diff --git a/coremltools/converters/mil/backend/mil/load.py b/coremltools/converters/mil/backend/mil/load.py index 051f88fa0..27aaeda84 100644 --- a/coremltools/converters/mil/backend/mil/load.py +++ b/coremltools/converters/mil/backend/mil/load.py @@ -619,7 +619,7 @@ def _decouple_state_and_input( List["proto.Model_pb2.FeatureDescription"], List["proto.Model_pb2.FeatureDescription"] ]: """ - Utils seperates state input from non-state input features. + Utils separates state input from non-state input features. """ state_features = [] non_state_input_features = [] diff --git a/coremltools/converters/mil/backend/mil/test_load.py b/coremltools/converters/mil/backend/mil/test_load.py index d6f0ac41d..de120c4ac 100644 --- a/coremltools/converters/mil/backend/mil/test_load.py +++ b/coremltools/converters/mil/backend/mil/test_load.py @@ -964,7 +964,7 @@ def func_1(y): # main function is the default function self.verify_stateful_model(mlmodel, np.zeros((3,))) - # save the mlmodel on disk, and load "main" and "func_1" seperately + # save the mlmodel on disk, and load "main" and "func_1" separately package_path = tempfile.mkdtemp(suffix=".mlpackage") mlmodel.save(package_path) diff --git a/coremltools/converters/mil/mil/passes/defs/optimize_repeat_ops.py b/coremltools/converters/mil/mil/passes/defs/optimize_repeat_ops.py index dbb61d290..1d7f3f864 100644 --- a/coremltools/converters/mil/mil/passes/defs/optimize_repeat_ops.py +++ b/coremltools/converters/mil/mil/passes/defs/optimize_repeat_ops.py @@ -575,7 +575,7 @@ def _fuse_casts_ops_across_blocks(self, block: Block, ops_to_fused: Tuple[Operat def _fuse_or_cancel_consecutive_casts_block_wrapper(self, block): def _fuse_or_cancel_consecutive_casts_block(block, cast_ops_across_blocks): # We first make sure all the inner blocks are optimized - # It is important to do it seperately in the very beginning, to ensure the last step of optimization cast ops across the block boundary is correct. + # It is important to do it separately in the very beginning, to ensure the last step of optimization cast ops across the block boundary is correct. for op in block.operations: for b in op.blocks: self._fuse_or_cancel_consecutive_casts_block_wrapper(b)