Permalink
Fetching contributors…
Cannot retrieve contributors at this time
2036 lines (1747 sloc) 49.6 KB
/*
* Copyright (c) 2000-2018 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/kernel.h>
#include <sys/file_internal.h>
#include <sys/resourcevar.h>
#include <sys/malloc.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/mount_internal.h>
#include <sys/sysproto.h>
#include <security/audit/audit.h>
#include <machine/vmparam.h>
#include <mach/mach_types.h>
#include <mach/time_value.h>
#include <mach/task.h>
#include <mach/task_info.h>
#include <mach/vm_map.h>
#include <mach/mach_vm.h>
#include <mach/thread_act.h> /* for thread_policy_set( ) */
#include <kern/thread.h>
#include <kern/policy_internal.h>
#include <kern/task.h>
#include <kern/clock.h> /* for absolutetime_to_microtime() */
#include <netinet/in.h> /* for TRAFFIC_MGT_SO_* */
#include <sys/socketvar.h> /* for struct socket */
#if NECP
#include <net/necp.h>
#endif /* NECP */
#include <vm/vm_map.h>
#include <kern/assert.h>
#include <sys/resource.h>
#include <sys/priv.h>
#include <IOKit/IOBSD.h>
#if CONFIG_MACF
#include <security/mac_framework.h>
#endif
int donice(struct proc *curp, struct proc *chgp, int n);
int dosetrlimit(struct proc *p, u_int which, struct rlimit *limp);
int uthread_get_background_state(uthread_t);
static void do_background_socket(struct proc *p, thread_t thread);
static int do_background_thread(thread_t thread, int priority);
static int do_background_proc(struct proc *curp, struct proc *targetp, int priority);
static int set_gpudeny_proc(struct proc *curp, struct proc *targetp, int priority);
static int proc_set_darwin_role(proc_t curp, proc_t targetp, int priority);
static int proc_get_darwin_role(proc_t curp, proc_t targetp, int *priority);
static int get_background_proc(struct proc *curp, struct proc *targetp, int *priority);
int proc_pid_rusage(int pid, int flavor, user_addr_t buf, int32_t *retval);
void gather_rusage_info(proc_t p, rusage_info_current *ru, int flavor);
int fill_task_rusage(task_t task, rusage_info_current *ri);
void fill_task_billed_usage(task_t task, rusage_info_current *ri);
int fill_task_io_rusage(task_t task, rusage_info_current *ri);
int fill_task_qos_rusage(task_t task, rusage_info_current *ri);
uint64_t get_task_logical_writes(task_t task);
void fill_task_monotonic_rusage(task_t task, rusage_info_current *ri);
int proc_get_rusage(proc_t p, int flavor, user_addr_t buffer, __unused int is_zombie);
rlim_t maxdmap = MAXDSIZ; /* XXX */
rlim_t maxsmap = MAXSSIZ - PAGE_MAX_SIZE; /* XXX */
/*
* Limits on the number of open files per process, and the number
* of child processes per process.
*
* Note: would be in kern/subr_param.c in FreeBSD.
*/
__private_extern__ int maxfilesperproc = OPEN_MAX; /* per-proc open files limit */
SYSCTL_INT(_kern, KERN_MAXPROCPERUID, maxprocperuid, CTLFLAG_RW | CTLFLAG_LOCKED,
&maxprocperuid, 0, "Maximum processes allowed per userid" );
SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW | CTLFLAG_LOCKED,
&maxfilesperproc, 0, "Maximum files allowed open per process" );
/* Args and fn for proc_iteration callback used in setpriority */
struct puser_nice_args {
proc_t curp;
int prio;
id_t who;
int * foundp;
int * errorp;
};
static int puser_donice_callback(proc_t p, void * arg);
/* Args and fn for proc_iteration callback used in setpriority */
struct ppgrp_nice_args {
proc_t curp;
int prio;
int * foundp;
int * errorp;
};
static int ppgrp_donice_callback(proc_t p, void * arg);
/*
* Resource controls and accounting.
*/
int
getpriority(struct proc *curp, struct getpriority_args *uap, int32_t *retval)
{
struct proc *p;
int low = PRIO_MAX + 1;
kauth_cred_t my_cred;
int refheld = 0;
int error = 0;
/* would also test (uap->who < 0), but id_t is unsigned */
if (uap->who > 0x7fffffff)
return (EINVAL);
switch (uap->which) {
case PRIO_PROCESS:
if (uap->who == 0) {
p = curp;
low = p->p_nice;
} else {
p = proc_find(uap->who);
if (p == 0)
break;
low = p->p_nice;
proc_rele(p);
}
break;
case PRIO_PGRP: {
struct pgrp *pg = PGRP_NULL;
if (uap->who == 0) {
/* returns the pgrp to ref */
pg = proc_pgrp(curp);
} else if ((pg = pgfind(uap->who)) == PGRP_NULL) {
break;
}
/* No need for iteration as it is a simple scan */
pgrp_lock(pg);
PGMEMBERS_FOREACH(pg, p) {
if (p->p_nice < low)
low = p->p_nice;
}
pgrp_unlock(pg);
pg_rele(pg);
break;
}
case PRIO_USER:
if (uap->who == 0)
uap->who = kauth_cred_getuid(kauth_cred_get());
proc_list_lock();
for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
my_cred = kauth_cred_proc_ref(p);
if (kauth_cred_getuid(my_cred) == uap->who &&
p->p_nice < low)
low = p->p_nice;
kauth_cred_unref(&my_cred);
}
proc_list_unlock();
break;
case PRIO_DARWIN_THREAD:
/* we currently only support the current thread */
if (uap->who != 0)
return (EINVAL);
low = proc_get_thread_policy(current_thread(), TASK_POLICY_INTERNAL, TASK_POLICY_DARWIN_BG);
break;
case PRIO_DARWIN_PROCESS:
if (uap->who == 0) {
p = curp;
} else {
p = proc_find(uap->who);
if (p == PROC_NULL)
break;
refheld = 1;
}
error = get_background_proc(curp, p, &low);
if (refheld)
proc_rele(p);
if (error)
return (error);
break;
case PRIO_DARWIN_ROLE:
if (uap->who == 0) {
p = curp;
} else {
p = proc_find(uap->who);
if (p == PROC_NULL)
break;
refheld = 1;
}
error = proc_get_darwin_role(curp, p, &low);
if (refheld)
proc_rele(p);
if (error)
return (error);
break;
default:
return (EINVAL);
}
if (low == PRIO_MAX + 1)
return (ESRCH);
*retval = low;
return (0);
}
/* call back function used for proc iteration in PRIO_USER */
static int
puser_donice_callback(proc_t p, void * arg)
{
int error, n;
struct puser_nice_args * pun = (struct puser_nice_args *)arg;
kauth_cred_t my_cred;
my_cred = kauth_cred_proc_ref(p);
if (kauth_cred_getuid(my_cred) == pun->who) {
error = donice(pun->curp, p, pun->prio);
if (pun->errorp != NULL)
*pun->errorp = error;
if (pun->foundp != NULL) {
n = *pun->foundp;
*pun->foundp = n+1;
}
}
kauth_cred_unref(&my_cred);
return(PROC_RETURNED);
}
/* call back function used for proc iteration in PRIO_PGRP */
static int
ppgrp_donice_callback(proc_t p, void * arg)
{
int error;
struct ppgrp_nice_args * pun = (struct ppgrp_nice_args *)arg;
int n;
error = donice(pun->curp, p, pun->prio);
if (pun->errorp != NULL)
*pun->errorp = error;
if (pun->foundp!= NULL) {
n = *pun->foundp;
*pun->foundp = n+1;
}
return(PROC_RETURNED);
}
/*
* Returns: 0 Success
* EINVAL
* ESRCH
* donice:EPERM
* donice:EACCES
*/
/* ARGSUSED */
int
setpriority(struct proc *curp, struct setpriority_args *uap, int32_t *retval)
{
struct proc *p;
int found = 0, error = 0;
int refheld = 0;
AUDIT_ARG(cmd, uap->which);
AUDIT_ARG(owner, uap->who, 0);
AUDIT_ARG(value32, uap->prio);
/* would also test (uap->who < 0), but id_t is unsigned */
if (uap->who > 0x7fffffff)
return (EINVAL);
switch (uap->which) {
case PRIO_PROCESS:
if (uap->who == 0)
p = curp;
else {
p = proc_find(uap->who);
if (p == 0)
break;
refheld = 1;
}
error = donice(curp, p, uap->prio);
found++;
if (refheld != 0)
proc_rele(p);
break;
case PRIO_PGRP: {
struct pgrp *pg = PGRP_NULL;
struct ppgrp_nice_args ppgrp;
if (uap->who == 0) {
pg = proc_pgrp(curp);
} else if ((pg = pgfind(uap->who)) == PGRP_NULL)
break;
ppgrp.curp = curp;
ppgrp.prio = uap->prio;
ppgrp.foundp = &found;
ppgrp.errorp = &error;
/* PGRP_DROPREF drops the reference on process group */
pgrp_iterate(pg, PGRP_DROPREF, ppgrp_donice_callback, (void *)&ppgrp, NULL, NULL);
break;
}
case PRIO_USER: {
struct puser_nice_args punice;
if (uap->who == 0)
uap->who = kauth_cred_getuid(kauth_cred_get());
punice.curp = curp;
punice.prio = uap->prio;
punice.who = uap->who;
punice.foundp = &found;
error = 0;
punice.errorp = &error;
proc_iterate(PROC_ALLPROCLIST, puser_donice_callback, (void *)&punice, NULL, NULL);
break;
}
case PRIO_DARWIN_THREAD: {
/* we currently only support the current thread */
if (uap->who != 0)
return (EINVAL);
error = do_background_thread(current_thread(), uap->prio);
found++;
break;
}
case PRIO_DARWIN_PROCESS: {
if (uap->who == 0)
p = curp;
else {
p = proc_find(uap->who);
if (p == 0)
break;
refheld = 1;
}
error = do_background_proc(curp, p, uap->prio);
found++;
if (refheld != 0)
proc_rele(p);
break;
}
case PRIO_DARWIN_GPU: {
if (uap->who == 0)
return (EINVAL);
p = proc_find(uap->who);
if (p == PROC_NULL)
break;
error = set_gpudeny_proc(curp, p, uap->prio);
found++;
proc_rele(p);
break;
}
case PRIO_DARWIN_ROLE: {
if (uap->who == 0) {
p = curp;
} else {
p = proc_find(uap->who);
if (p == PROC_NULL)
break;
refheld = 1;
}
error = proc_set_darwin_role(curp, p, uap->prio);
found++;
if (refheld != 0)
proc_rele(p);
break;
}
default:
return (EINVAL);
}
if (found == 0)
return (ESRCH);
if (error == EIDRM) {
*retval = -2;
error = 0;
}
return (error);
}
/*
* Returns: 0 Success
* EPERM
* EACCES
* mac_check_proc_sched:???
*/
int
donice(struct proc *curp, struct proc *chgp, int n)
{
int error = 0;
kauth_cred_t ucred;
kauth_cred_t my_cred;
ucred = kauth_cred_proc_ref(curp);
my_cred = kauth_cred_proc_ref(chgp);
if (suser(ucred, NULL) && kauth_cred_getruid(ucred) &&
kauth_cred_getuid(ucred) != kauth_cred_getuid(my_cred) &&
kauth_cred_getruid(ucred) != kauth_cred_getuid(my_cred)) {
error = EPERM;
goto out;
}
if (n > PRIO_MAX)
n = PRIO_MAX;
if (n < PRIO_MIN)
n = PRIO_MIN;
if (n < chgp->p_nice && suser(ucred, &curp->p_acflag)) {
error = EACCES;
goto out;
}
#if CONFIG_MACF
error = mac_proc_check_sched(curp, chgp);
if (error)
goto out;
#endif
proc_lock(chgp);
chgp->p_nice = n;
proc_unlock(chgp);
(void)resetpriority(chgp);
out:
kauth_cred_unref(&ucred);
kauth_cred_unref(&my_cred);
return (error);
}
static int
set_gpudeny_proc(struct proc *curp, struct proc *targetp, int priority)
{
int error = 0;
kauth_cred_t ucred;
kauth_cred_t target_cred;
ucred = kauth_cred_get();
target_cred = kauth_cred_proc_ref(targetp);
/* TODO: Entitlement instead of uid check */
if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) &&
kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) &&
kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) {
error = EPERM;
goto out;
}
if (curp == targetp) {
error = EPERM;
goto out;
}
#if CONFIG_MACF
error = mac_proc_check_sched(curp, targetp);
if (error)
goto out;
#endif
switch (priority) {
case PRIO_DARWIN_GPU_DENY:
task_set_gpu_denied(proc_task(targetp), TRUE);
break;
case PRIO_DARWIN_GPU_ALLOW:
task_set_gpu_denied(proc_task(targetp), FALSE);
break;
default:
error = EINVAL;
goto out;
}
out:
kauth_cred_unref(&target_cred);
return (error);
}
static int
proc_set_darwin_role(proc_t curp, proc_t targetp, int priority)
{
int error = 0;
uint32_t flagsp = 0;
kauth_cred_t ucred, target_cred;
ucred = kauth_cred_get();
target_cred = kauth_cred_proc_ref(targetp);
if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) &&
kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) &&
kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) {
if (priv_check_cred(ucred, PRIV_SETPRIORITY_DARWIN_ROLE, 0) != 0) {
error = EPERM;
goto out;
}
}
if (curp != targetp) {
#if CONFIG_MACF
if ((error = mac_proc_check_sched(curp, targetp)))
goto out;
#endif
}
proc_get_darwinbgstate(proc_task(targetp), &flagsp);
if ((flagsp & PROC_FLAG_APPLICATION) != PROC_FLAG_APPLICATION) {
error = ENOTSUP;
goto out;
}
integer_t role = 0;
if ((error = proc_darwin_role_to_task_role(priority, &role)))
goto out;
proc_set_task_policy(proc_task(targetp), TASK_POLICY_ATTRIBUTE,
TASK_POLICY_ROLE, role);
out:
kauth_cred_unref(&target_cred);
return (error);
}
static int
proc_get_darwin_role(proc_t curp, proc_t targetp, int *priority)
{
int error = 0;
int role = 0;
kauth_cred_t ucred, target_cred;
ucred = kauth_cred_get();
target_cred = kauth_cred_proc_ref(targetp);
if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) &&
kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) &&
kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) {
error = EPERM;
goto out;
}
if (curp != targetp) {
#if CONFIG_MACF
if ((error = mac_proc_check_sched(curp, targetp)))
goto out;
#endif
}
role = proc_get_task_policy(proc_task(targetp), TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
*priority = proc_task_role_to_darwin_role(role);
out:
kauth_cred_unref(&target_cred);
return (error);
}
static int
get_background_proc(struct proc *curp, struct proc *targetp, int *priority)
{
int external = 0;
int error = 0;
kauth_cred_t ucred, target_cred;
ucred = kauth_cred_get();
target_cred = kauth_cred_proc_ref(targetp);
if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) &&
kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) &&
kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) {
error = EPERM;
goto out;
}
external = (curp == targetp) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL;
*priority = proc_get_task_policy(current_task(), external, TASK_POLICY_DARWIN_BG);
out:
kauth_cred_unref(&target_cred);
return (error);
}
static int
do_background_proc(struct proc *curp, struct proc *targetp, int priority)
{
#if !CONFIG_MACF
#pragma unused(curp)
#endif
int error = 0;
kauth_cred_t ucred;
kauth_cred_t target_cred;
int external;
int enable;
ucred = kauth_cred_get();
target_cred = kauth_cred_proc_ref(targetp);
if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) &&
kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) &&
kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred))
{
error = EPERM;
goto out;
}
#if CONFIG_MACF
error = mac_proc_check_sched(curp, targetp);
if (error)
goto out;
#endif
external = (curp == targetp) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL;
switch (priority) {
case PRIO_DARWIN_BG:
enable = TASK_POLICY_ENABLE;
break;
case PRIO_DARWIN_NONUI:
/* ignored for compatibility */
goto out;
default:
/* TODO: EINVAL if priority != 0 */
enable = TASK_POLICY_DISABLE;
break;
}
proc_set_task_policy(proc_task(targetp), external, TASK_POLICY_DARWIN_BG, enable);
out:
kauth_cred_unref(&target_cred);
return (error);
}
static void
do_background_socket(struct proc *p, thread_t thread)
{
#if SOCKETS
struct filedesc *fdp;
struct fileproc *fp;
int i, background;
proc_fdlock(p);
if (thread != THREAD_NULL)
background = proc_get_effective_thread_policy(thread, TASK_POLICY_ALL_SOCKETS_BG);
else
background = proc_get_effective_task_policy(proc_task(p), TASK_POLICY_ALL_SOCKETS_BG);
if (background) {
/*
* For PRIO_DARWIN_PROCESS (thread is NULL), simply mark
* the sockets with the background flag. There's nothing
* to do here for the PRIO_DARWIN_THREAD case.
*/
if (thread == THREAD_NULL) {
fdp = p->p_fd;
for (i = 0; i < fdp->fd_nfiles; i++) {
fp = fdp->fd_ofiles[i];
if (fp == NULL || (fdp->fd_ofileflags[i] & UF_RESERVED) != 0) {
continue;
}
if (FILEGLOB_DTYPE(fp->f_fglob) == DTYPE_SOCKET) {
struct socket *sockp = (struct socket *)fp->f_fglob->fg_data;
socket_set_traffic_mgt_flags(sockp, TRAFFIC_MGT_SO_BACKGROUND);
sockp->so_background_thread = NULL;
}
#if NECP
else if (FILEGLOB_DTYPE(fp->f_fglob) == DTYPE_NETPOLICY) {
necp_set_client_as_background(p, fp, background);
}
#endif /* NECP */
}
}
} else {
/* disable networking IO throttle.
* NOTE - It is a known limitation of the current design that we
* could potentially clear TRAFFIC_MGT_SO_BACKGROUND bit for
* sockets created by other threads within this process.
*/
fdp = p->p_fd;
for ( i = 0; i < fdp->fd_nfiles; i++ ) {
struct socket *sockp;
fp = fdp->fd_ofiles[ i ];
if (fp == NULL || (fdp->fd_ofileflags[ i ] & UF_RESERVED) != 0) {
continue;
}
if (FILEGLOB_DTYPE(fp->f_fglob) == DTYPE_SOCKET) {
sockp = (struct socket *)fp->f_fglob->fg_data;
/* skip if only clearing this thread's sockets */
if ((thread) && (sockp->so_background_thread != thread)) {
continue;
}
socket_clear_traffic_mgt_flags(sockp, TRAFFIC_MGT_SO_BACKGROUND);
sockp->so_background_thread = NULL;
}
#if NECP
else if (FILEGLOB_DTYPE(fp->f_fglob) == DTYPE_NETPOLICY) {
necp_set_client_as_background(p, fp, background);
}
#endif /* NECP */
}
}
proc_fdunlock(p);
#else
#pragma unused(p, thread)
#endif
}
/*
* do_background_thread
*
* Requires: thread reference
*
* Returns: 0 Success
* EPERM Tried to background while in vfork
* XXX - todo - does this need a MACF hook?
*/
static int
do_background_thread(thread_t thread, int priority)
{
struct uthread *ut;
int enable, external;
int rv = 0;
ut = get_bsdthread_info(thread);
/* Backgrounding is unsupported for threads in vfork */
if ((ut->uu_flag & UT_VFORK) != 0)
return(EPERM);
/* Backgrounding is unsupported for workq threads */
if (thread_is_static_param(thread)) {
return(EPERM);
}
/* Not allowed to combine QoS and DARWIN_BG, doing so strips the QoS */
if (thread_has_qos_policy(thread)) {
thread_remove_qos_policy(thread);
rv = EIDRM;
}
/* TODO: Fail if someone passes something besides 0 or PRIO_DARWIN_BG */
enable = (priority == PRIO_DARWIN_BG) ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE;
external = (current_thread() == thread) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL;
proc_set_thread_policy(thread, external, TASK_POLICY_DARWIN_BG, enable);
return rv;
}
/*
* Returns: 0 Success
* copyin:EFAULT
* dosetrlimit:
*/
/* ARGSUSED */
int
setrlimit(struct proc *p, struct setrlimit_args *uap, __unused int32_t *retval)
{
struct rlimit alim;
int error;
if ((error = copyin(uap->rlp, (caddr_t)&alim,
sizeof (struct rlimit))))
return (error);
return (dosetrlimit(p, uap->which, &alim));
}
/*
* Returns: 0 Success
* EINVAL
* ENOMEM Cannot copy limit structure
* suser:EPERM
*
* Notes: EINVAL is returned both for invalid arguments, and in the
* case that the current usage (e.g. RLIMIT_STACK) is already
* in excess of the requested limit.
*/
int
dosetrlimit(struct proc *p, u_int which, struct rlimit *limp)
{
struct rlimit *alimp;
int error;
kern_return_t kr;
int posix = (which & _RLIMIT_POSIX_FLAG) ? 1 : 0;
/* Mask out POSIX flag, saved above */
which &= ~_RLIMIT_POSIX_FLAG;
if (which >= RLIM_NLIMITS)
return (EINVAL);
alimp = &p->p_rlimit[which];
if (limp->rlim_cur > limp->rlim_max)
return EINVAL;
if (limp->rlim_cur > alimp->rlim_max ||
limp->rlim_max > alimp->rlim_max)
if ((error = suser(kauth_cred_get(), &p->p_acflag))) {
return (error);
}
proc_limitblock(p);
if ((error = proc_limitreplace(p)) != 0) {
proc_limitunblock(p);
return(error);
}
alimp = &p->p_rlimit[which];
switch (which) {
case RLIMIT_CPU:
if (limp->rlim_cur == RLIM_INFINITY) {
task_vtimer_clear(p->task, TASK_VTIMER_RLIM);
timerclear(&p->p_rlim_cpu);
}
else {
task_absolutetime_info_data_t tinfo;
mach_msg_type_number_t count;
struct timeval ttv, tv;
clock_sec_t tv_sec;
clock_usec_t tv_usec;
count = TASK_ABSOLUTETIME_INFO_COUNT;
task_info(p->task, TASK_ABSOLUTETIME_INFO,
(task_info_t)&tinfo, &count);
absolutetime_to_microtime(tinfo.total_user + tinfo.total_system,
&tv_sec, &tv_usec);
ttv.tv_sec = tv_sec;
ttv.tv_usec = tv_usec;
tv.tv_sec = (limp->rlim_cur > __INT_MAX__ ? __INT_MAX__ : limp->rlim_cur);
tv.tv_usec = 0;
timersub(&tv, &ttv, &p->p_rlim_cpu);
timerclear(&tv);
if (timercmp(&p->p_rlim_cpu, &tv, >))
task_vtimer_set(p->task, TASK_VTIMER_RLIM);
else {
task_vtimer_clear(p->task, TASK_VTIMER_RLIM);
timerclear(&p->p_rlim_cpu);
psignal(p, SIGXCPU);
}
}
break;
case RLIMIT_DATA:
if (limp->rlim_cur > maxdmap)
limp->rlim_cur = maxdmap;
if (limp->rlim_max > maxdmap)
limp->rlim_max = maxdmap;
break;
case RLIMIT_STACK:
/* Disallow illegal stack size instead of clipping */
if (limp->rlim_cur > maxsmap ||
limp->rlim_max > maxsmap) {
if (posix) {
error = EINVAL;
goto out;
}
else {
/*
* 4797860 - workaround poorly written installers by
* doing previous implementation (< 10.5) when caller
* is non-POSIX conforming.
*/
if (limp->rlim_cur > maxsmap)
limp->rlim_cur = maxsmap;
if (limp->rlim_max > maxsmap)
limp->rlim_max = maxsmap;
}
}
/*
* Stack is allocated to the max at exec time with only
* "rlim_cur" bytes accessible. If stack limit is going
* up make more accessible, if going down make inaccessible.
*/
if (limp->rlim_cur > alimp->rlim_cur) {
user_addr_t addr;
user_size_t size;
/* grow stack */
size = round_page_64(limp->rlim_cur);
size -= round_page_64(alimp->rlim_cur);
addr = p->user_stack - round_page_64(limp->rlim_cur);
kr = mach_vm_protect(current_map(),
addr, size,
FALSE, VM_PROT_DEFAULT);
if (kr != KERN_SUCCESS) {
error = EINVAL;
goto out;
}
} else if (limp->rlim_cur < alimp->rlim_cur) {
user_addr_t addr;
user_size_t size;
user_addr_t cur_sp;
/* shrink stack */
/*
* First check if new stack limit would agree
* with current stack usage.
* Get the current thread's stack pointer...
*/
cur_sp = thread_adjuserstack(current_thread(),
0);
if (cur_sp <= p->user_stack &&
cur_sp > (p->user_stack -
round_page_64(alimp->rlim_cur))) {
/* stack pointer is in main stack */
if (cur_sp <= (p->user_stack -
round_page_64(limp->rlim_cur))) {
/*
* New limit would cause
* current usage to be invalid:
* reject new limit.
*/
error = EINVAL;
goto out;
}
} else {
/* not on the main stack: reject */
error = EINVAL;
goto out;
}
size = round_page_64(alimp->rlim_cur);
size -= round_page_64(limp->rlim_cur);
addr = p->user_stack - round_page_64(alimp->rlim_cur);
kr = mach_vm_protect(current_map(),
addr, size,
FALSE, VM_PROT_NONE);
if (kr != KERN_SUCCESS) {
error = EINVAL;
goto out;
}
} else {
/* no change ... */
}
break;
case RLIMIT_NOFILE:
/*
* Only root can set the maxfiles limits, as it is
* systemwide resource. If we are expecting POSIX behavior,
* instead of clamping the value, return EINVAL. We do this
* because historically, people have been able to attempt to
* set RLIM_INFINITY to get "whatever the maximum is".
*/
if ( kauth_cred_issuser(kauth_cred_get()) ) {
if (limp->rlim_cur != alimp->rlim_cur &&
limp->rlim_cur > (rlim_t)maxfiles) {
if (posix) {
error = EINVAL;
goto out;
}
limp->rlim_cur = maxfiles;
}
if (limp->rlim_max != alimp->rlim_max &&
limp->rlim_max > (rlim_t)maxfiles)
limp->rlim_max = maxfiles;
}
else {
if (limp->rlim_cur != alimp->rlim_cur &&
limp->rlim_cur > (rlim_t)maxfilesperproc) {
if (posix) {
error = EINVAL;
goto out;
}
limp->rlim_cur = maxfilesperproc;
}
if (limp->rlim_max != alimp->rlim_max &&
limp->rlim_max > (rlim_t)maxfilesperproc)
limp->rlim_max = maxfilesperproc;
}
break;
case RLIMIT_NPROC:
/*
* Only root can set to the maxproc limits, as it is
* systemwide resource; all others are limited to
* maxprocperuid (presumably less than maxproc).
*/
if ( kauth_cred_issuser(kauth_cred_get()) ) {
if (limp->rlim_cur > (rlim_t)maxproc)
limp->rlim_cur = maxproc;
if (limp->rlim_max > (rlim_t)maxproc)
limp->rlim_max = maxproc;
}
else {
if (limp->rlim_cur > (rlim_t)maxprocperuid)
limp->rlim_cur = maxprocperuid;
if (limp->rlim_max > (rlim_t)maxprocperuid)
limp->rlim_max = maxprocperuid;
}
break;
case RLIMIT_MEMLOCK:
/*
* Tell the Mach VM layer about the new limit value.
*/
vm_map_set_user_wire_limit(current_map(), limp->rlim_cur);
break;
} /* switch... */
proc_lock(p);
*alimp = *limp;
proc_unlock(p);
error = 0;
out:
proc_limitunblock(p);
return (error);
}
/* ARGSUSED */
int
getrlimit(struct proc *p, struct getrlimit_args *uap, __unused int32_t *retval)
{
struct rlimit lim = {};
/*
* Take out flag now in case we need to use it to trigger variant
* behaviour later.
*/
uap->which &= ~_RLIMIT_POSIX_FLAG;
if (uap->which >= RLIM_NLIMITS)
return (EINVAL);
proc_limitget(p, uap->which, &lim);
return (copyout((caddr_t)&lim,
uap->rlp, sizeof (struct rlimit)));
}
/*
* Transform the running time and tick information in proc p into user,
* system, and interrupt time usage.
*/
/* No lock on proc is held for this.. */
void
calcru(struct proc *p, struct timeval *up, struct timeval *sp, struct timeval *ip)
{
task_t task;
timerclear(up);
timerclear(sp);
if (ip != NULL)
timerclear(ip);
task = p->task;
if (task) {
mach_task_basic_info_data_t tinfo;
task_thread_times_info_data_t ttimesinfo;
task_events_info_data_t teventsinfo;
mach_msg_type_number_t task_info_count, task_ttimes_count;
mach_msg_type_number_t task_events_count;
struct timeval ut,st;
task_info_count = MACH_TASK_BASIC_INFO_COUNT;
task_info(task, MACH_TASK_BASIC_INFO,
(task_info_t)&tinfo, &task_info_count);
ut.tv_sec = tinfo.user_time.seconds;
ut.tv_usec = tinfo.user_time.microseconds;
st.tv_sec = tinfo.system_time.seconds;
st.tv_usec = tinfo.system_time.microseconds;
timeradd(&ut, up, up);
timeradd(&st, sp, sp);
task_ttimes_count = TASK_THREAD_TIMES_INFO_COUNT;
task_info(task, TASK_THREAD_TIMES_INFO,
(task_info_t)&ttimesinfo, &task_ttimes_count);
ut.tv_sec = ttimesinfo.user_time.seconds;
ut.tv_usec = ttimesinfo.user_time.microseconds;
st.tv_sec = ttimesinfo.system_time.seconds;
st.tv_usec = ttimesinfo.system_time.microseconds;
timeradd(&ut, up, up);
timeradd(&st, sp, sp);
task_events_count = TASK_EVENTS_INFO_COUNT;
task_info(task, TASK_EVENTS_INFO,
(task_info_t)&teventsinfo, &task_events_count);
/*
* No need to lock "p": this does not need to be
* completely consistent, right ?
*/
p->p_stats->p_ru.ru_minflt = (teventsinfo.faults -
teventsinfo.pageins);
p->p_stats->p_ru.ru_majflt = teventsinfo.pageins;
p->p_stats->p_ru.ru_nivcsw = (teventsinfo.csw -
p->p_stats->p_ru.ru_nvcsw);
if (p->p_stats->p_ru.ru_nivcsw < 0)
p->p_stats->p_ru.ru_nivcsw = 0;
p->p_stats->p_ru.ru_maxrss = tinfo.resident_size_max;
}
}
__private_extern__ void munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p);
__private_extern__ void munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p);
/* ARGSUSED */
int
getrusage(struct proc *p, struct getrusage_args *uap, __unused int32_t *retval)
{
struct rusage *rup, rubuf;
struct user64_rusage rubuf64 = {};
struct user32_rusage rubuf32 = {};
size_t retsize = sizeof(rubuf); /* default: 32 bits */
caddr_t retbuf = (caddr_t)&rubuf; /* default: 32 bits */
struct timeval utime;
struct timeval stime;
switch (uap->who) {
case RUSAGE_SELF:
calcru(p, &utime, &stime, NULL);
proc_lock(p);
rup = &p->p_stats->p_ru;
rup->ru_utime = utime;
rup->ru_stime = stime;
rubuf = *rup;
proc_unlock(p);
break;
case RUSAGE_CHILDREN:
proc_lock(p);
rup = &p->p_stats->p_cru;
rubuf = *rup;
proc_unlock(p);
break;
default:
return (EINVAL);
}
if (IS_64BIT_PROCESS(p)) {
retsize = sizeof(rubuf64);
retbuf = (caddr_t)&rubuf64;
munge_user64_rusage(&rubuf, &rubuf64);
} else {
retsize = sizeof(rubuf32);
retbuf = (caddr_t)&rubuf32;
munge_user32_rusage(&rubuf, &rubuf32);
}
return (copyout(retbuf, uap->rusage, retsize));
}
void
ruadd(struct rusage *ru, struct rusage *ru2)
{
long *ip, *ip2;
long i;
timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
if (ru->ru_maxrss < ru2->ru_maxrss)
ru->ru_maxrss = ru2->ru_maxrss;
ip = &ru->ru_first; ip2 = &ru2->ru_first;
for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
*ip++ += *ip2++;
}
/*
* Add the rusage stats of child in parent.
*
* It adds rusage statistics of child process and statistics of all its
* children to its parent.
*
* Note: proc lock of parent should be held while calling this function.
*/
void
update_rusage_info_child(struct rusage_info_child *ri, rusage_info_current *ri_current)
{
ri->ri_child_user_time += (ri_current->ri_user_time +
ri_current->ri_child_user_time);
ri->ri_child_system_time += (ri_current->ri_system_time +
ri_current->ri_child_system_time);
ri->ri_child_pkg_idle_wkups += (ri_current->ri_pkg_idle_wkups +
ri_current->ri_child_pkg_idle_wkups);
ri->ri_child_interrupt_wkups += (ri_current->ri_interrupt_wkups +
ri_current->ri_child_interrupt_wkups);
ri->ri_child_pageins += (ri_current->ri_pageins +
ri_current->ri_child_pageins);
ri->ri_child_elapsed_abstime += ((ri_current->ri_proc_exit_abstime -
ri_current->ri_proc_start_abstime) + ri_current->ri_child_elapsed_abstime);
}
void
proc_limitget(proc_t p, int which, struct rlimit * limp)
{
proc_list_lock();
limp->rlim_cur = p->p_rlimit[which].rlim_cur;
limp->rlim_max = p->p_rlimit[which].rlim_max;
proc_list_unlock();
}
void
proc_limitdrop(proc_t p, int exiting)
{
struct plimit * freelim = NULL;
struct plimit * freeoldlim = NULL;
proc_list_lock();
if (--p->p_limit->pl_refcnt == 0) {
freelim = p->p_limit;
p->p_limit = NULL;
}
if ((exiting != 0) && (p->p_olimit != NULL) && (--p->p_olimit->pl_refcnt == 0)) {
freeoldlim = p->p_olimit;
p->p_olimit = NULL;
}
proc_list_unlock();
if (freelim != NULL)
FREE_ZONE(freelim, sizeof *p->p_limit, M_PLIMIT);
if (freeoldlim != NULL)
FREE_ZONE(freeoldlim, sizeof *p->p_olimit, M_PLIMIT);
}
void
proc_limitfork(proc_t parent, proc_t child)
{
proc_list_lock();
child->p_limit = parent->p_limit;
child->p_limit->pl_refcnt++;
child->p_olimit = NULL;
proc_list_unlock();
}
void
proc_limitblock(proc_t p)
{
proc_lock(p);
while (p->p_lflag & P_LLIMCHANGE) {
p->p_lflag |= P_LLIMWAIT;
msleep(&p->p_olimit, &p->p_mlock, 0, "proc_limitblock", NULL);
}
p->p_lflag |= P_LLIMCHANGE;
proc_unlock(p);
}
void
proc_limitunblock(proc_t p)
{
proc_lock(p);
p->p_lflag &= ~P_LLIMCHANGE;
if (p->p_lflag & P_LLIMWAIT) {
p->p_lflag &= ~P_LLIMWAIT;
wakeup(&p->p_olimit);
}
proc_unlock(p);
}
/* This is called behind serialization provided by proc_limitblock/unlbock */
int
proc_limitreplace(proc_t p)
{
struct plimit *copy;
proc_list_lock();
if (p->p_limit->pl_refcnt == 1) {
proc_list_unlock();
return(0);
}
proc_list_unlock();
MALLOC_ZONE(copy, struct plimit *,
sizeof(struct plimit), M_PLIMIT, M_WAITOK);
if (copy == NULL) {
return(ENOMEM);
}
proc_list_lock();
bcopy(p->p_limit->pl_rlimit, copy->pl_rlimit,
sizeof(struct rlimit) * RLIM_NLIMITS);
copy->pl_refcnt = 1;
/* hang on to reference to old till process exits */
p->p_olimit = p->p_limit;
p->p_limit = copy;
proc_list_unlock();
return(0);
}
static int
iopolicysys_disk(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param);
static int
iopolicysys_vfs_hfs_case_sensitivity(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param);
static int
iopolicysys_vfs_atime_updates(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param);
/*
* iopolicysys
*
* Description: System call MUX for use in manipulating I/O policy attributes of the current process or thread
*
* Parameters: cmd Policy command
* arg Pointer to policy arguments
*
* Returns: 0 Success
* EINVAL Invalid command or invalid policy arguments
*
*/
int
iopolicysys(struct proc *p, struct iopolicysys_args *uap, int32_t *retval)
{
int error = 0;
struct _iopol_param_t iop_param;
if ((error = copyin(uap->arg, &iop_param, sizeof(iop_param))) != 0)
goto out;
switch (iop_param.iop_iotype) {
case IOPOL_TYPE_DISK:
error = iopolicysys_disk(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param);
if (error == EIDRM) {
*retval = -2;
error = 0;
}
if (error)
goto out;
break;
case IOPOL_TYPE_VFS_HFS_CASE_SENSITIVITY:
error = iopolicysys_vfs_hfs_case_sensitivity(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param);
if (error)
goto out;
break;
case IOPOL_TYPE_VFS_ATIME_UPDATES:
error = iopolicysys_vfs_atime_updates(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param);
if (error)
goto out;
break;
default:
error = EINVAL;
goto out;
}
/* Individual iotype handlers are expected to update iop_param, if requested with a GET command */
if (uap->cmd == IOPOL_CMD_GET) {
error = copyout((caddr_t)&iop_param, uap->arg, sizeof(iop_param));
if (error)
goto out;
}
out:
return (error);
}
static int
iopolicysys_disk(struct proc *p __unused, int cmd, int scope, int policy, struct _iopol_param_t *iop_param)
{
int error = 0;
thread_t thread;
int policy_flavor;
/* Validate scope */
switch (scope) {
case IOPOL_SCOPE_PROCESS:
thread = THREAD_NULL;
policy_flavor = TASK_POLICY_IOPOL;
break;
case IOPOL_SCOPE_THREAD:
thread = current_thread();
policy_flavor = TASK_POLICY_IOPOL;
/* Not allowed to combine QoS and (non-PASSIVE) IO policy, doing so strips the QoS */
if (cmd == IOPOL_CMD_SET && thread_has_qos_policy(thread)) {
switch (policy) {
case IOPOL_DEFAULT:
case IOPOL_PASSIVE:
break;
case IOPOL_UTILITY:
case IOPOL_THROTTLE:
case IOPOL_IMPORTANT:
case IOPOL_STANDARD:
if (!thread_is_static_param(thread)) {
thread_remove_qos_policy(thread);
/*
* This is not an error case, this is to return a marker to user-space that
* we stripped the thread of its QoS class.
*/
error = EIDRM;
break;
}
/* otherwise, fall through to the error case. */
default:
error = EINVAL;
goto out;
}
}
break;
case IOPOL_SCOPE_DARWIN_BG:
#if CONFIG_EMBEDDED
/* Embedded doesn't want this as BG is always IOPOL_THROTTLE */
error = ENOTSUP;
goto out;
#else /* CONFIG_EMBEDDED */
thread = THREAD_NULL;
policy_flavor = TASK_POLICY_DARWIN_BG_IOPOL;
break;
#endif /* CONFIG_EMBEDDED */
default:
error = EINVAL;
goto out;
}
/* Validate policy */
if (cmd == IOPOL_CMD_SET) {
switch (policy) {
case IOPOL_DEFAULT:
if (scope == IOPOL_SCOPE_DARWIN_BG) {
/* the current default BG throttle level is UTILITY */
policy = IOPOL_UTILITY;
} else {
policy = IOPOL_IMPORTANT;
}
break;
case IOPOL_UTILITY:
/* fall-through */
case IOPOL_THROTTLE:
/* These levels are OK */
break;
case IOPOL_IMPORTANT:
/* fall-through */
case IOPOL_STANDARD:
/* fall-through */
case IOPOL_PASSIVE:
if (scope == IOPOL_SCOPE_DARWIN_BG) {
/* These levels are invalid for BG */
error = EINVAL;
goto out;
} else {
/* OK for other scopes */
}
break;
default:
error = EINVAL;
goto out;
}
}
/* Perform command */
switch(cmd) {
case IOPOL_CMD_SET:
if (thread != THREAD_NULL)
proc_set_thread_policy(thread, TASK_POLICY_INTERNAL, policy_flavor, policy);
else
proc_set_task_policy(current_task(), TASK_POLICY_INTERNAL, policy_flavor, policy);
break;
case IOPOL_CMD_GET:
if (thread != THREAD_NULL)
policy = proc_get_thread_policy(thread, TASK_POLICY_INTERNAL, policy_flavor);
else
policy = proc_get_task_policy(current_task(), TASK_POLICY_INTERNAL, policy_flavor);
iop_param->iop_policy = policy;
break;
default:
error = EINVAL; /* unknown command */
break;
}
out:
return (error);
}
static int
iopolicysys_vfs_hfs_case_sensitivity(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param)
{
int error = 0;
/* Validate scope */
switch (scope) {
case IOPOL_SCOPE_PROCESS:
/* Only process OK */
break;
default:
error = EINVAL;
goto out;
}
/* Validate policy */
if (cmd == IOPOL_CMD_SET) {
switch (policy) {
case IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT:
/* fall-through */
case IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE:
/* These policies are OK */
break;
default:
error = EINVAL;
goto out;
}
}
/* Perform command */
switch(cmd) {
case IOPOL_CMD_SET:
if (0 == kauth_cred_issuser(kauth_cred_get())) {
/* If it's a non-root process, it needs to have the entitlement to set the policy */
boolean_t entitled = FALSE;
entitled = IOTaskHasEntitlement(current_task(), "com.apple.private.iopol.case_sensitivity");
if (!entitled) {
error = EPERM;
goto out;
}
}
switch (policy) {
case IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT:
OSBitAndAtomic16(~((uint32_t)P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY), &p->p_vfs_iopolicy);
break;
case IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE:
OSBitOrAtomic16((uint32_t)P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY, &p->p_vfs_iopolicy);
break;
default:
error = EINVAL;
goto out;
}
break;
case IOPOL_CMD_GET:
iop_param->iop_policy = (p->p_vfs_iopolicy & P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY)
? IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE
: IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT;
break;
default:
error = EINVAL; /* unknown command */
break;
}
out:
return (error);
}
static inline int
get_thread_atime_policy(struct uthread *ut)
{
return (ut->uu_flag & UT_ATIME_UPDATE)? IOPOL_ATIME_UPDATES_OFF: IOPOL_ATIME_UPDATES_DEFAULT;
}
static inline void
set_thread_atime_policy(struct uthread *ut, int policy)
{
if (policy == IOPOL_ATIME_UPDATES_OFF) {
ut->uu_flag |= UT_ATIME_UPDATE;
} else {
ut->uu_flag &= ~UT_ATIME_UPDATE;
}
}
static inline void
set_task_atime_policy(struct proc *p, int policy)
{
if (policy == IOPOL_ATIME_UPDATES_OFF) {
OSBitOrAtomic16((uint16_t)P_VFS_IOPOLICY_ATIME_UPDATES, &p->p_vfs_iopolicy);
} else {
OSBitAndAtomic16(~((uint16_t)P_VFS_IOPOLICY_ATIME_UPDATES), &p->p_vfs_iopolicy);
}
}
static inline int
get_task_atime_policy(struct proc *p)
{
return (p->p_vfs_iopolicy & P_VFS_IOPOLICY_ATIME_UPDATES)? IOPOL_ATIME_UPDATES_OFF: IOPOL_ATIME_UPDATES_DEFAULT;
}
static int
iopolicysys_vfs_atime_updates(struct proc *p __unused, int cmd, int scope, int policy, struct _iopol_param_t *iop_param)
{
int error = 0;
thread_t thread;
/* Validate scope */
switch (scope) {
case IOPOL_SCOPE_THREAD:
thread = current_thread();
break;
case IOPOL_SCOPE_PROCESS:
thread = THREAD_NULL;
break;
default:
error = EINVAL;
goto out;
}
/* Validate policy */
if (cmd == IOPOL_CMD_SET) {
switch (policy) {
case IOPOL_ATIME_UPDATES_DEFAULT:
case IOPOL_ATIME_UPDATES_OFF:
break;
default:
error = EINVAL;
goto out;
}
}
/* Perform command */
switch(cmd) {
case IOPOL_CMD_SET:
if (thread != THREAD_NULL)
set_thread_atime_policy(get_bsdthread_info(thread), policy);
else
set_task_atime_policy(p, policy);
break;
case IOPOL_CMD_GET:
if (thread != THREAD_NULL)
policy = get_thread_atime_policy(get_bsdthread_info(thread));
else
policy = get_task_atime_policy(p);
iop_param->iop_policy = policy;
break;
default:
error = EINVAL; /* unknown command */
break;
}
out:
return (error);
}
/* BSD call back function for task_policy networking changes */
void
proc_apply_task_networkbg(void * bsd_info, thread_t thread)
{
assert(bsd_info != PROC_NULL);
pid_t pid = proc_pid((proc_t)bsd_info);
proc_t p = proc_find(pid);
if (p != PROC_NULL) {
assert(p == (proc_t)bsd_info);
do_background_socket(p, thread);
proc_rele(p);
}
}
void
gather_rusage_info(proc_t p, rusage_info_current *ru, int flavor)
{
struct rusage_info_child *ri_child;
assert(p->p_stats != NULL);
memset(ru, 0, sizeof(*ru));
switch(flavor) {
case RUSAGE_INFO_V4:
ru->ri_logical_writes = get_task_logical_writes(p->task);
ru->ri_lifetime_max_phys_footprint = get_task_phys_footprint_lifetime_max(p->task);
#if CONFIG_LEDGER_INTERVAL_MAX
ru->ri_interval_max_phys_footprint = get_task_phys_footprint_interval_max(p->task, FALSE);
#endif
fill_task_monotonic_rusage(p->task, ru);
/* fall through */
case RUSAGE_INFO_V3:
fill_task_qos_rusage(p->task, ru);
fill_task_billed_usage(p->task, ru);
/* fall through */
case RUSAGE_INFO_V2:
fill_task_io_rusage(p->task, ru);
/* fall through */
case RUSAGE_INFO_V1:
/*
* p->p_stats->ri_child statistics are protected under proc lock.
*/
proc_lock(p);
ri_child = &(p->p_stats->ri_child);
ru->ri_child_user_time = ri_child->ri_child_user_time;
ru->ri_child_system_time = ri_child->ri_child_system_time;
ru->ri_child_pkg_idle_wkups = ri_child->ri_child_pkg_idle_wkups;
ru->ri_child_interrupt_wkups = ri_child->ri_child_interrupt_wkups;
ru->ri_child_pageins = ri_child->ri_child_pageins;
ru->ri_child_elapsed_abstime = ri_child->ri_child_elapsed_abstime;
proc_unlock(p);
/* fall through */
case RUSAGE_INFO_V0:
proc_getexecutableuuid(p, (unsigned char *)&ru->ri_uuid, sizeof (ru->ri_uuid));
fill_task_rusage(p->task, ru);
ru->ri_proc_start_abstime = p->p_stats->ps_start;
}
}
int
proc_get_rusage(proc_t p, int flavor, user_addr_t buffer, __unused int is_zombie)
{
rusage_info_current ri_current = {};
int error = 0;
size_t size = 0;
switch (flavor) {
case RUSAGE_INFO_V0:
size = sizeof(struct rusage_info_v0);
break;
case RUSAGE_INFO_V1:
size = sizeof(struct rusage_info_v1);
break;
case RUSAGE_INFO_V2:
size = sizeof(struct rusage_info_v2);
break;
case RUSAGE_INFO_V3:
size = sizeof(struct rusage_info_v3);
break;
case RUSAGE_INFO_V4:
size = sizeof(struct rusage_info_v4);
break;
default:
return EINVAL;
}
if(size == 0) {
return EINVAL;
}
/*
* If task is still alive, collect info from the live task itself.
* Otherwise, look to the cached info in the zombie proc.
*/
if (p->p_ru == NULL) {
gather_rusage_info(p, &ri_current, flavor);
ri_current.ri_proc_exit_abstime = 0;
error = copyout(&ri_current, buffer, size);
} else {
ri_current = p->p_ru->ri;
error = copyout(&p->p_ru->ri, buffer, size);
}
return (error);
}
static int
mach_to_bsd_rv(int mach_rv)
{
int bsd_rv = 0;
switch (mach_rv) {
case KERN_SUCCESS:
bsd_rv = 0;
break;
case KERN_INVALID_ARGUMENT:
bsd_rv = EINVAL;
break;
default:
panic("unknown error %#x", mach_rv);
}
return bsd_rv;
}
/*
* Resource limit controls
*
* uap->flavor available flavors:
*
* RLIMIT_WAKEUPS_MONITOR
* RLIMIT_CPU_USAGE_MONITOR
* RLIMIT_THREAD_CPULIMITS
* RLIMIT_FOOTPRINT_INTERVAL
*/
int
proc_rlimit_control(__unused struct proc *p, struct proc_rlimit_control_args *uap, __unused int32_t *retval)
{
proc_t targetp;
int error = 0;
struct proc_rlimit_control_wakeupmon wakeupmon_args;
uint32_t cpumon_flags;
uint32_t cpulimits_flags;
kauth_cred_t my_cred, target_cred;
#if CONFIG_LEDGER_INTERVAL_MAX
uint32_t footprint_interval_flags;
uint64_t interval_max_footprint;
#endif /* CONFIG_LEDGER_INTERVAL_MAX */
/* -1 implicitly means our own process (perhaps even the current thread for per-thread attributes) */
if (uap->pid == -1) {
targetp = proc_self();
} else {
targetp = proc_find(uap->pid);
}
/* proc_self() can return NULL for an exiting process */
if (targetp == PROC_NULL) {
return (ESRCH);
}
my_cred = kauth_cred_get();
target_cred = kauth_cred_proc_ref(targetp);
if (!kauth_cred_issuser(my_cred) && kauth_cred_getruid(my_cred) &&
kauth_cred_getuid(my_cred) != kauth_cred_getuid(target_cred) &&
kauth_cred_getruid(my_cred) != kauth_cred_getuid(target_cred)) {
proc_rele(targetp);
kauth_cred_unref(&target_cred);
return (EACCES);
}
switch (uap->flavor) {
case RLIMIT_WAKEUPS_MONITOR:
if ((error = copyin(uap->arg, &wakeupmon_args, sizeof (wakeupmon_args))) != 0) {
break;
}
if ((error = mach_to_bsd_rv(task_wakeups_monitor_ctl(targetp->task, &wakeupmon_args.wm_flags,
&wakeupmon_args.wm_rate))) != 0) {
break;
}
error = copyout(&wakeupmon_args, uap->arg, sizeof (wakeupmon_args));
break;
case RLIMIT_CPU_USAGE_MONITOR:
cpumon_flags = uap->arg; // XXX temporarily stashing flags in argp (12592127)
error = mach_to_bsd_rv(task_cpu_usage_monitor_ctl(targetp->task, &cpumon_flags));
break;
case RLIMIT_THREAD_CPULIMITS:
cpulimits_flags = (uint32_t)uap->arg; // only need a limited set of bits, pass in void * argument
if (uap->pid != -1) {
error = EINVAL;
break;
}
uint8_t percent = 0;
uint32_t ms_refill = 0;
uint64_t ns_refill;
percent = (uint8_t)(cpulimits_flags & 0xffU); /* low 8 bits for percent */
ms_refill = (cpulimits_flags >> 8) & 0xffffff; /* next 24 bits represent ms refill value */
if (percent >= 100) {
error = EINVAL;
break;
}
ns_refill = ((uint64_t)ms_refill) * NSEC_PER_MSEC;
error = mach_to_bsd_rv(thread_set_cpulimit(THREAD_CPULIMIT_BLOCK, percent, ns_refill));
break;
#if CONFIG_LEDGER_INTERVAL_MAX
case RLIMIT_FOOTPRINT_INTERVAL:
footprint_interval_flags = uap->arg; // XXX temporarily stashing flags in argp (12592127)
/*
* There is currently only one option for this flavor.
*/
if ((footprint_interval_flags & FOOTPRINT_INTERVAL_RESET) == 0) {
error = EINVAL;
break;
}
interval_max_footprint = get_task_phys_footprint_interval_max(targetp->task, TRUE);
break;
#endif /* CONFIG_LEDGER_INTERVAL_MAX */
default:
error = EINVAL;
break;
}
proc_rele(targetp);
kauth_cred_unref(&target_cred);
/*
* Return value from this function becomes errno to userland caller.
*/
return (error);
}
/*
* Return the current amount of CPU consumed by this thread (in either user or kernel mode)
*/
int thread_selfusage(struct proc *p __unused, struct thread_selfusage_args *uap __unused, uint64_t *retval)
{
uint64_t runtime;
runtime = thread_get_runtime_self();
*retval = runtime;
return (0);
}
#if !MONOTONIC
int thread_selfcounts(__unused struct proc *p, __unused struct thread_selfcounts_args *uap, __unused int *ret_out)
{
return ENOTSUP;
}
#endif /* !MONOTONIC */