_i:12,r_o:12,r_r:12,r_t:7,r_z:12,rais:[5,7,11],rand:5,random:[5,9,12],random_bernoulli:7,random_bernoulli_dynam:12,random_bernoulli_lik:12,random_bernoulli_stat:12,random_categor:7,random_norm:7,random_normal_dynam:12,random_normal_lik:12,random_normal_stat:12,random_uniform:7,random_uniform_dynam:12,random_uniform_lik:12,random_uniform_stat:12,randombernoullidynamiclayerparam:12,randombernoullilikelayerparam:12,randombernoullistaticlayerparam:12,randomnormaldynamiclayerparam:12,randomnormallikelayerparam:12,randomnormastaticlayerparam:12,randomuniformdynamiclayerparam:12,randomuniformlikelayerparam:12,randomuniformstaticlayerparam:12,rang:[6,7,9,10,11,12],range_1d:7,range_dynam:12,range_stat:12,rangedynamiclayerparam:12,rangeparam:12,rangestaticlayerparam:12,rank4_image_map:12,rank:[7,8,12],rank_preserving_reshap:12,rankpreservingreshapelayerparam:12,rat:3,rate:12,rather:7,raw_op:7,read:[2,7,12],read_csv:9,real:[7,11],real_div:7,rearrang:7,reciproc:7,rectifi:[7,12],recurr:12,recurrent_activ:7,recurs:12,red:[2,3,6,12],red_bia:[2,3,8,12],reduc:[7,12],reduce_al:12,reduce_arg:7,reduce_argmax:7,reduce_argmin:7,reduce_l1:12,reduce_l1_norm:7,reduce_l2:12,reduce_l2_norm:7,reduce_log_sum:7,reduce_log_sum_exp:7,reduce_logsum:12,reduce_logsumexp:[7,12],reduce_max:[7,12],reduce_mean:[7,12],reduce_min:[7,12],reduce_prod:[7,12],reduce_sum:[7,12],reduce_sum_squar:7,reduce_sumsquar:12,reducel1layerparam:12,reducel2layerparam:12,reducelayerparam:12,reducelogsumexplayerparam:12,reducelogsumlayerparam:12,reducemaxlayerparam:12,reducemeanlayerparam:12,reduceminlayerparam:12,reduceprodlayerparam:12,reducesumlayerparam:12,reducesumsquarelayerparam:12,reduct:12,refer:[0,3,7,12],referenc:11,reference_output:11,reflect:[7,12],region:[7,12],regress:[9,11],regression_logist:11,regressor:[8,9,10,11,12],regular:12,reject:7,rel:11,relat:12,relative_hit_r:11,releas:8,relu6:7,relu:[5,7,12],remain:7,remedi:7,remov:[7,12],renam:11,rename_featur:11,rename_input:11,rename_output:11,reorgan:12,rep:[7,12],repeat:12,repeatedli:7,repetit:12,replic:[7,12],repres:[2,3,5,7,8,9,10,11,12],represent:[2,3,4,11,12],reproduc:7,requir:[2,5,6,7,11,12],reset:[7,12],reshap:[7,12],reshape_dynam:12,reshape_lik:12,reshape_stat:12,reshapedynamiclayerparam:12,reshapelayerparam:12,reshapelikelayerparam:12,reshapestaticlayerparam:12,resid:12,resiz:[7,12],resize_bilinear:[7,8],resizebilinear:7,resizebilinearlayerparam:12,resnet:2,resolut:7,resolv:9,respect:[7,12],respect_train:3,respons:[7,8,12],rest:12,restrict:11,result:[3,5,7,10,11,12],ret:12,retain:[7,12],revers:[7,12],reverse_dim:12,reverse_input:12,reverse_sequ:7,reverselayerparam:12,reverseseqlayerparam:12,rgb:[2,3,6,12],right:[7,12],rmse:11,rnn:7,roi:[7,12],roi_align_mod:12,root:[7,12],round:[7,12],roundlayerparam:12,row:7,rsqrt:[7,12],rule:7,run:12,runtim:[6,7],sai:12,same:[2,3,6,7,8,10,12],same_padding_asymmetry_mod:12,sampl:[7,11,12],sample_data:12,sampling_mod:7,save:[2,3,5,9,10,11,12],save_spec:[11,12],savedmodel:5,sbchw:12,scalar:[7,11,12],scale:[2,3,6,7,11,12],scale_factor_height:7,scale_factor_width:7,scaled_tanh:[7,12],scalelayerparam:12,scaler:9,scaler_spec:11,scaling_factor_h:12,scaling_factor_w:12,scatter:[7,12],scatter_along_axi:[7,12],scatter_nd:7,scatteralongaxislayerparam:12,scatterlayerparam:12,scatterndlayerparam:12,scheme:11,scikit:9,score:[7,9,11],score_threshold:[7,12],scratch:12,search:11,seattl:11,second:[2,3,7,11,12],second_shap:12,section:7,see:[0,5,7,8,11,12],seed:[7,12],select:[7,11,12],selector:12,self:12,separ:[2,3,7,12],seq:12,seq_axi:[7,12],sequenc:[7,8,9,11,12],sequence_concat:12,sequencerepeatlayerparam:12,sequenti:[3,11],set:[2,3,6,7,8,9,10,11,12],set_batch:12,set_beta1:12,set_beta2:12,set_categorical_cross_entropy_loss:12,set_channel_shap:12,set_class_label:12,set_default_prediction_valu:11,set_ep:12,set_height_shap:12,set_index_typ:11,set_input:12,set_lr:12,set_mean_squared_error_loss:12,set_momentum:12,set_multiarray_ndshape_rang:12,set_number_of_neighbors_with_bound:11,set_optional_input:12,set_output:12,set_post_evaluation_transform:11,set_pre_processing_paramet:12,set_training_input:[11,12],set_width_shap:12,sgd:12,sgdparam:12,shape:[5,7,8,12],shape_bia:12,shape_rang:12,shape_scal:12,share:12,shift:12,short_descript:11,should:[2,7,9,10,11,12],side:[7,12],sigmoid:[7,12],sigmoid_approxim:[7,12],sigmoid_hard:[7,12],sign:[7,12],signlayerparam:12,similar:[2,7,12],similarli:7,simpl:12,simplerecurrentlayerparam:12,simpli:2,sin:[7,12],sine:[7,12],singl:[3,7,9,11,12],sinh:[7,12],sinhlayerparam:12,sinlayerparam:12,size:[2,7,9,11,12],size_rang:12,sizess:12,sk_obj:9,skip:12,skip_layer_typ:12,sklearn:1,slice:[7,12],slice_by_index:7,slice_by_s:7,slice_dynam:12,slice_stat:12,slicebysizelayerparam:12,slicedynamiclayerparam:12,slicelayerparam:12,slicestaticlayerparam:12,slide:[7,12],sliding_window:[7,12],slidingwindowslayerparam:12,slope:12,small:[7,12],smaller:7,smallest:12,smooth:7,snippet:2,softmax:[3,5,6,7,11,12],softmax_nd:12,softmaxlayerparam:12,softmaxndlayerparam:12,softplu:[7,12],softplus_parametr:7,softsign:[7,12],some:[2,5,11,12],sometim:2,sort:[7,12],sourc:5,space:[7,12],space_to_depth:[7,12],spars:11,spatial:[7,12],spatial_scal:[7,12],spec:[4,8,11,12],special:[7,12],specif:[0,2,3,7,11,12],specifi:[2,3,5,6,7,8,9,11,12],split:[7,11,12],split_siz:[7,12],splitlayerparam:12,splitndlayerparam:12,sqrt:[7,12],squar:[7,11,12],squeez:[7,12],squeeze_al:12,squeeze_mask:[7,12],squeezelayerparam:12,ssa:7,stabil:7,stabl:7,stack:[7,12],stacklayerparam:12,standard:[7,9,12],start:[7,12],start_index:12,state:[7,12],stddev:[7,12],step:[2,7,12],stochast:12,stop:12,store:[3,6,7,12],str:[2,3,4,5,6,7,8,9,10,11,12],strict_align_corn:7,strict_align_endpoints_mod:12,stride:[7,12],stride_depth:12,stride_height:12,stride_width:12,string:[2,3,5,6,7,8,9,11,12],style:7,sub:[7,12],subset:[3,7],subtract:[2,11,12],subtract_broadcast:12,subtractbroadcastablelayerparam:12,sum:[7,11,12],sum_j:[7,11],summari:12,summat:12,sumsquar:12,suppli:7,support:[2,3,4,6,7,8,9,12],suppos:7,suppress:[7,12],surviv:7,svc:[4,9],svm:4,svr:[4,9],symbol:[6,7],tabl:12,take:[3,7,8,11,12],taken:[2,12],tan:[7,12],tang:7,tangent:[7,12],tanh:[7,12],tanh_approxim:[7,12],tanhlayerparam:12,tanlayerparam:12,target:[4,5,7,8,10,11,12],target_height:[7,12],target_shap:12,target_size_height:7,target_size_width:7,target_width:[7,12],temperatur:12,tenor:7,tensor:[6,7,12],tensorflow:[1,6],tensortyp:5,term:[7,12],termin:[5,12],test:11,test_input:[5,11],text:[2,7],than:[7,12],thei:[2,9,12],them:[3,7,9,11,12],themselv:11,therefor:7,thi:[0,2,3,4,5,6,7,8,9,11,12],third:2,those:[2,3,7,12],three:[2,12],threshold:[7,12],thresholded_relu:7,thresholdedrelu:12,through:[2,11],throughout:7,thrown:12,ties:7,tile:[7,12],tilelayerparam:12,time:[7,12],togeth:7,tool:8,top:[7,9,12],top_left_heavi:12,topk:[7,12],topklayerparam:12,torch:[5,7],torchscript:5,torchvis:5,total:[7,11,12],toward:7,trace:5,traced_model:5,train:[2,3,9,10,11,12],trainabl:[3,12],training_featur:[11,12],training_input:[11,12],transform:[9,11],translat:11,transpos:[7,12],transpose_a:12,transpose_b:12,transpose_i:7,transpose_x:7,transposelayerparam:12,travers:11,treat:[2,3,7],tree:[9,10,11],tree_id:11,treeensemblebas:11,treeensembleclassifi:11,treeensembleregressor:11,triangl:[7,12],triangular:[7,12],true_child_id:11,truth:7,tupl:[2,3,5,6,7,9,11,12],turn:8,tutori:5,twice:12,two:[2,7,11,12],txt:[2,3],type:[0,2,3,4,7,8,9,11,12],typic:[3,6,7,12],unalign_corn:7,unari:12,unaryfunctionlayerparam:12,unbound:12,undefin:7,under:11,underdetermin:7,underflow:7,understand:7,uneven:7,uni:[7,12],unidirectionallstmlayerparam:12,unifi:1,uniform:[7,11,12],uniformli:[7,12],union:[7,12],unit:[7,12],unknown:3,unless:7,unnorm:[7,12],unsupport:8,updat:[3,7,11,12],update_image_size_rang:12,update_multiarray_shape_rang:12,update_optimizer_util:11,upper:[6,7,12],upper_bound:[6,12],upper_triangular:12,uppertriangularlayerparam:12,upsampl:[7,12],upsample_bilinear:7,upsample_mod:12,upsample_nearest_neighbor:7,upsamplelayerparam:12,upscal:7,upscale_factor:7,usag:2,use:[7,10,11],use_bottom_k:12,use_float_arraytyp:[3,12],use_greater_than_equ:12,use_less_than_equ:12,usecpuonli:11,used:[2,3,4,5,6,7,8,9,11,12],useful:[11,12],user:12,uses:[2,3,7,12],using:[2,7,9,10,11,12],usual:6,util:[8,12],val:7,valid:[6,7,11,12],valu:[2,3,6,7,8,9,11,12],valueerror:5,variabl:[7,12],variad:7,varianc:[7,12],variance_i:7,vector:[7,11,12],verbos:[11,12],veri:12,version:[5,8,11,12],vertic:12,via:[2,8],visual:7,vocab_s:12,vocabulari:12,volum:7,w_center:[7,12],w_end:[7,12],w_f:12,w_h:12,w_h_back:12,w_i:12,w_in:[7,12],w_o:12,w_r:12,w_start:[7,12],w_x:12,w_x_back:12,w_z:12,watcho:8,weight:[3,7,11,12],weight_matrix_column:12,weight_matrix_row:12,weight_param:12,weighting_schem:11,weightparam:12,well:12,when:[2,3,5,7,10,11,12],where:[2,3,7,9,11,12],where_broadcast:12,where_nonzero:12,wherea:12,wherebroadcastablelayerparam:12,wherenonzerolayerparam:12,whether:[5,9,12],which:[2,3,6,7,8,9,11,12],while_loop:7,whose:[7,12],width:[2,7,8,12],width_rang:12,window:[7,12],window_s:12,wise:[7,12],within:[7,8,11,12],without:12,won:7,word:12,work:[7,12],would:[6,7,8,12],wrap:12,write:7,x_i:[7,11],x_j:[7,11],x_t:7,xgboost:[1,11],xin:[7,12],xor:[7,12],xout:[7,12],y_i:7,yes:3,you:[2,3,7,11],z_t:7,zero:[7,12]},titles:["coremltools API","Converters","Caffe","Keras","LibSVM","Unified (TensorFlow and Pytorch)","MIL Input Types","MIL Ops","ONNX","SKLearn","XGBoost","Models","neural_network.builder","coremltools"],titleterms:{Ops:7,activ:7,api:0,array_feature_extractor:11,builder:12,caff:2,classifierconfig:6,content:0,control_flow:7,conv:7,convert:1,coremltool:[0,13],elementwise_binari:7,elementwise_unari:7,enumeratedshap:6,feature_vector:11,flexible_shape_util:12,image_res:7,imagetyp:6,input:6,kera:3,libsvm:4,linear:7,mil:[6,7],mlmodel:11,model:11,nearest_neighbor:11,neural_network:[11,12],normal:7,onnx:8,pipelin:11,pool:7,pytorch:5,quantization_util:12,random:7,rangedim:6,recurr:7,reduct:7,resourc:0,scatter_gath:7,shape:6,sklearn:9,tensor_oper:7,tensor_transform:7,tensorflow:5,tensortyp:6,tree_ensembl:11,type:6,unifi:5,update_optimizer_util:12,util:11,xgboost:10}}) \ No newline at end of file diff --git a/source/coremltools.converters.keras.html b/source/coremltools.converters.keras.html index 9a067168b..c3b8efcf2 100644 --- a/source/coremltools.converters.keras.html +++ b/source/coremltools.converters.keras.html @@ -177,190 +177,6 @@

    Keras

    -
    -
    -coremltools.converters.keras._keras_converter._convert_to_spec(model, input_names=None, output_names=None, image_input_names=None, input_name_shape_dict={}, is_bgr=False, red_bias=0.0, green_bias=0.0, blue_bias=0.0, gray_bias=0.0, image_scale=1.0, class_labels=None, predicted_feature_name=None, model_precision='float32', predicted_probabilities_output='', add_custom_layers=False, custom_conversion_functions=None, custom_objects=None, input_shapes=None, output_shapes=None, respect_trainable=False, use_float_arraytype=False)
    -

    Convert a Keras model to Core ML protobuf specification (.mlmodel).

    -
    -
    Parameters
    -
    -
    model: Keras model object | str | (str, str)

    A trained Keras neural network model which can be one of the following:

    -
      -
    • a Keras model object

    • -
    • a string with the path to a Keras model file (h5)

    • -
    • a tuple of strings, where the first is the path to a Keras model

      -

      architecture (.json file), the second is the path to its weights -stored in h5 file.

      -
    • -
    -
    -
    input_names: [str] | str

    Optional name(s) that can be given to the inputs of the Keras model. -These names will be used in the interface of the Core ML models to refer -to the inputs of the Keras model. If not provided, the Keras inputs -are named to [input1, input2, …, inputN] in the Core ML model. When -multiple inputs are present, the input feature names are in the same -order as the Keras inputs.

    -
    -
    output_names: [str] | str

    Optional name(s) that can be given to the outputs of the Keras model. -These names will be used in the interface of the Core ML models to refer -to the outputs of the Keras model. If not provided, the Keras outputs -are named to [output1, output2, …, outputN] in the Core ML model. -When multiple outputs are present, output feature names are in the same -order as the Keras inputs.

    -
    -
    image_input_names: [str] | str

    Input names to the Keras model (a subset of the input_names -parameter) that can be treated as images by Core ML. All other inputs -are treated as MultiArrays (N-D Arrays).

    -
    -
    input_name_shape_dict: {str: [int]}

    Optional Dictionary of input tensor names and their corresponding shapes expressed -as a list of ints

    -
    -
    is_bgr: bool | dict()

    Flag indicating the channel order the model internally uses to represent -color images. Set to True if the internal channel order is BGR, -otherwise it will be assumed RGB. This flag is applicable only if -image_input_names is specified. To specify a different value for each -image input, provide a dictionary with input names as keys. -Note that this flag is about the models internal channel order. -An input image can be passed to the model in any color pixel layout -containing red, green and blue values (e.g. 32BGRA or 32ARGB). This flag -determines how those pixel values get mapped to the internal multiarray -representation.

    -
    -
    red_bias: float | dict()

    Bias value to be added to the red channel of the input image. -Defaults to 0.0 -Applicable only if image_input_names is specified. -To specify different values for each image input provide a dictionary with input names as keys.

    -
    -
    blue_bias: float | dict()

    Bias value to be added to the blue channel of the input image. -Defaults to 0.0 -Applicable only if image_input_names is specified. -To specify different values for each image input provide a dictionary with input names as keys.

    -
    -
    green_bias: float | dict()

    Bias value to be added to the green channel of the input image. -Defaults to 0.0 -Applicable only if image_input_names is specified. -To specify different values for each image input provide a dictionary with input names as keys.

    -
    -
    gray_bias: float | dict()

    Bias value to be added to the input image (in grayscale). Defaults -to 0.0 -Applicable only if image_input_names is specified. -To specify different values for each image input provide a dictionary with input names as keys.

    -
    -
    image_scale: float | dict()

    Value by which input images will be scaled before bias is added and -Core ML model makes a prediction. Defaults to 1.0. -Applicable only if image_input_names is specified. -To specify different values for each image input provide a dictionary with input names as keys.

    -
    -
    class_labels: list[int or str] | str

    Class labels (applies to classifiers only) that map the index of the -output of a neural network to labels in a classifier.

    -

    If the provided class_labels is a string, it is assumed to be a -filepath where classes are parsed as a list of newline separated -strings.

    -
    -
    predicted_feature_name: str

    Name of the output feature for the class labels exposed in the Core ML -model (applies to classifiers only). Defaults to ‘classLabel’

    -
    -
    model_precision: str

    Precision at which model will be saved. Currently full precision (float) and half precision -(float16) models are supported. Defaults to ‘_MLMODEL_FULL_PRECISION’ (full precision).

    -
    -
    predicted_probabilities_output: str

    Name of the neural network output to be interpreted as the predicted -probabilities of the resulting classes. Typically the output of a -softmax function. Defaults to the first output blob.

    -
    -
    add_custom_layers: bool

    If True, then unknown Keras layer types will be added to the model as -‘custom’ layers, which must then be filled in as postprocessing.

    -
    -
    custom_conversion_functions: {‘str’: (Layer -> CustomLayerParams)}

    A dictionary with keys corresponding to names of custom layers and values -as functions taking a Keras custom layer and returning a parameter dictionary -and list of weights.

    -
    -
    custom_objects: {‘str’: (function)}

    Dictionary that includes a key, value pair of {‘<function name>’: <function>} -for custom objects such as custom loss in the Keras model. -Provide a string of the name of the custom function as a key. -Provide a function as a value.

    -
    -
    respect_trainable: bool

    If True, then Keras layers that are marked ‘trainable’ will -automatically be marked updatable in the Core ML model.

    -
    -
    use_float_arraytype: bool

    If true, the datatype of input/output multiarrays is set to Float32 instead -of double.

    -
    -
    -
    -
    Returns
    -
    -
    model: MLModel

    Model in Core ML format.

    -
    -
    -
    -
    -

    Examples

    -
    # Make a Keras model
    ->>> model = Sequential()
    ->>> model.add(Dense(num_channels, input_dim = input_dim))
    -
    -# Convert it with default input and output names
    ->>> import coremltools
    ->>> coreml_model = coremltools.converters.keras.convert(model)
    -
    -# Saving the Core ML model to a file.
    ->>> coreml_model.save('my_model.mlmodel')
    -
    -
    -

    Converting a model with a single image input.

    -
    >>> coreml_model = coremltools.converters.keras.convert(model, input_names =
    -... 'image', image_input_names = 'image')
    -
    -
    -

    Core ML also lets you add class labels to models to expose them as -classifiers.

    -
    >>> coreml_model = coremltools.converters.keras.convert(model, input_names = 'image',
    -... image_input_names = 'image', class_labels = ['cat', 'dog', 'rat'])
    -
    -
    -

    Class labels for classifiers can also come from a file on disk.

    -
    >>> coreml_model = coremltools.converters.keras.convert(model, input_names =
    -... 'image', image_input_names = 'image', class_labels = 'labels.txt')
    -
    -
    -

    Provide customized input and output names to the Keras inputs and outputs -while exposing them to Core ML.

    -
    >>> coreml_model = coremltools.converters.keras.convert(model, input_names =
    -...   ['my_input_1', 'my_input_2'], output_names = ['my_output'])
    -
    -
    -
    - -
    -
    -coremltools.converters.keras._keras_converter._get_layer_converter_fn(layer)
    -

    Get the right converter function for Keras

    -
    - -
    -
    -coremltools.converters.keras._keras_converter._load_keras_model(model_network_path, model_weight_path, custom_objects=None)
    -

    Load a keras model from disk

    -
    -
    Parameters
    -
    -
    model_network_path: str

    Path where the model network path is (json file)

    -
    -
    model_weight_path: str

    Path where the model network weights are (hd5 file)

    -
    -
    custom_objects:

    A dictionary of layers or other custom classes -or functions used by the model

    -
    -
    -
    -
    Returns
    -
    -
    model: A keras model
    -
    -
    -
    -
    -
    coremltools.converters.keras._keras_converter.convert(model, input_names=None, output_names=None, image_input_names=None, input_name_shape_dict={}, is_bgr=False, red_bias=0.0, green_bias=0.0, blue_bias=0.0, gray_bias=0.0, image_scale=1.0, class_labels=None, predicted_feature_name=None, model_precision='float32', predicted_probabilities_output='', add_custom_layers=False, custom_conversion_functions=None, input_shapes=None, output_shapes=None, respect_trainable=False, use_float_arraytype=False)
    @@ -505,57 +321,7 @@
    -
    -
    -coremltools.converters.keras._keras2_converter._convert_training_info(model, builder, output_features)
    -

    Convert the training information from the given Keras ‘model’ into the Core -ML in ‘builder’.

    -
    -
    Parameters
    -
      -
    • model – keras.model.Sequential -The source Keras model.

    • -
    • builder – NeutralNetworkBuilder -The target model that will gain the loss and optimizer.

    • -
    • output_features – list of tuples, (str, datatype) -The set of tensor names that are output from the layers in the Keras -model.

    • -
    -
    -
    -
    - -
    -
    -coremltools.converters.keras._keras2_converter._get_layer_converter_fn(layer, add_custom_layers=False)
    -

    Get the right converter function for Keras

    -
    - -
    -
    -coremltools.converters.keras._keras2_converter._load_keras_model(model_network_path, model_weight_path, custom_objects=None)
    -

    Load a keras model from disk

    -
    -
    Parameters
    -
    -
    model_network_path: str

    Path where the model network path is (json file)

    -
    -
    model_weight_path: str

    Path where the model network weights are (hd5 file)

    -
    -
    custom_objects:

    A dictionary of layers or other custom classes -or functions used by the model

    -
    -
    -
    -
    Returns
    -
    -
    model: A keras model
    -
    -
    -
    -
    - - + diff --git a/source/coremltools.converters.mil.html b/source/coremltools.converters.mil.html index fe4ef51e4..0657f8ec3 100644 --- a/source/coremltools.converters.mil.html +++ b/source/coremltools.converters.mil.html @@ -177,19 +177,6 @@

    Unified (TensorFlow and Pytorch)

    -
    -
    -coremltools.converters._converters_entry._determine_source(model, source, outputs)
    -

    Infer source (which can be auto) to the precise framework.

    -
    - -
    -
    -coremltools.converters._converters_entry._validate_inputs(model, exact_source, inputs, outputs, classifier_config, **kwargs)
    -

    Validate and process model, inputs, outputs, classifier_config based on -exact_source (which cannot be auto)

    -
    -
    coremltools.converters._converters_entry.convert(model, source='auto', inputs=None, outputs=None, classifier_config=None, minimum_deployment_target=None, convert_to='nn_proto', **kwargs)
    diff --git a/source/coremltools.converters.onnx.html b/source/coremltools.converters.onnx.html index 291769e5d..86d011f61 100644 --- a/source/coremltools.converters.onnx.html +++ b/source/coremltools.converters.onnx.html @@ -177,25 +177,6 @@

    ONNX

    -
    -
    -coremltools.converters.onnx._converter._make_coreml_input_features(graph, onnx_coreml_input_shape_map, disable_coreml_rank5_mapping=False)
    -

    If “disable_coreml_rank5_mapping” is False, then:

    -

    ONNX shapes to CoreML static shapes mapping -length==1: [C] -length==2: [B,C] -length==3: [C,H,W] or [Seq,B,C] -length==4: [B,C,H,W]

    -

    If “disable_coreml_rank5_mapping” is True, then -onnx shapes are mapped “as is” to CoreML.

    -
    - -
    -
    -coremltools.converters.onnx._converter._transform_coreml_dtypes(builder, inputs, outputs)
    -

    Make sure ONNX input/output data types are mapped to the equivalent CoreML types

    -
    -
    coremltools.converters.onnx._converter.convert(model, mode=None, image_input_names=[], preprocessing_args={}, image_output_names=[], deprocessing_args={}, class_labels=None, predicted_feature_name='classLabel', add_custom_layers=False, custom_conversion_functions={}, onnx_coreml_input_shape_map={}, minimum_ios_deployment_target='12')
    diff --git a/source/coremltools.models.html b/source/coremltools.models.html index cc39d97c0..f0badcdbc 100644 --- a/source/coremltools.models.html +++ b/source/coremltools.models.html @@ -431,65 +431,6 @@

    Models -
    -static _is_valid_number_type(obj)
    -

    Checks if the object is a valid number type.

    -
    -
    Parameters
    -
    -
    obj

    The object to check.

    -
    -
    -
    -
    Returns
    -
    -
    True if a valid number type, False otherwise.
    -
    -
    -
    -

    - -
    -
    -static _is_valid_text_type(obj)
    -

    Checks if the object is a valid text type.

    -
    -
    Parameters
    -
    -
    obj

    The object to check.

    -
    -
    -
    -
    Returns
    -
    -
    True if a valid text type, False otherwise.
    -
    -
    -
    -
    - -
    -
    -_validate_label_types(labels)
    -

    Ensure the label types matched the expected types.

    -
    -
    Parameters
    -
    -
    spec

    The spec.

    -
    -
    labels

    The list of labels.

    -
    -
    -
    -
    Returns
    -
    -
    None, throws a TypeError if not expected.
    -
    -
    -
    -
    -
    add_samples(data_points, labels)
    @@ -1228,171 +1169,6 @@

    neural_network

    utils

    Utilities for the entire package.

    -
    -
    -coremltools.models.utils._convert_neural_network_weights_to_fp16(full_precision_model)
    -

    Utility function to convert a full precision (float) MLModel to a -half precision MLModel (float16).

    -
    -
    Parameters
    -
    -
    full_precision_model: MLModel

    Model which will be converted to half precision. Currently conversion -for only neural network models is supported. If a pipeline model is -passed in then all embedded neural network models embedded within -will be converted.

    -
    -
    -
    -
    Returns
    -
    -
    model: MLModel

    The converted half precision MLModel

    -
    -
    -
    -
    -
    - -
    -
    -coremltools.models.utils._element_equal(x, y)
    -

    Performs a robust equality test between elements.

    -
    - -
    -
    -coremltools.models.utils._get_custom_layer_names(spec)
    -

    Returns a list of className fields which appear in the given protobuf spec

    -
    -
    Parameters
    -
    -
    spec: mlmodel spec
    -
    -
    -
    Returns
    -
    -
    set(str) A set of unique className fields of custom layers that appear in the model.
    -
    -
    -
    -
    - -
    -
    -coremltools.models.utils._get_custom_layers(spec)
    -

    Returns a list of all neural network custom layers in the spec.

    -
    -
    Parameters
    -
    -
    spec: mlmodel spec
    -
    -
    -
    Returns
    -
    -
    [NN layer] A list of custom layer implementations
    -
    -
    -
    -
    - -
    -
    -coremltools.models.utils._get_input_names(spec)
    -

    Returns a list of the names of the inputs to this model. -:param spec: The model protobuf specification -:return: list of str A list of input feature names

    -
    - -
    -
    -coremltools.models.utils._get_model(spec)
    -

    Utility to get the model and the data.

    -
    - -
    -
    -coremltools.models.utils._get_nn_layers(spec)
    -

    Returns a list of neural network layers if the model contains any.

    -
    -
    Parameters
    -
    -
    spec: Model_pb

    A model protobuf specification.

    -
    -
    -
    -
    Returns
    -
    -
    [NN layer]

    list of all layers (including layers from elements of a pipeline

    -
    -
    -
    -
    -
    - -
    -
    -coremltools.models.utils._has_custom_layer(spec)
    -

    Returns true if the given protobuf specification has a custom layer, and false otherwise.

    -
    -
    Parameters
    -
    -
    spec: mlmodel spec
    -
    -
    -
    Returns
    -
    -
    True if the protobuf specification contains a neural network with a custom layer, False otherwise.
    -
    -
    -
    -
    - -
    -
    -coremltools.models.utils._is_macos()
    -

    Returns True if current platform is MacOS, False otherwise.

    -
    - -
    -
    -coremltools.models.utils._macos_version()
    -

    Returns macOS version as a tuple of integers, making it easy to do proper -version comparisons. On non-Macs, it returns an empty tuple.

    -
    - -
    -
    -coremltools.models.utils._python_version()
    -

    Return python version as a tuple of integers

    -
    - -
    -
    -coremltools.models.utils._replace_custom_layer_name(spec, oldname, newname)
    -

    Substitutes newname for oldname in the className field of custom layers. If there are no custom layers, or no -layers with className=oldname, then the spec is unchanged.

    -
    -
    Parameters
    -
    -
    spec: mlmodel spec
    -
    oldname: str The custom layer className to be replaced.
    -
    newname: str The new className value to replace oldname
    -
    -
    -
    Returns
    -
    -
    An mlmodel spec.
    -
    -
    -
    -
    - -
    -
    -coremltools.models.utils._sanitize_value(x)
    -

    Performs cleaning steps on the data so various type comparisons can -be performed correctly.

    -
    -
    coremltools.models.utils.convert_double_to_float_multiarray_type(spec)
    diff --git a/source/coremltools.models.neural_network.html b/source/coremltools.models.neural_network.html index 21e80f300..2ada0a87e 100644 --- a/source/coremltools.models.neural_network.html +++ b/source/coremltools.models.neural_network.html @@ -288,34 +288,6 @@

    -
    -
    -_check_fp16_weight_param_exists(layers)
    -

    Checks if the network has at least one weight_param which is in FP16 format

    -
    -
    Parameters
    -
    -
    layers: list of nn_spec.layer

    List of layers.

    -
    -
    -
    -
    -
    - -
    -
    -_check_fp16_weight_params_lstms(lstm_wp, has_peephole=True)
    -

    Checks if a lstm layer has at least one weight_param which is in FP16 format

    -
    -
    Parameters
    -
    -
    lstm_wp: lstm weights
    -
    has_peephole: if the lstm has peephole
    -
    -
    -
    -
    -
    add_acos(name, input_name, output_name)
    @@ -5429,21 +5401,6 @@
    -
    -
    -coremltools.models.neural_network.builder._fill_tensor_fields(tensor_field, ranks=None, shapes=None)
    -

    Fill the tensor fields. -ranks - None or a list of integers with the same length of number of inputs/outputs -shapes - None or a list of shapes the same length of number of inputs/outputs. Each shape is a list or tuple

    -
    - -
    -
    -coremltools.models.neural_network.builder._get_lstm_weight_fields(lstm_wp)
    -

    Get LSTM weight fields. -lstm_wp: _NeuralNetwork_pb2.LSTMWeightParams

    -
    -

    neural_network.flexible_shape_utils

    @@ -5799,178 +5756,6 @@
    -
    -
    -coremltools.models.neural_network.quantization_utils._convert_1bit_array_to_byte_array(arr)
    -

    Convert bit array to byte array.

    -
    -
    arr: list

    Bits as a list where each element is an integer of 0 or 1

    -
    -
    -
    -
    Returns
    -
    -
    numpy.array

    1D numpy array of type uint8

    -
    -
    -
    -
    -
    - -
    -
    -coremltools.models.neural_network.quantization_utils._decompose_bytes_to_bit_arr(arr)
    -

    Unpack bytes to bits

    -
    -
    arr: list

    Byte Stream, as a list of uint8 values

    -
    -
    -
    -
    Returns
    -
    -
    bit_arr: list

    Decomposed bit stream as a list of 0/1s of length (len(arr) * 8)

    -
    -
    -
    -
    -
    - -
    -
    -coremltools.models.neural_network.quantization_utils._dequantize_nn_spec(spec)
    -

    Dequantize weights in NeuralNetwork type mlmodel specifications.

    -
    - -
    -
    -coremltools.models.neural_network.quantization_utils._get_kmeans_lookup_table_and_weight(nbits, w, init='k-means++', tol=0.01, n_init=1, rand_seed=0)
    -

    Generate K-Means lookup table given a weight parameter field

    -
    -
    nbits:

    Number of bits for quantization

    -
    -
    w:

    Weight as numpy array

    -
    -
    -
    -
    Returns
    -
    -
    lut: numpy.array

    Lookup table, numpy array of shape (1 << nbits, );

    -
    -
    wq: numpy.array

    Quantized weight of type numpy.uint8

    -
    -
    -
    -
    -
    - -
    -
    -coremltools.models.neural_network.quantization_utils._get_linear_lookup_table_and_weight(nbits, wp)
    -

    Generate a linear lookup table.

    -
    -
    nbits: int

    Number of bits to represent a quantized weight value

    -
    -
    wp: numpy.array

    Weight blob to be quantized

    -
    -
    -
    -
    Returns
    -
    -
    lookup_table: numpy.array

    Lookup table of shape (2^nbits, )

    -
    -
    qw: numpy.array

    Decomposed bit stream as a list of 0/1s of length (len(arr) * 8)

    -
    -
    -
    -
    -
    - -
    -
    -coremltools.models.neural_network.quantization_utils._quantize_channelwise_linear(weight, nbits, axis=0, symmetric=False)
    -

    Linearly quantize weight blob.

    -
    -
    weight: numpy.array

    Weight to be quantized.

    -
    -
    nbits: int

    Number of bits per weight element

    -
    -
    axis: int

    Axis of the weight blob to compute channel-wise quantization, can be 0 or 1

    -
    -
    symmetric: bool

    If true, set quantization range to be symmetrical to 0. -Otherwise, set quantization range to be the minimum and maximum of -weight parameters.

    -
    -
    -
    -
    Returns
    -
    -
    quantized_weight: numpy.array

    quantized weight as float numpy array, with the same shape as weight

    -
    -
    scale: numpy.array

    per channel scale

    -
    -
    bias: numpy.array

    per channel bias

    -
    -
    -
    -
    -
    - -
    -
    -coremltools.models.neural_network.quantization_utils._quantize_nn_spec(nn_spec, nbits, qm, **kwargs)
    -

    Quantize weights in NeuralNetwork type mlmodel specifications.

    -
    - -
    -
    -coremltools.models.neural_network.quantization_utils._quantize_wp(wp, nbits, qm, axis=0, **kwargs)
    -

    Quantize the weight blob

    -
    -
    wp: numpy.array

    Weight parameters

    -
    -
    nbits: int

    Number of bits

    -
    -
    qm:

    Quantization mode

    -
    -
    lut_function: (callable function)

    Python callable representing a look-up table

    -
    -
    -
    -
    Returns
    -
    -
    scale: numpy.array

    Per-channel scale

    -
    -
    bias: numpy.array

    Per-channel bias

    -
    -
    lut: numpy.array

    Lookup table

    -
    -
    quantized_wp: numpy.array

    Quantized weight of same shape as wp, with dtype numpy.uint8

    -
    -
    -
    -
    -
    - -
    -
    -coremltools.models.neural_network.quantization_utils._quantize_wp_field(wp, nbits, qm, shape, axis=0, **kwargs)
    -

    Quantize WeightParam field in Neural Network Protobuf

    -
    -
    wp: MLModel.NeuralNetwork.WeightParam

    WeightParam field

    -
    -
    nbits: int

    Number of bits to be quantized

    -
    -
    qm: str

    Quantization mode

    -
    -
    shape: tuple

    Tensor shape held by wp

    -
    -
    axis: int

    Axis over which quantization is performed on, can be either 0 or 1

    -
    -
    lut_function: (callable function)

    Python callable representing a LUT table function

    -
    -
    -
    -
    coremltools.models.neural_network.quantization_utils.activate_int8_int8_matrix_multiplications(spec, selector=None)