Permalink
| /* | |
| * Copyright (c) 2007-2011 Apple Inc. All rights reserved. | |
| * | |
| * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
| * | |
| * This file contains Original Code and/or Modifications of Original Code | |
| * as defined in and that are subject to the Apple Public Source License | |
| * Version 2.0 (the 'License'). You may not use this file except in | |
| * compliance with the License. The rights granted to you under the License | |
| * may not be used to create, or enable the creation or redistribution of, | |
| * unlawful or unlicensed copies of an Apple operating system, or to | |
| * circumvent, violate, or enable the circumvention or violation of, any | |
| * terms of an Apple operating system software license agreement. | |
| * | |
| * Please obtain a copy of the License at | |
| * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
| * | |
| * The Original Code and all software distributed under the License are | |
| * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
| * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
| * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
| * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
| * Please see the License for the specific language governing rights and | |
| * limitations under the License. | |
| * | |
| * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
| */ | |
| #include <mach_debug.h> | |
| #include <mach_kdp.h> | |
| #include <debug.h> | |
| #include <mach/vm_types.h> | |
| #include <mach/vm_param.h> | |
| #include <kern/misc_protos.h> | |
| #include <kern/assert.h> | |
| #include <vm/vm_kern.h> | |
| #include <vm/vm_page.h> | |
| #include <vm/pmap.h> | |
| #include <arm64/proc_reg.h> | |
| #include <arm64/lowglobals.h> | |
| #include <arm/cpu_data_internal.h> | |
| #include <arm/misc_protos.h> | |
| #include <pexpert/arm64/boot.h> | |
| #include <libkern/kernel_mach_header.h> | |
| #include <libkern/section_keywords.h> | |
| #if KASAN | |
| extern vm_offset_t shadow_pbase; | |
| extern vm_offset_t shadow_ptop; | |
| extern vm_offset_t physmap_vbase; | |
| extern vm_offset_t physmap_vtop; | |
| #endif | |
| /* | |
| * Denotes the end of xnu. | |
| */ | |
| extern void *last_kernel_symbol; | |
| /* | |
| * KASLR parameters | |
| */ | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_base; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_top; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kext_base; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kext_top; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_stext; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_etext; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_slide; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_slid_base; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_slid_top; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_stext; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_etext; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_sdata; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_edata; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_sinfo; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_einfo; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_slinkedit; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) vm_elinkedit; | |
| /* Used by <mach/arm/vm_param.h> */ | |
| SECURITY_READ_ONLY_LATE(unsigned long) gVirtBase; | |
| SECURITY_READ_ONLY_LATE(unsigned long) gPhysBase; | |
| SECURITY_READ_ONLY_LATE(unsigned long) gPhysSize; | |
| /* | |
| * NOTE: mem_size is bogus on large memory machines. | |
| * We will pin it to 0x80000000 if there is more than 2 GB | |
| * This is left only for compatibility and max_mem should be used. | |
| */ | |
| vm_offset_t mem_size; /* Size of actual physical memory present | |
| * minus any performance buffer and possibly | |
| * limited by mem_limit in bytes */ | |
| uint64_t mem_actual; /* The "One True" physical memory size | |
| * actually, it's the highest physical | |
| * address + 1 */ | |
| uint64_t max_mem; /* Size of physical memory (bytes), adjusted | |
| * by maxmem */ | |
| uint64_t sane_size; /* Memory size to use for defaults | |
| * calculations */ | |
| /* This no longer appears to be used; kill it? */ | |
| addr64_t vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Highest kernel | |
| * virtual address known | |
| * to the VM system */ | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segTEXTB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizeTEXT; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segDATACONSTB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizeDATACONST; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segTEXTEXECB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizeTEXTEXEC; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segDATAB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizeDATA; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segLINKB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizeLINK; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segKLDB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizeKLD; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segLASTB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizeLAST; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) segPRELINKTEXTB; | |
| SECURITY_READ_ONLY_LATE(unsigned long) segSizePRELINKTEXT; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKTEXTEXECB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKTEXTEXEC; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKDATACONSTB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKDATACONST; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segPRELINKDATAB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizePRELINKDATA; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKLLVMCOVB = 0; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKLLVMCOV = 0; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKLINKEDITB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKLINKEDIT; | |
| SECURITY_READ_ONLY_LATE(static vm_offset_t) segPRELINKINFOB; | |
| SECURITY_READ_ONLY_LATE(static unsigned long) segSizePRELINKINFO; | |
| SECURITY_READ_ONLY_LATE(static boolean_t) use_contiguous_hint = TRUE; | |
| SECURITY_READ_ONLY_LATE(unsigned) PAGE_SHIFT_CONST; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) end_kern; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) etext; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) sdata; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) edata; | |
| vm_offset_t alloc_ptpage(boolean_t map_static); | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) ropage_next; | |
| /* | |
| * Bootstrap the system enough to run with virtual memory. | |
| * Map the kernel's code and data, and allocate the system page table. | |
| * Page_size must already be set. | |
| * | |
| * Parameters: | |
| * first_avail: first available physical page - | |
| * after kernel page tables | |
| * avail_start: PA of first physical page | |
| * avail_end: PA of last physical page | |
| */ | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) first_avail; | |
| SECURITY_READ_ONLY_LATE(vm_offset_t) static_memory_end; | |
| SECURITY_READ_ONLY_LATE(pmap_paddr_t) avail_start; | |
| SECURITY_READ_ONLY_LATE(pmap_paddr_t) avail_end; | |
| #define MEM_SIZE_MAX 0x100000000ULL | |
| #if defined(KERNEL_INTEGRITY_KTRR) | |
| #if __ARM64_TWO_LEVEL_PMAP__ | |
| /* We could support this configuration, but it adds memory overhead. */ | |
| #error This configuration is not supported | |
| #endif | |
| #endif | |
| /* | |
| * This rounds the given address up to the nearest boundary for a PTE contiguous | |
| * hint. | |
| */ | |
| static vm_offset_t | |
| round_up_pte_hint_address(vm_offset_t address) | |
| { | |
| vm_offset_t hint_size = ARM_PTE_SIZE << ARM_PTE_HINT_ENTRIES_SHIFT; | |
| return ((address + (hint_size - 1)) & ~(hint_size - 1)); | |
| } | |
| /* allocate a page for a page table: we support static and dynamic mappings. | |
| * | |
| * returns a virtual address for the allocated page | |
| * | |
| * for static mappings, we allocate from the region ropagetable_begin to ro_pagetable_end-1, | |
| * which is defined in the DATA_CONST segment and will be protected RNX when vm_prot_finalize runs. | |
| * | |
| * for dynamic mappings, we allocate from avail_start, which should remain RWNX. | |
| */ | |
| vm_offset_t alloc_ptpage(boolean_t map_static) { | |
| vm_offset_t vaddr; | |
| #if !(defined(KERNEL_INTEGRITY_KTRR)) | |
| map_static = FALSE; | |
| #endif | |
| if (!ropage_next) { | |
| ropage_next = (vm_offset_t)&ropagetable_begin; | |
| } | |
| if (map_static) { | |
| assert(ropage_next < (vm_offset_t)&ropagetable_end); | |
| vaddr = ropage_next; | |
| ropage_next += ARM_PGBYTES; | |
| return vaddr; | |
| } else { | |
| vaddr = phystokv(avail_start); | |
| avail_start += ARM_PGBYTES; | |
| return vaddr; | |
| } | |
| } | |
| #if DEBUG | |
| void dump_kva_l2(vm_offset_t tt_base, tt_entry_t *tt, int indent, uint64_t *rosz_out, uint64_t *rwsz_out); | |
| void dump_kva_l2(vm_offset_t tt_base, tt_entry_t *tt, int indent, uint64_t *rosz_out, uint64_t *rwsz_out) { | |
| unsigned int i; | |
| boolean_t cur_ro, prev_ro = 0; | |
| int start_entry = -1; | |
| tt_entry_t cur, prev = 0; | |
| pmap_paddr_t robegin = kvtophys((vm_offset_t)&ropagetable_begin); | |
| pmap_paddr_t roend = kvtophys((vm_offset_t)&ropagetable_end); | |
| boolean_t tt_static = kvtophys((vm_offset_t)tt) >= robegin && | |
| kvtophys((vm_offset_t)tt) < roend; | |
| for(i=0; i<TTE_PGENTRIES; i++) { | |
| int tte_type = tt[i] & ARM_TTE_TYPE_MASK; | |
| cur = tt[i] & ARM_TTE_TABLE_MASK; | |
| if (tt_static) { | |
| /* addresses mapped by this entry are static if it is a block mapping, | |
| * or the table was allocated from the RO page table region */ | |
| cur_ro = (tte_type == ARM_TTE_TYPE_BLOCK) || (cur >= robegin && cur < roend); | |
| } else { | |
| cur_ro = 0; | |
| } | |
| if ((cur == 0 && prev != 0) || (cur_ro != prev_ro && prev != 0)) { // falling edge | |
| uintptr_t start,end,sz; | |
| start = (uintptr_t)start_entry << ARM_TT_L2_SHIFT; | |
| start += tt_base; | |
| end = ((uintptr_t)i << ARM_TT_L2_SHIFT) - 1; | |
| end += tt_base; | |
| sz = end - start + 1; | |
| printf("%*s0x%08x_%08x-0x%08x_%08x %s (%luMB)\n", | |
| indent*4, "", | |
| (uint32_t)(start >> 32),(uint32_t)start, | |
| (uint32_t)(end >> 32),(uint32_t)end, | |
| prev_ro ? "Static " : "Dynamic", | |
| (sz >> 20)); | |
| if (prev_ro) { | |
| *rosz_out += sz; | |
| } else { | |
| *rwsz_out += sz; | |
| } | |
| } | |
| if ((prev == 0 && cur != 0) || cur_ro != prev_ro) { // rising edge: set start | |
| start_entry = i; | |
| } | |
| prev = cur; | |
| prev_ro = cur_ro; | |
| } | |
| } | |
| void dump_kva_space() { | |
| uint64_t tot_rosz=0, tot_rwsz=0; | |
| int ro_ptpages, rw_ptpages; | |
| pmap_paddr_t robegin = kvtophys((vm_offset_t)&ropagetable_begin); | |
| pmap_paddr_t roend = kvtophys((vm_offset_t)&ropagetable_end); | |
| boolean_t root_static = kvtophys((vm_offset_t)cpu_tte) >= robegin && | |
| kvtophys((vm_offset_t)cpu_tte) < roend; | |
| uint64_t kva_base = ~((1ULL << (64 - T1SZ_BOOT)) - 1); | |
| printf("Root page table: %s\n", root_static ? "Static" : "Dynamic"); | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| for(unsigned int i=0; i<TTE_PGENTRIES; i++) { | |
| pmap_paddr_t cur; | |
| boolean_t cur_ro; | |
| uintptr_t start,end; | |
| uint64_t rosz = 0, rwsz = 0; | |
| if ((cpu_tte[i] & ARM_TTE_VALID) == 0) | |
| continue; | |
| cur = cpu_tte[i] & ARM_TTE_TABLE_MASK; | |
| start = (uint64_t)i << ARM_TT_L1_SHIFT; | |
| start = start + kva_base; | |
| end = start + (ARM_TT_L1_SIZE - 1); | |
| cur_ro = cur >= robegin && cur < roend; | |
| printf("0x%08x_%08x-0x%08x_%08x %s\n", | |
| (uint32_t)(start >> 32),(uint32_t)start, | |
| (uint32_t)(end >> 32),(uint32_t)end, | |
| cur_ro ? "Static " : "Dynamic"); | |
| dump_kva_l2(start, (tt_entry_t*)phystokv(cur), 1, &rosz, &rwsz); | |
| tot_rosz += rosz; | |
| tot_rwsz += rwsz; | |
| } | |
| #else | |
| dump_kva_l2(kva_base, cpu_tte, 0, &tot_rosz, &tot_rwsz); | |
| #endif /* !_ARM64_TWO_LEVEL_PMAP__ */ | |
| printf("L2 Address space mapped: Static %lluMB Dynamic %lluMB Total %lluMB\n", | |
| tot_rosz >> 20, | |
| tot_rwsz >> 20, | |
| (tot_rosz >> 20) + (tot_rwsz >> 20)); | |
| ro_ptpages = (int)((ropage_next - (vm_offset_t)&ropagetable_begin) >> ARM_PGSHIFT); | |
| rw_ptpages = (int)(lowGlo.lgStaticSize >> ARM_PGSHIFT); | |
| printf("Pages used: static %d dynamic %d\n", ro_ptpages, rw_ptpages); | |
| } | |
| #endif /* DEBUG */ | |
| #if defined(KERNEL_INTEGRITY_KTRR) | |
| extern void bootstrap_instructions; | |
| /* | |
| * arm_replace_identity_map takes the V=P map that we construct in start.s | |
| * and repurposes it in order to have it map only the page we need in order | |
| * to turn on the MMU. This prevents us from running into issues where | |
| * KTRR will cause us to fault on executable block mappings that cross the | |
| * KTRR boundary. | |
| */ | |
| static void arm_replace_identity_map(boot_args * args) | |
| { | |
| vm_offset_t addr; | |
| pmap_paddr_t paddr; | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| pmap_paddr_t l1_ptp_phys = 0; | |
| tt_entry_t *l1_ptp_virt = NULL; | |
| tt_entry_t *tte1 = NULL; | |
| #endif | |
| pmap_paddr_t l2_ptp_phys = 0; | |
| tt_entry_t *l2_ptp_virt = NULL; | |
| tt_entry_t *tte2 = NULL; | |
| pmap_paddr_t l3_ptp_phys = 0; | |
| pt_entry_t *l3_ptp_virt = NULL; | |
| pt_entry_t *ptep = NULL; | |
| addr = ((vm_offset_t)&bootstrap_instructions) & ~ARM_PGMASK; | |
| paddr = kvtophys(addr); | |
| /* | |
| * The V=P page tables (at the time this comment was written) start | |
| * after the last bit of kernel data, and consist of 1 to 2 pages. | |
| * Grab references to those pages, and allocate an L3 page. | |
| */ | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| l1_ptp_phys = args->topOfKernelData; | |
| l1_ptp_virt = (tt_entry_t *)phystokv(l1_ptp_phys); | |
| tte1 = &l1_ptp_virt[(((paddr) & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT)]; | |
| l2_ptp_phys = l1_ptp_phys + ARM_PGBYTES; | |
| #else | |
| l2_ptp_phys = args->topOfKernelData; | |
| #endif | |
| l2_ptp_virt = (tt_entry_t *)phystokv(l2_ptp_phys); | |
| tte2 = &l2_ptp_virt[(((paddr) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
| l3_ptp_virt = (pt_entry_t *)alloc_ptpage(FALSE); | |
| l3_ptp_phys = kvtophys((vm_offset_t)l3_ptp_virt); | |
| ptep = &l3_ptp_virt[(((paddr) & ARM_TT_L3_INDEX_MASK) >> ARM_TT_L3_SHIFT)]; | |
| /* | |
| * Replace the large V=P mapping with a mapping that provides only the | |
| * mappings needed to turn on the MMU. | |
| */ | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| bzero(l1_ptp_virt, ARM_PGBYTES); | |
| *tte1 = ARM_TTE_BOOT_TABLE | (l2_ptp_phys & ARM_TTE_TABLE_MASK); | |
| #endif | |
| bzero(l2_ptp_virt, ARM_PGBYTES); | |
| *tte2 = ARM_TTE_BOOT_TABLE | (l3_ptp_phys & ARM_TTE_TABLE_MASK); | |
| *ptep = (paddr & ARM_PTE_MASK) | | |
| ARM_PTE_TYPE_VALID | | |
| ARM_PTE_SH(SH_OUTER_MEMORY) | | |
| ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITEBACK) | | |
| ARM_PTE_AF | | |
| ARM_PTE_AP(AP_RONA) | | |
| ARM_PTE_NX; | |
| } | |
| #endif /* defined(KERNEL_INTEGRITY_KTRR)*/ | |
| /* | |
| * arm_vm_page_granular_helper updates protections at the L3 level. It will (if | |
| * neccessary) allocate a page for the L3 table and update the corresponding L2 | |
| * entry. Then, it will iterate over the L3 table, updating protections as necessary. | |
| * This expects to be invoked on a L2 entry or sub L2 entry granularity, so this should | |
| * not be invoked from a context that does not do L2 iteration separately (basically, | |
| * don't call this except from arm_vm_page_granular_prot). | |
| */ | |
| static void | |
| arm_vm_page_granular_helper(vm_offset_t start, vm_offset_t _end, vm_offset_t va, | |
| int pte_prot_APX, int pte_prot_XN, int forceCoarse, | |
| pt_entry_t **deferred_pte, pt_entry_t *deferred_ptmp) | |
| { | |
| if (va & ARM_TT_L2_OFFMASK) { /* ragged edge hanging over a ARM_TT_L2_SIZE boundary */ | |
| #if __ARM64_TWO_LEVEL_PMAP__ | |
| tt_entry_t *tte2; | |
| #else | |
| tt_entry_t *tte1, *tte2; | |
| #endif | |
| tt_entry_t tmplate; | |
| pmap_paddr_t pa; | |
| pt_entry_t *ppte, *recursive_pte = NULL, ptmp, recursive_ptmp = 0; | |
| addr64_t ppte_phys; | |
| unsigned i; | |
| va &= ~ARM_TT_L2_OFFMASK; | |
| pa = va - gVirtBase + gPhysBase; | |
| #if __ARM64_TWO_LEVEL_PMAP__ | |
| tte2 = &cpu_tte[(((va) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
| #else | |
| tte1 = &cpu_tte[(((va) & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT)]; | |
| tte2 = &((tt_entry_t*) phystokv((*tte1) & ARM_TTE_TABLE_MASK))[(((va) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
| #endif | |
| tmplate = *tte2; | |
| if (ARM_TTE_TYPE_TABLE == (tmplate & ARM_TTE_TYPE_MASK)) { | |
| /* pick up the existing page table. */ | |
| ppte = (pt_entry_t *)phystokv((tmplate & ARM_TTE_TABLE_MASK)); | |
| } else { | |
| // TTE must be reincarnated COARSE. | |
| ppte = (pt_entry_t*)alloc_ptpage(TRUE); | |
| ppte_phys = kvtophys((vm_offset_t)ppte); | |
| pmap_init_pte_static_page(kernel_pmap, ppte, pa); | |
| *tte2 = pa_to_tte(ppte_phys) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID; | |
| } | |
| /* Apply the desired protections to the specified page range */ | |
| for (i = 0; i <= (ARM_TT_L3_INDEX_MASK>>ARM_TT_L3_SHIFT); i++) { | |
| if ((start <= va) && (va < _end)) { | |
| ptmp = pa | ARM_PTE_AF | ARM_PTE_SH(SH_OUTER_MEMORY) | ARM_PTE_TYPE; | |
| ptmp = ptmp | ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DEFAULT); | |
| ptmp = ptmp | ARM_PTE_AP(pte_prot_APX); | |
| ptmp = ptmp | ARM_PTE_NX; | |
| if (pte_prot_XN) { | |
| ptmp = ptmp | ARM_PTE_PNX; | |
| } | |
| /* | |
| * If we can, apply the contiguous hint to this range. The hint is | |
| * applicable if we are not trying to create per-page mappings and | |
| * if the current address falls within a hint-sized range that will | |
| * be fully covered by this mapping request. | |
| */ | |
| if ((va >= round_up_pte_hint_address(start)) && (round_up_pte_hint_address(va + 1) < _end) && | |
| !forceCoarse && use_contiguous_hint) { | |
| ptmp |= ARM_PTE_HINT; | |
| } | |
| if ((pt_entry_t*)(phystokv(pa)) == ppte) { | |
| assert(recursive_pte == NULL); | |
| /* This assert should be reenabled as part of rdar://problem/30149465 */ | |
| assert(!forceCoarse); | |
| recursive_pte = &ppte[i]; | |
| recursive_ptmp = ptmp; | |
| } else if ((deferred_pte != NULL) && (&ppte[i] == &recursive_pte[1])) { | |
| assert(*deferred_pte == NULL); | |
| assert(deferred_ptmp != NULL); | |
| *deferred_pte = &ppte[i]; | |
| *deferred_ptmp = ptmp; | |
| } else { | |
| ppte[i] = ptmp; | |
| } | |
| } | |
| va += ARM_PGBYTES; | |
| pa += ARM_PGBYTES; | |
| } | |
| if (recursive_pte != NULL) | |
| *recursive_pte = recursive_ptmp; | |
| } | |
| } | |
| /* | |
| * arm_vm_page_granular_prot updates protections by iterating over the L2 entries and | |
| * changing them. If a particular chunk necessitates L3 entries (for reasons of | |
| * alignment or length, or an explicit request that the entry be fully expanded), we | |
| * hand off to arm_vm_page_granular_helper to deal with the L3 chunk of the logic. | |
| * | |
| * Note that counterintuitively a forceCoarse request is a request to expand the entries | |
| * out to L3, i.e. to make *finer* grained mappings. That comes from historical arm32 | |
| * nomenclature in which the 4K granule is "coarse" vs. the 1K "fine" granule (which we | |
| * don't use). | |
| */ | |
| static void | |
| arm_vm_page_granular_prot(vm_offset_t start, unsigned long size, | |
| int tte_prot_XN, int pte_prot_APX, int pte_prot_XN, int forceCoarse) | |
| { | |
| pt_entry_t *deferred_pte = NULL, deferred_ptmp = 0; | |
| vm_offset_t _end = start + size; | |
| vm_offset_t align_start = (start + ARM_TT_L2_OFFMASK) & ~ARM_TT_L2_OFFMASK; | |
| if (size == 0x0UL) | |
| return; | |
| if (align_start > _end) { | |
| arm_vm_page_granular_helper(start, _end, start, pte_prot_APX, pte_prot_XN, forceCoarse, NULL, NULL); | |
| return; | |
| } | |
| arm_vm_page_granular_helper(start, align_start, start, pte_prot_APX, pte_prot_XN, forceCoarse, &deferred_pte, &deferred_ptmp); | |
| while ((_end - align_start) >= ARM_TT_L2_SIZE) { | |
| if (forceCoarse) | |
| arm_vm_page_granular_helper(align_start, align_start+ARM_TT_L2_SIZE, align_start + 1, | |
| pte_prot_APX, pte_prot_XN, forceCoarse, NULL, NULL); | |
| else { | |
| #if __ARM64_TWO_LEVEL_PMAP__ | |
| tt_entry_t *tte2; | |
| #else | |
| tt_entry_t *tte1, *tte2; | |
| #endif | |
| tt_entry_t tmplate; | |
| #if __ARM64_TWO_LEVEL_PMAP__ | |
| tte2 = &cpu_tte[((align_start & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
| #else | |
| tte1 = &cpu_tte[((align_start & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT)]; | |
| tte2 = &((tt_entry_t*) phystokv((*tte1) & ARM_TTE_TABLE_MASK))[((align_start & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
| #endif | |
| tmplate = *tte2; | |
| tmplate = (tmplate & ~ARM_TTE_BLOCK_APMASK) | ARM_TTE_BLOCK_AP(pte_prot_APX); | |
| tmplate = tmplate | ARM_TTE_BLOCK_NX; | |
| if (tte_prot_XN) | |
| tmplate = tmplate | ARM_TTE_BLOCK_PNX; | |
| *tte2 = tmplate; | |
| } | |
| align_start += ARM_TT_L2_SIZE; | |
| } | |
| if (align_start < _end) | |
| arm_vm_page_granular_helper(align_start, _end, _end, pte_prot_APX, pte_prot_XN, forceCoarse, &deferred_pte, &deferred_ptmp); | |
| if (deferred_pte != NULL) | |
| *deferred_pte = deferred_ptmp; | |
| } | |
| static inline void | |
| arm_vm_page_granular_RNX(vm_offset_t start, unsigned long size, int forceCoarse) | |
| { | |
| arm_vm_page_granular_prot(start, size, 1, AP_RONA, 1, forceCoarse); | |
| } | |
| static inline void | |
| arm_vm_page_granular_ROX(vm_offset_t start, unsigned long size, int forceCoarse) | |
| { | |
| arm_vm_page_granular_prot(start, size, 0, AP_RONA, 0, forceCoarse); | |
| } | |
| static inline void | |
| arm_vm_page_granular_RWNX(vm_offset_t start, unsigned long size, int forceCoarse) | |
| { | |
| arm_vm_page_granular_prot(start, size, 1, AP_RWNA, 1, forceCoarse); | |
| } | |
| static inline void | |
| arm_vm_page_granular_RWX(vm_offset_t start, unsigned long size, int forceCoarse) | |
| { | |
| arm_vm_page_granular_prot(start, size, 0, AP_RWNA, 0, forceCoarse); | |
| } | |
| void | |
| arm_vm_prot_init(boot_args * args) | |
| { | |
| /* | |
| * Enforce W^X protections on sections that have been identified so far. This will be | |
| * further refined for each KEXT's TEXT and DATA segments in readPrelinkedExtensions() | |
| */ | |
| bool use_small_page_mappings = FALSE; | |
| /* | |
| * First off, we'll create mappings for any physical memory preceeding the kernel TEXT. | |
| * This is memory that we want to give to the VM; this will be accomplished through an | |
| * ml_static_mfree call in arm_vm_prot_finalize. This allows the pmap/vm bootstrap | |
| * routines to assume they will have a physically contiguous chunk of memory to deal | |
| * with during bootstrap, while reclaiming this memory later. | |
| */ | |
| arm_vm_page_granular_RWNX(gVirtBase, segPRELINKTEXTB - gVirtBase, use_small_page_mappings); // Memory for the VM | |
| /* Map coalesced kext TEXT segment RWNX for now */ | |
| arm_vm_page_granular_RWNX(segPRELINKTEXTB, segSizePRELINKTEXT, FALSE); // Refined in OSKext::readPrelinkedExtensions | |
| /* Map coalesced kext DATA_CONST segment RWNX (could be empty) */ | |
| arm_vm_page_granular_RWNX(segPLKDATACONSTB, segSizePLKDATACONST, FALSE); // Refined in OSKext::readPrelinkedExtensions | |
| /* Map coalesced kext TEXT_EXEC segment RWX (could be empty) */ | |
| arm_vm_page_granular_ROX(segPLKTEXTEXECB, segSizePLKTEXTEXEC, FALSE); // Refined in OSKext::readPrelinkedExtensions | |
| /* if new segments not present, set space between PRELINK_TEXT and xnu TEXT to RWNX | |
| * otherwise we no longer expecting any space between the coalesced kext read only segments and xnu rosegments | |
| */ | |
| if (!segSizePLKDATACONST && !segSizePLKTEXTEXEC) { | |
| arm_vm_page_granular_RWNX(segPRELINKTEXTB + segSizePRELINKTEXT, segTEXTB - (segPRELINKTEXTB + segSizePRELINKTEXT), FALSE); | |
| } else { | |
| /* | |
| * If we have the new segments, we should still protect the gap between kext | |
| * read-only pages and kernel read-only pages, in the event that this gap | |
| * exists. | |
| */ | |
| if ((segPLKDATACONSTB + segSizePLKDATACONST) < segTEXTB) { | |
| arm_vm_page_granular_RWNX(segPLKDATACONSTB + segSizePLKDATACONST, segTEXTB - (segPLKDATACONSTB + segSizePLKDATACONST), FALSE); | |
| } | |
| } | |
| /* | |
| * Protection on kernel text is loose here to allow shenanigans early on. These | |
| * protections are tightened in arm_vm_prot_finalize(). This is necessary because | |
| * we currently patch LowResetVectorBase in cpu.c. | |
| * | |
| * TEXT segment contains mach headers and other non-executable data. This will become RONX later. | |
| */ | |
| arm_vm_page_granular_RNX(segTEXTB, segSizeTEXT, FALSE); | |
| /* Can DATACONST start out and stay RNX? | |
| * NO, stuff in this segment gets modified during startup (viz. mac_policy_init()/mac_policy_list) | |
| * Make RNX in prot_finalize | |
| */ | |
| arm_vm_page_granular_RWNX(segDATACONSTB, segSizeDATACONST, FALSE); | |
| /* TEXTEXEC contains read only executable code: becomes ROX in prot_finalize */ | |
| arm_vm_page_granular_RWX(segTEXTEXECB, segSizeTEXTEXEC, FALSE); | |
| /* DATA segment will remain RWNX */ | |
| arm_vm_page_granular_RWNX(segDATAB, segSizeDATA, FALSE); | |
| arm_vm_page_granular_ROX(segKLDB, segSizeKLD, FALSE); | |
| arm_vm_page_granular_RWNX(segLINKB, segSizeLINK, FALSE); | |
| arm_vm_page_granular_ROX(segLASTB, segSizeLAST, FALSE); // __LAST may be empty, but we cannot assume this | |
| arm_vm_page_granular_RWNX(segPRELINKDATAB, segSizePRELINKDATA, FALSE); // Prelink __DATA for kexts (RW data) | |
| if (segSizePLKLLVMCOV > 0) | |
| arm_vm_page_granular_RWNX(segPLKLLVMCOVB, segSizePLKLLVMCOV, FALSE); // LLVM code coverage data | |
| arm_vm_page_granular_RWNX(segPLKLINKEDITB, segSizePLKLINKEDIT, use_small_page_mappings); // Coalesced kext LINKEDIT segment | |
| arm_vm_page_granular_RWNX(segPRELINKINFOB, segSizePRELINKINFO, FALSE); /* PreLinkInfoDictionary */ | |
| arm_vm_page_granular_RWNX(end_kern, phystokv(args->topOfKernelData) - end_kern, use_small_page_mappings); /* Device Tree, RAM Disk (if present), bootArgs */ | |
| /* | |
| * This is offset by 4 pages to make room for the boot page tables; we could probably | |
| * include them in the overall mapping, but we'll be paranoid for now. | |
| */ | |
| vm_offset_t extra = 0; | |
| #if KASAN | |
| /* add the KASAN stolen memory to the physmap */ | |
| extra = shadow_ptop - shadow_pbase; | |
| /* record the extent of the physmap */ | |
| physmap_vbase = phystokv(args->topOfKernelData) + ARM_PGBYTES * 4; | |
| physmap_vtop = static_memory_end; | |
| #endif | |
| arm_vm_page_granular_RNX(phystokv(args->topOfKernelData), ARM_PGBYTES * 4, FALSE); // Boot page tables; they should not be mutable. | |
| arm_vm_page_granular_RWNX(phystokv(args->topOfKernelData) + ARM_PGBYTES * 4, | |
| extra + static_memory_end - ((phystokv(args->topOfKernelData) + ARM_PGBYTES * 4)), use_small_page_mappings); // rest of physmem | |
| } | |
| void | |
| arm_vm_prot_finalize(boot_args * args) | |
| { | |
| #pragma unused(args) | |
| /* | |
| * At this point, we are far enough along in the boot process that it will be | |
| * safe to free up all of the memory preceeding the kernel. It may in fact | |
| * be safe to do this earlier. | |
| * | |
| * This keeps the memory in the V-to-P mapping, but advertises it to the VM | |
| * as usable. | |
| */ | |
| /* | |
| * if old style PRELINK segment exists, free memory before it, and after it before XNU text | |
| * otherwise we're dealing with a new style kernel cache, so we should just free the | |
| * memory before PRELINK_TEXT segment, since the rest of the KEXT read only data segments | |
| * should be immediately followed by XNU's TEXT segment | |
| */ | |
| ml_static_mfree(gVirtBase, segPRELINKTEXTB - gVirtBase); | |
| if (!segSizePLKDATACONST && !segSizePLKTEXTEXEC) { | |
| /* If new segments not present, PRELINK_TEXT is not dynamically sized, free DRAM between it and xnu TEXT */ | |
| ml_static_mfree(segPRELINKTEXTB + segSizePRELINKTEXT, segTEXTB - (segPRELINKTEXTB + segSizePRELINKTEXT)); | |
| } | |
| /* | |
| * LowResetVectorBase patching should be done by now, so tighten executable | |
| * protections. | |
| */ | |
| arm_vm_page_granular_ROX(segTEXTEXECB, segSizeTEXTEXEC, FALSE); | |
| /* tighten permissions on kext read only data and code */ | |
| if (segSizePLKDATACONST && segSizePLKTEXTEXEC) { | |
| arm_vm_page_granular_RNX(segPRELINKTEXTB, segSizePRELINKTEXT, FALSE); | |
| arm_vm_page_granular_ROX(segPLKTEXTEXECB, segSizePLKTEXTEXEC, FALSE); | |
| arm_vm_page_granular_RNX(segPLKDATACONSTB, segSizePLKDATACONST, FALSE); | |
| } | |
| #if defined(KERNEL_INTEGRITY_KTRR) | |
| /* | |
| * __LAST,__pinst should no longer be executable. | |
| */ | |
| arm_vm_page_granular_RNX(segLASTB, segSizeLAST, FALSE); | |
| /* | |
| * Must wait until all other region permissions are set before locking down DATA_CONST | |
| * as the kernel static page tables live in DATA_CONST on KTRR enabled systems | |
| * and will become immutable. | |
| */ | |
| #endif | |
| arm_vm_page_granular_RNX(segDATACONSTB, segSizeDATACONST, FALSE); | |
| #ifndef __ARM_L1_PTW__ | |
| FlushPoC_Dcache(); | |
| #endif | |
| flush_mmu_tlb(); | |
| } | |
| #define TBI_USER 0x1 | |
| #define TBI_KERNEL 0x2 | |
| boolean_t user_tbi = TRUE; | |
| /* | |
| * TBI (top-byte ignore) is an ARMv8 feature for ignoring the top 8 bits of | |
| * address accesses. It can be enabled separately for TTBR0 (user) and | |
| * TTBR1 (kernel). We enable it by default for user only, but allow both | |
| * to be controlled by the 'tbi' boot-arg. | |
| */ | |
| static void | |
| set_tbi(void) | |
| { | |
| uint64_t old_tcr, new_tcr; | |
| int tbi = 0; | |
| if (PE_parse_boot_argn("tbi", &tbi, sizeof(tbi))) | |
| user_tbi = ((tbi & TBI_USER) == TBI_USER); | |
| old_tcr = new_tcr = get_tcr(); | |
| new_tcr |= (user_tbi) ? TCR_TBI0_TOPBYTE_IGNORED : 0; | |
| new_tcr |= (tbi & TBI_KERNEL) ? TCR_TBI1_TOPBYTE_IGNORED : 0; | |
| if (old_tcr != new_tcr) { | |
| set_tcr(new_tcr); | |
| sysreg_restore.tcr_el1 = new_tcr; | |
| } | |
| } | |
| void | |
| arm_vm_init(uint64_t memory_size, boot_args * args) | |
| { | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| vm_map_address_t va_l1, va_l1_end; | |
| pmap_paddr_t pa_l1; | |
| tt_entry_t *cpu_l1_tte; | |
| #else | |
| /* | |
| * If we are using two level page tables, rather than the | |
| * 3 level page tables that xnu defaults to for ARM64, | |
| * then a great deal of the code in this path becomes | |
| * redundant. As a result, most of the logic having to | |
| * do with L1 pages will be excluded from such | |
| * configurations in this function. | |
| */ | |
| #endif | |
| vm_map_address_t va_l2, va_l2_end; | |
| pmap_paddr_t pa_l2; | |
| tt_entry_t *cpu_l2_tte; | |
| pmap_paddr_t boot_ttep; | |
| tt_entry_t *boot_tte; | |
| uint64_t mem_segments; | |
| vm_offset_t ptpage_vaddr; | |
| /* | |
| * Get the virtual and physical memory base from boot_args. | |
| */ | |
| gVirtBase = args->virtBase; | |
| gPhysBase = args->physBase; | |
| gPhysSize = args->memSize; | |
| mem_size = args->memSize; | |
| if ((memory_size != 0) && (mem_size > memory_size)) | |
| mem_size = memory_size; | |
| if (mem_size > MEM_SIZE_MAX ) | |
| mem_size = MEM_SIZE_MAX; | |
| static_memory_end = gVirtBase + mem_size; | |
| boot_ttep = args->topOfKernelData; | |
| boot_tte = (tt_entry_t *) phystokv(boot_ttep); | |
| /* | |
| * Four pages: | |
| * TTBR0 L1, TTBR0 L2 - 1:1 bootstrap mapping. | |
| * TTBR1 L1, TTBR1 L2 - kernel mapping | |
| */ | |
| avail_start = boot_ttep + 4*ARM_PGBYTES; | |
| #if defined(KERNEL_INTEGRITY_KTRR) | |
| arm_replace_identity_map(args); | |
| #endif | |
| /* Initialize invalid tte page */ | |
| invalid_tte = (tt_entry_t *)alloc_ptpage(TRUE); | |
| invalid_ttep = kvtophys((vm_offset_t)invalid_tte); | |
| bzero(invalid_tte, ARM_PGBYTES); | |
| /* | |
| * Initialize l1 page table page | |
| */ | |
| #if __ARM64_TWO_LEVEL_PMAP__ | |
| /* | |
| * If we're using a two level page table, we still need to | |
| * set the cpu_ttep to avail_start, as this will be the root | |
| * of our page table regardless of how many levels we are | |
| * using. | |
| */ | |
| #endif | |
| cpu_tte = (tt_entry_t *)alloc_ptpage(TRUE); | |
| cpu_ttep = kvtophys((vm_offset_t)cpu_tte); | |
| bzero(cpu_tte, ARM_PGBYTES); | |
| avail_end = gPhysBase + mem_size; | |
| /* | |
| * Initialize l1 and l2 page table pages : | |
| * map physical memory at the kernel base virtual address | |
| * cover the kernel dynamic address range section | |
| * | |
| * the so called physical aperture should be statically mapped | |
| */ | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| pa_l1 = gPhysBase; | |
| va_l1 = gVirtBase; | |
| va_l1_end = gVirtBase + mem_size; | |
| #if KASAN | |
| /* add the KASAN stolen memory to the physmap */ | |
| va_l1_end = gVirtBase + (shadow_ptop - gPhysBase); | |
| #endif | |
| cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
| while (va_l1 < va_l1_end) { | |
| tt_entry_t *new_tte = (tt_entry_t *)alloc_ptpage(TRUE); | |
| /* Allocate a page and setup L1 Table TTE in L1 */ | |
| *cpu_l1_tte = (kvtophys((vm_offset_t)new_tte) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID; | |
| bzero((void *)new_tte, ARM_PGBYTES); | |
| va_l2 = va_l1; | |
| if (((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE) < va_l1) { | |
| /* If this is the last L1 entry, it must cover the last mapping. */ | |
| va_l2_end = va_l1_end; | |
| } else { | |
| va_l2_end = MIN((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE, va_l1_end); | |
| } | |
| pa_l2 = pa_l1; | |
| cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l1 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
| #else | |
| va_l2 = gVirtBase; | |
| va_l2_end = gVirtBase + mem_size; | |
| pa_l2 = gPhysBase; | |
| cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
| #if KASAN | |
| /* add the KASAN stolen memory to the physmap */ | |
| va_l2_end = gVirtBase + (shadow_ptop - gPhysBase); | |
| #endif | |
| #endif | |
| while (va_l2 < va_l2_end) { | |
| /* Set up L2 Block TTE in L2 */ | |
| *cpu_l2_tte = (pa_l2 & ARM_TTE_BLOCK_L2_MASK) | ARM_TTE_TYPE_BLOCK | |
| | ARM_TTE_VALID | ARM_TTE_BLOCK_AF | |
| | ARM_TTE_BLOCK_AP(AP_RWNA) | ARM_TTE_BLOCK_SH(SH_OUTER_MEMORY) | |
| | ARM_TTE_BLOCK_ATTRINDX(CACHE_ATTRINDX_WRITEBACK); | |
| va_l2 += ARM_TT_L2_SIZE; | |
| pa_l2 += ARM_TT_L2_SIZE; | |
| cpu_l2_tte++; | |
| } | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| cpu_l1_tte++; | |
| va_l1 = va_l2; | |
| pa_l1 = pa_l2; | |
| } | |
| #endif | |
| /* | |
| * Now retrieve addresses for end, edata, and etext from MACH-O headers | |
| */ | |
| segPRELINKTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PRELINK_TEXT", &segSizePRELINKTEXT); | |
| segPLKDATACONSTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_DATA_CONST", &segSizePLKDATACONST); | |
| segPLKTEXTEXECB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_TEXT_EXEC", &segSizePLKTEXTEXEC); | |
| segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__TEXT", &segSizeTEXT); | |
| segDATACONSTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__DATA_CONST", &segSizeDATACONST); | |
| segTEXTEXECB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__TEXT_EXEC", &segSizeTEXTEXEC); | |
| segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__DATA", &segSizeDATA); | |
| segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__LINKEDIT", &segSizeLINK); | |
| segKLDB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__KLD", &segSizeKLD); | |
| segPRELINKDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PRELINK_DATA", &segSizePRELINKDATA); | |
| segPRELINKINFOB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PRELINK_INFO", &segSizePRELINKINFO); | |
| segPLKLLVMCOVB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_LLVM_COV", &segSizePLKLLVMCOV); | |
| segPLKLINKEDITB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_LINKEDIT", &segSizePLKLINKEDIT); | |
| segLASTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__LAST", &segSizeLAST); | |
| (void) PE_parse_boot_argn("use_contiguous_hint", &use_contiguous_hint, sizeof(use_contiguous_hint)); | |
| assert(segSizePRELINKTEXT < 0x03000000); /* 23355738 */ | |
| /* if one of the new segments is present, the other one better be as well */ | |
| if (segSizePLKDATACONST || segSizePLKTEXTEXEC) { | |
| assert(segSizePLKDATACONST && segSizePLKTEXTEXEC); | |
| } | |
| etext = (vm_offset_t) segTEXTB + segSizeTEXT; | |
| sdata = (vm_offset_t) segDATAB; | |
| edata = (vm_offset_t) segDATAB + segSizeDATA; | |
| end_kern = round_page(getlastaddr()); /* Force end to next page */ | |
| vm_set_page_size(); | |
| vm_kernel_base = segTEXTB; | |
| vm_kernel_top = (vm_offset_t) &last_kernel_symbol; | |
| vm_kext_base = segPRELINKTEXTB; | |
| vm_kext_top = vm_kext_base + segSizePRELINKTEXT; | |
| vm_prelink_stext = segPRELINKTEXTB; | |
| if (!segSizePLKTEXTEXEC && !segSizePLKDATACONST) { | |
| vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT; | |
| } else { | |
| vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT + segSizePLKDATACONST + segSizePLKTEXTEXEC; | |
| } | |
| vm_prelink_sinfo = segPRELINKINFOB; | |
| vm_prelink_einfo = segPRELINKINFOB + segSizePRELINKINFO; | |
| vm_slinkedit = segLINKB; | |
| vm_elinkedit = segLINKB + segSizeLINK; | |
| vm_prelink_sdata = segPRELINKDATAB; | |
| vm_prelink_edata = segPRELINKDATAB + segSizePRELINKDATA; | |
| arm_vm_prot_init(args); | |
| /* | |
| * Initialize the page tables for the low globals: | |
| * cover this address range: | |
| * LOW_GLOBAL_BASE_ADDRESS + 2MB | |
| */ | |
| #if __ARM64_TWO_LEVEL_PMAP__ | |
| va_l2 = LOW_GLOBAL_BASE_ADDRESS; | |
| cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
| #else | |
| va_l1 = va_l2 = LOW_GLOBAL_BASE_ADDRESS; | |
| cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
| cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
| #endif | |
| ptpage_vaddr = alloc_ptpage(TRUE); | |
| *cpu_l2_tte = (kvtophys(ptpage_vaddr) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
| bzero((void *)ptpage_vaddr, ARM_PGBYTES); | |
| /* | |
| * Initialize l2 page table pages : | |
| * cover this address range: | |
| * KERNEL_DYNAMIC_ADDR - VM_MAX_KERNEL_ADDRESS | |
| */ | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| va_l1 = (gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL; | |
| va_l1_end = VM_MAX_KERNEL_ADDRESS; | |
| cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
| while (va_l1 < va_l1_end) { | |
| if (*cpu_l1_tte == ARM_TTE_EMPTY) { | |
| /* Allocate a page and setup L1 Table TTE in L1 */ | |
| ptpage_vaddr = alloc_ptpage(TRUE); | |
| *cpu_l1_tte = (kvtophys(ptpage_vaddr) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
| bzero((void *)ptpage_vaddr, ARM_PGBYTES); | |
| } | |
| if ((va_l1 + ARM_TT_L1_SIZE) < va_l1) { | |
| /* If this is the last L1 entry, it must cover the last mapping. */ | |
| break; | |
| } | |
| va_l1 += ARM_TT_L1_SIZE; | |
| cpu_l1_tte++; | |
| } | |
| #endif | |
| #if KASAN | |
| kasan_init(); | |
| #endif | |
| set_mmu_ttb(invalid_ttep & TTBR_BADDR_MASK); | |
| set_mmu_ttb_alternate(cpu_ttep & TTBR_BADDR_MASK); | |
| set_tbi(); | |
| flush_mmu_tlb(); | |
| /* | |
| * TODO: We're hardcoding the expected virtual TEXT base here; | |
| * that gives us an ugly dependency on a linker argument in | |
| * the make files. Clean this up, so we don't hardcode it | |
| * twice; this is nothing but trouble. | |
| */ | |
| sane_size = mem_size - (avail_start - gPhysBase); | |
| max_mem = mem_size; | |
| vm_kernel_slid_base = segPRELINKTEXTB; | |
| vm_kernel_slid_top = vm_prelink_einfo; | |
| vm_kernel_slide = segTEXTB-0xfffffff007004000; | |
| vm_kernel_stext = segTEXTB; | |
| assert(segDATACONSTB == segTEXTB + segSizeTEXT); | |
| assert(segTEXTEXECB == segDATACONSTB + segSizeDATACONST); | |
| vm_kernel_etext = segTEXTB + segSizeTEXT + segSizeDATACONST + segSizeTEXTEXEC; | |
| pmap_bootstrap((gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL); | |
| /* | |
| * Initialize l3 page table pages : | |
| * cover this address range: | |
| * 2MB + FrameBuffer size + 10MB for each 256MB segment | |
| */ | |
| mem_segments = (mem_size + 0x0FFFFFFF) >> 28; | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| va_l1 = (gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL; | |
| va_l1_end = va_l1 + ((2 + (mem_segments * 10)) << 20); | |
| va_l1_end += round_page(args->Video.v_height * args->Video.v_rowBytes); | |
| va_l1_end = (va_l1_end + 0x00000000007FFFFFULL) & 0xFFFFFFFFFF800000ULL; | |
| cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
| while (va_l1 < va_l1_end) { | |
| va_l2 = va_l1; | |
| if (((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE) < va_l1) { | |
| /* If this is the last L1 entry, it must cover the last mapping. */ | |
| va_l2_end = va_l1_end; | |
| } else { | |
| va_l2_end = MIN((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE, va_l1_end); | |
| } | |
| cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
| #else | |
| va_l2 = (gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL; | |
| va_l2_end = va_l2 + ((2 + (mem_segments * 10)) << 20); | |
| va_l2_end += round_page(args->Video.v_height * args->Video.v_rowBytes); | |
| va_l2_end = (va_l2_end + 0x00000000007FFFFFULL) & 0xFFFFFFFFFF800000ULL; | |
| cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
| #endif | |
| while (va_l2 < va_l2_end) { | |
| pt_entry_t * ptp; | |
| pmap_paddr_t ptp_phys; | |
| /* Allocate a page and setup L3 Table TTE in L2 */ | |
| ptp = (pt_entry_t *) alloc_ptpage(FALSE); | |
| ptp_phys = (pmap_paddr_t)kvtophys((vm_offset_t)ptp); | |
| pmap_init_pte_page(kernel_pmap, ptp, va_l2, 3, TRUE); | |
| *cpu_l2_tte = (pa_to_tte (ptp_phys)) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
| va_l2 += ARM_TT_L2_SIZE; | |
| cpu_l2_tte++; | |
| }; | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| va_l1 = va_l2_end; | |
| cpu_l1_tte++; | |
| } | |
| #endif | |
| /* | |
| * Initialize l3 page table pages : | |
| * cover this address range: | |
| * (VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK) - VM_MAX_KERNEL_ADDRESS | |
| */ | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| va_l1 = VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK; | |
| va_l1_end = VM_MAX_KERNEL_ADDRESS; | |
| cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
| while (va_l1 < va_l1_end) { | |
| va_l2 = va_l1; | |
| if (((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE) < va_l1) { | |
| /* If this is the last L1 entry, it must cover the last mapping. */ | |
| va_l2_end = va_l1_end; | |
| } else { | |
| va_l2_end = MIN((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE, va_l1_end); | |
| } | |
| cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
| #else | |
| va_l2 = VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK; | |
| va_l2_end = VM_MAX_KERNEL_ADDRESS; | |
| cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
| #endif | |
| while (va_l2 < va_l2_end) { | |
| pt_entry_t * ptp; | |
| pmap_paddr_t ptp_phys; | |
| /* Allocate a page and setup L3 Table TTE in L2 */ | |
| ptp = (pt_entry_t *) alloc_ptpage(FALSE); | |
| ptp_phys = (pmap_paddr_t)kvtophys((vm_offset_t)ptp); | |
| pmap_init_pte_page(kernel_pmap, ptp, va_l2, 3, TRUE); | |
| *cpu_l2_tte = (pa_to_tte (ptp_phys)) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
| va_l2 += ARM_TT_L2_SIZE; | |
| cpu_l2_tte++; | |
| }; | |
| #if !__ARM64_TWO_LEVEL_PMAP__ | |
| va_l1 = va_l2_end; | |
| cpu_l1_tte++; | |
| } | |
| #endif | |
| #if __ARM64_PMAP_SUBPAGE_L1__ && __ARM_16K_PG__ | |
| /* | |
| * In this configuration, the bootstrap mappings (arm_vm_init) and | |
| * the heap mappings occupy separate L1 regions. Explicitly set up | |
| * the heap L1 allocations here. | |
| */ | |
| va_l1 = VM_MIN_KERNEL_ADDRESS & ~ARM_TT_L1_OFFMASK; | |
| cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
| while ((va_l1 >= (VM_MIN_KERNEL_ADDRESS & ~ARM_TT_L1_OFFMASK)) && (va_l1 < VM_MAX_KERNEL_ADDRESS)) { | |
| /* | |
| * If the L1 entry has not yet been allocated, allocate it | |
| * now and treat it as a heap table. | |
| */ | |
| if (*cpu_l1_tte == ARM_TTE_EMPTY) { | |
| tt_entry_t *new_tte = (tt_entry_t*)alloc_ptpage(FALSE); | |
| bzero(new_tte, ARM_PGBYTES); | |
| *cpu_l1_tte = (kvtophys((vm_offset_t)new_tte) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
| } | |
| cpu_l1_tte++; | |
| va_l1 += ARM_TT_L1_SIZE; | |
| } | |
| #endif | |
| /* | |
| * Adjust avail_start so that the range that the VM owns | |
| * starts on a PAGE_SIZE aligned boundary. | |
| */ | |
| avail_start = (avail_start + PAGE_MASK) & ~PAGE_MASK; | |
| first_avail = avail_start; | |
| patch_low_glo_static_region(args->topOfKernelData, avail_start - args->topOfKernelData); | |
| } | |