
Mix Swift and C++

Table of Contents
Introduction
Overview

Enabling C++ Interoperability
Importing C++ into Swift
Creating a Clang Module
Working with Imported C++ APIs
Exposing Swift APIs to C++
Source Stability Guarantees for Mixed-Language Codebases

Using C++ Types and Functions in Swift
Calling C++ Functions
C++ Structures and Classes are Value Types by Default
Constructing C++ Types from Swift
Accessing Data Members of a C++ Type
Calling C++ Member Functions

Constant Member Functions Are nonmutating
Constant Member Functions Must Not Mutate the Object
Member Functions Returning References
Overloaded Member Functions
Virtual Member Functions
Static Member Functions

Acessing Inherited Members from Swift
Using C++ Enumerations
Using C++ Type Aliases
Using Class Templates

Customizing How C++ Maps to Swift
Renaming C++ APIs in Swift
Mapping Getters and Setters to Computed Properties

Extending C++ Types in Swift
Conforming C++ Type to Swift Protocol
Conforming Class Template to Swift Protocol

Working with C++ Containers
Using Random Access C++ Collections in Swift

Conformance Rules for Random Access C++ Collections
Using Sequential C++ Collections in Swift

Conformance Rules for CxxSequence Protocol
Using Associative Container C++ Types in Swift
Best Practices for Working with C++ Containers in Swift

Do Not Use C++ Iterators in Swift
Avoiding Deep Container Copies

Mapping C++ Types to Swift Reference Types
Immortal Reference Types
Shared Reference Types
Unsafe Reference Types
Unique Reference Types

Using C++ Standard Library from Swift
Importing C++ Standard Library
Using std::string

Accessing Swift APIs from C++
Using Swift Types and Functions from C++

Calling Swift Functions
Using Swift Structures In C++

Creating a Swift Structure in C++
Using Swift Classes in C++
Using Swift Enumerations in C++

Using Enumerations with Associated Values
Calling Swift Methods
Accessing Swift Properties in C++

Appendix
List of Customization Macros in <swift/bridging>

Introduction
This document is the reference guide describing how to mix Swift and C++. It describes how
C++ APIs get imported into Swift, and provides examples showing how various C++ APIs can
be used in Swift. It also describes how Swift APIs get exposed to C++, and provides
examples showing how the exposed Swift APIs can be used from C++.

C++ interoperability is a new feature in the upcoming Swift 5.9 release.

C++ interoperability is an actively evolving feature of Swift. It currently supports
interoperation between a subset of language features. Certain aspects of its design and
functionality might change in future releases of Swift, as the Swift community gathers
feedback from real world adoption of C++ interoperability in mixed Swift and C++
codebases. Future changes will not break code in existing codebases by default.

The status page provides an overview of the currently supported interoperability features,
and lists the known issues as well. You can report bugs or suggest changes related to C++
interoperability by filing an issue on Github.

Overview
This section provides the basic high-level overview of how Swift interoperates with C++.

Enabling C++ Interoperability
Swift code interoperates with C and Objective-C APIs by default. You must enable
interoperability with C++ if you want to use C++ APIs from Swift, or expose Swift APIs to C++.

The following guides describe how C++ interoperability can be enabled when working with a
specific build system or IDE:

Read how to use C++ APIs from Swift in a Swift package

Other build systems can enable C++ interoperability by passing in the required flag to the
Swift compiler:

Read how to enable C++ interoperability when invoking Swift compiler directly

Importing C++ into Swift
Header files are commonly used to describe the public interface of a C++ library. They
contain type and template definitions, and also declarations for functions and methods,
whose bodies are often placed into implementation files that are then compiled by the C++
compiler.

The Swift compiler embeds the Clang compiler. This allows Swift to import C++ header files
using Clang modules. Clang modules provide a more robust and efficient semantic model of
C++ headers as compared to the preprocessor-based model of directly including the
contents of header files using the #include directive.

C++20 introduced C++ modules as an alternative to header files. Swift cannot import
C++ modules yet.

Creating a Clang Module
In order for Swift to import a Clang module, it needs to find a module.modulemap file that
describes how a collection of C++ headers maps to a Clang module.

Some IDEs and build systems can generate a module map file for a C++ build target. In other
cases you might be required to create a module map manually.

The recommended way to create a module map is to list all the header files from a specific
C++ target that you want to make available to Swift. For example, let’s say we want to create
a module map for a C++ library forestLib. This library has two header files: forest.h and
tree.h. In this case we can follow the recommended approach and create a module map
that has two header directives:

module forestLib {
 header "forest.h"
 header "tree.h"

 export *
}

The export * directive is another recommended addition to the module map. It ensures that
the types from Clang modules imported into the forestLib module are visible to Swift as
well.

The module map file should be placed right next to the header files it references. For
example, in the forestLib library, the module map would go into the include directory:

forestLib
├── include
│ ├── forest.h
│ ├── tree.h
│ └── module.modulemap [NEW]
├── forest.cpp
└── tree.cpp

Now that forestLib has a module map, Swift can import it when C++ interoperability is
enabled. In order for Swift to find the forestLib module, the build system must pass the
import path flag (-I) that points to forestLib/include when it’s invoking the Swift compiler.

For more information on the syntax and the semantics of module map files, please see
Clang’s module map language documentation.

Working with Imported C++ APIs
The Swift compiler represents the imported C++ types and functions using Swift declarations
once a Clang module is imported. This allows Swift code to use C++ types and functions as if
they were Swift types and functions.

For example, the following C++ class from the forestLib library:

class Tree {
public:
 Tree(TreeKind kind);
private:
 TreeKind kind;
};

Is represented as a struct inside of the Swift compiler:

struct Tree {
 init(_ kind: TreeKind)
}

It can then be used directly in Swift, just like any other Swift struct:

import forestLib

let tree = Tree(.Oak)

Even though Swift has its own internal representation of the C++ type, it doesn’t use any kind
of indirection to represent a value of such type. That means that when you’re creating a Tree
from Swift, Swift invokes the C++ constructor directly and stores the produced value directly
into the tree variable.

Exposing Swift APIs to C++
In addition to importing and using C++ APIs, the Swift compiler is also capable of exposing
Swift APIs from a Swift module to C++. This makes it possible to gradually integrate Swift into
an existing C++ codebase, as the newly added Swift APIs can still be accessed from C++.

Swift APIs can be accessed by including a header file that Swift generates. The generated
header uses C++ types and functions to represent Swift types and functions. When C++
interoperability is enabled, Swift generates C++ bindings for all the supported public types
and functions in a Swift module. For example, the following Swift function:

// Swift module 'forestRenderer'
import forestLib

public func renderTreeToAscii(_ tree: Tree) -> String {
 ...
}

Will be present in the header generated by the Swift compiler for the forestRenderer
module. It can then be called directly from C++ once the C++ file includes the generated
header:

#include "forestRenderer-Swift.h"
#include <string>
#include <iostream>

void printTreeArt(const Tree &tree) {
 std::cout << (std::string)forestRenderer::renderTreeToAscii(tree);
}

The C++ interoperability status page describes which Swift language constructs and
standard library types can be exposed to C++.

Source Stability Guarantees for Mixed-Language Codebases
The way Swift interoperates with C++ is still evolving. Some changes in future releases of
Swift will require source changes in mixed Swift and C++ codebases that have already
adopted C++ interoperability. However, Swift will not force you to adopt new or evolved C++
interoperability features when adopting a new version of the Swift toolchain. To make that
possible, Swift releases after Swift 5.9 will provide multiple compatibility versions of C++
interoperability, just like Swift provides support for multiple compatibility versions of the base
Swift language. This means that a project using the 5.9 compatibility version of C++
interoperability will be insulated from any changes made in subsequent releases, and it can
move to newer compatibility versions at its own pace.

Using C++ Types and Functions in
Swift
A wide array of C++ types and functions can be used from Swift. This section goes over the
fundamentals of how the supported types and functions can be used from Swift.

Calling C++ Functions
C++ functions from imported modules can be called using the familiar function call syntax
from Swift. For example, this C++ function:

void printWelcomeMessage(const std::string &name);

Can be invoked directly from Swift as if it was a regular Swift function:

printWelcomeMessage("Thomas");

C++ Structures and Classes are Value Types by Default
Swift maps C++ structures and classes to Swift struct types by default. Swift considers
them to be value types. This means that they’re always copied when they’re passed around
in your Swift code.

The special members of a C++ structure or class type are used by Swift when it needs to
perform a copy of a value or dispose of a value when it goes out of scope. If the C++ type
has a copy constructor, Swift will use it when a value of such type is copied in Swift. And if
the C++ type has a destructor, Swift will call the destructor when a Swift value of such type is
destroyed.

As of Swift 5.9, C++ structures and classes with a deleted copy constructor are not available
in Swift. Non-copyable C++ structures or classes that also have a move constructor will be
available in a future version of Swift. They will map to non-copyable Swift structs.

Constructing C++ Types from Swift
Public constructors inside C++ structures and classes that aren’t copy or move constructors
become initializers in Swift.

For example, these constructors of the C++ Color class:

class Color {
public:
 Color();
 Color(float red, float blue, float green);
 Color(float value);

 ...
 float red, blue, green;
};

Become initializers. They can be called from Swift to create a value of type Color:

let theEmptiness = Color()
let oceanBlue = Color(0.0, 0.0, 1.0)
let seattleGray = Color(0.7)

Accessing Data Members of a C++ Type
The public data members of C++ structures and classes become properties in Swift. For
example, the data members of the Color class shown above can be accessed just like any
other Swift property:

let color: Color = getRandomColor()
print("Today I'm feeling \(color.red) red but also \(color.blue) blue")

Calling C++ Member Functions
Member functions inside C++ structures and classes become methods in Swift.

Constant Member Functions Are nonmutating

Constant member functions become nonmutating Swift methods, whereas member function
without a const qualifier become mutating Swift methods. For example, this member
function in the C++ Color class:

void Color::invert() { ... }

Is considered to be a mutating method in Swift:

var red = Color(1.0, 0.0, 0.0)
red.invert() // red becomes yellow.

And as such it can’t be called on constant Color values. However, this constant member
function:

Color Color::inverted() const { ... }

Is not a mutating method in Swift, and thus it can be called on a constant Color value:

let darkGray = Color(0.2, 0.2, 0.2)
let veryLightGray = darkGray.inverted()

Constant Member Functions Must Not Mutate the Object

The Swift compiler assumes that constant member functions do not mutate the instance that
this points to. A violation of this assumption by a C++ member function could lead to Swift
code not observing the mutation of the instance pointed to by this and using the original
value of such instance for the rest of the Swift code execution.

Member Functions Returning References

Member functions that return references, pointers, or certain structures/classes that contain
references or pointers often return a reference that points inside of this, the object used to
call the function. Such member functions are considered to be unsafe in Swift, as the
returned reference is not associated with the owning object which can get destroyed while
the reference is still in use. Swift automatically renames such member functions in order to
emphasize their unsafety. Their Swift name is prefixed with two underscores and suffixed
with Unsafe. For example, the following member function:

class Forest {
public:
 const Tree &getRootTree() const { return rootTree; }

 ...
private:
 Tree rootTree;
};

Becomes the __getRootTreeUnsafe method in Swift.

Overloaded Member Functions

C++ allows member functions to be overloaded based on their const qualifier. For example,
the Forest class can have two getRootTree members, that differ only in their constness and
their return type:

class Forest {
public:
 const Tree &getRootTree() const { return rootTree; }
 Tree &getRootTree() { return rootTree; }

 ...
private:
 Tree rootTree;
};

The two getRootTree member functions become methods in Swift. Swift renames the
mutating method to avoid having two ambiguous methods with the same name and
arguments, when it finds that the type already has a nonmutating method with the same
Swift name. The rename appends the Mutating suffix to the name of the mutating method.
This rename is done before the safety of the method is taken into account. In the example
shown above, the two getRootTree member functions become __getRootTreeUnsafe and
__getRootTreeMutatingUnsafe methods in Swift.

Virtual Member Functions

As of Swift 5.9, virtual member functions are not available in Swift.

Static Member Functions

Static C++ member functions become static Swift methods.

Acessing Inherited Members from Swift
A C++ class or structure becomes a standalone type in Swift. Its relationship with base C++
classes is not preserved in Swift. Swift tries its best to provide access to the members
inherited from base classes of a C++ type. The public member functions and data members
from a C++ base class become methods and properties in Swift, as if they were defined in
the specific class itself.

For example, the following two C++ classes:

class Plant {
public:
 void water(float amount) { moisture += amount; }
private:
 float moisture = 0.0;
};

class Fern: public Plant {
public:
 void trim();
};

Become two distinct Swift structures, with Fern structure getting an additional water method
from Plant:

struct Plant {
 mutating func water(_ amount: Float)
}

struct Fern {
 init()
 mutating func water(_ amount: Float) // Calls `Plant::water`
 mutating func trim()
}

Using C++ Enumerations
Scoped C++ enumerations become Swift enumerations with raw values. All of their cases get
mapped to Swift cases as well. For example, the following C++ enumeration:

enum class TreeKind {
 Oak,
 Redwood,
 Willow
};

Is represented in Swift as the following enumeration:

enum TreeKind : Int32 {
 case Oak = 0
 case Redwood = 1
 case Willow = 2
}

As such, it can be used just like any other enum in Swift:

func isConiferous(treeKind: TreeKind) -> Bool {
 switch treeKind {
 case .Redwood: return true
 default: return false
 }
}

Unscoped C++ enumerations become Swift structures. Their cases become variables
outside of the Swift structure itself. For example, the following unscoped enum:

enum MushroomKind {
 Oyster,
 Portobello,
 Button
}

Is represented in Swift as the following structure:

struct MushroomKind : Equatable, RawRepresentable {
 public init(_ rawValue: UInt32)
 public init(rawValue: UInt32)
 public var rawValue: UInt32
}
var Oyster: MushroomKind { get }
var Portobello: MushroomKind { get }
var Button: MushroomKind { get }

Using C++ Type Aliases
A C++ using or typedef declaration becomes a typealias in Swift. For instance, the
following using declaration:

using CustomString = std::string;

Becomes a CustomString type in Swift.

Using Class Templates
An instantiated specialization of a class or structure template is mapped to a distinct type in
Swift. For example, the following C++ class template:

template<class T, class U>
class Fraction {
public:
 T numerator;
 U denominator;

 Fraction(const T &, const U &);
};

Is not available in Swift by itself. However, a function that returns an instantiated
specialization of Fraction is:

Fraction<int, float> getMagicNumber();

Such function can be called from Swift, as its return value is the Fraction<int, float>
specialization:

let magicNum = getMagicNumber()
print(magicNum.numerator, magicNum.denominator)

An instantiated specialization of a class template is treated like a regular C++ structure or
class when it is mapped into Swift. For example, the Fraction<int, float> template
specialization becomes a Swift structure:

struct Fraction<CInt, Float> {
 var numerator: CInt
 var denominator: Float

 init(_: CInt, _: Float)
}

A C++ type alias can refer to a specific specialization of a class template. For example, in
order to construct a Fraction<int, float> from Swift, you first want to create a C++ type
alias that refers to such template specialization:

// Bring `Fraction<int, float>` type to Swift with a C++ `using` declaration.
using MagicFraction = Fraction<int, float>;

Then you can use this type alias directly from Swift:

let oneEights = MagicFraction(1, 8.0)
print(oneEights.numerator)

A follow-up section of this document describes how Swift generics and protocol extensions
can be used to write generic Swift code that works with any specialization of a class
template.

Customizing How C++ Maps to Swift
The defaults that determine how C++ types and functions map to Swift can be changed, by
annotating a specific C++ function or type with one of the provided customization macros.
For example, you can choose to provide a different Swift name for a specific C++ function
using the SWIFT_NAME macro.

The <swift/bridging> header defines the customization macros that can be used to
annotate C++ functions and types. This header ships with the Swift toolchain.

On Apple and Linux platforms both the system’s C++ compiler and the Swift compiler
should find this header automatically. On other platforms, like Windows, you might need
to add additional header search path flags (-I) to your C++ and Swift compiler
invocations to make sure that this header is found.

This section describes just two of the customization macros from the <swift/bridging>
header. The other customization macros and their behavior are documented in the
subsequent sections in this document. The complete list of all the customization macros is
provided in the appendix.

Swift.org
ABOUT SWIFT

BLOG

GETTING STARTED

DOWNLOAD

PLATFORM SUPPORT

DOCUMENTATION

COMMUNITY

COMMUNITY OVERVIEW

DIVERSITY

MENTORSHIP

CONTRIBUTING

CODE OF CONDUCT

OPN SOURC DVLOPMNT

SWIFT EVOLUTION

SOURCE CODE

CONTINUOUS
INTEGRATION

SOURCE COMPATIBILITY

SECURITY

OPN SOURC FFORTS

SWIFT COMPILER

STANDARD LIBRARY

PACKAGE MANAGER

CORE LIBRARIES

REPL, DEBUGGER &
PLAYGROUNDS

SWIFT ON SERVER

SWIFT.ORG WEBSITE

LANGUAGE WORKGROUP

C++ INTEROPERABILITY

DOCUMENTATION
WORKGROUP

http://127.0.0.1:4000/documentation/cxx-interop/status
http://127.0.0.1:4000/documentation/cxx-interop/status#known-issues
https://github.com/apple/swift/issues/new/choose
http://127.0.0.1:4000/documentation/cxx-interop/project-build-setup#mixing-swift-and-c-using-swift-package-manager
http://127.0.0.1:4000/documentation/cxx-interop/project-build-setup#mixing-swift-and-c-using-other-build-systems
https://clang.llvm.org/
https://clang.llvm.org/docs/Modules.html
https://clang.llvm.org/docs/Modules.html#module-map-language
http://127.0.0.1:4000/documentation/cxx-interop/status#supported-swift-apis
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/classesandstructures#Structures-and-Enumerations-Are-Value-Types
https://github.com/apple/swift-evolution/blob/main/proposals/0390-noncopyable-structs-and-enums.md
http://127.0.0.1:4000/
http://127.0.0.1:4000/about/
http://127.0.0.1:4000/blog/
http://127.0.0.1:4000/getting-started/
http://127.0.0.1:4000/download/
http://127.0.0.1:4000/platform-support/
http://127.0.0.1:4000/documentation/
http://127.0.0.1:4000/community/
http://127.0.0.1:4000/diversity/
http://127.0.0.1:4000/mentorship/
http://127.0.0.1:4000/contributing/
http://127.0.0.1:4000/code-of-conduct/
http://127.0.0.1:4000/swift-evolution/
http://127.0.0.1:4000/source-code/
http://127.0.0.1:4000/continuous-integration/
http://127.0.0.1:4000/source-compatibility/
http://127.0.0.1:4000/support/security.html
http://127.0.0.1:4000/swift-compiler/
http://127.0.0.1:4000/standard-library/
http://127.0.0.1:4000/package-manager/
http://127.0.0.1:4000/core-libraries/
http://127.0.0.1:4000/lldb/
http://127.0.0.1:4000/server/
http://127.0.0.1:4000/website/
http://127.0.0.1:4000/language-workgroup/
http://127.0.0.1:4000/cxx-interop-workgroup/
http://127.0.0.1:4000/documentation-workgroup/

Renaming C++ APIs in Swift
The SWIFT_NAME macro provides a different name for C++ types and functions in Swift. C++
types can be renamed by specifying the Swift type name inside of the SWIFT_NAME macro.
For example, the following C++ structure:

struct Error {
 ...
} SWIFT_NAME("CxxLibraryError");

Gets renamed to CxxLibraryError structure in Swift.

When renaming a function, you need to specify the Swift function name (including argument
labels) inside of the SWIFT_NAME macro. For example, the following C++ function:

#include <swift/bridging>

void sendCopy(const std::string &) SWIFT_NAME(send(_:));

Gets renamed to send in Swift:

send("Hello, this is Swift!")

Mapping Getters and Setters to Computed Properties
The SWIFT_COMPUTED_PROPERTY macro maps a C++ getter and setter member function to a
computed property in Swift. For example, the following getter and setter pair:

#include <swift/bridging>

class Tree {
public:
 TreeKind getKind() const SWIFT_COMPUTED_PROPERTY;
 void setKind(TreeKind kind) SWIFT_COMPUTED_PROPERTY;

 ...
};

Gets mapped to a single treeKind computed property in Swift:

func makeNotAConiferousTree(tree: inout Tree) {
 tree.kind = tree.kind == .Redwood ? .Oak : tree.kind
}

Both the getter and setter need to operate on the same underlying C++ type for this
transformation to be successful in Swift.

It’s possible to map just the getter to a computed property, a setter is not required for this
transformation to work.

Extending C++ Types in Swift
Swift extensions can add new functionality to C++ types in Swift. They can also conform an
existing C++ type to a Swift protocol.

Extensions can add new functionality to a C++ type, but they can’t override existing
functionality of a C++ type.

Conforming C++ Type to Swift Protocol
Swift protocol conformance can be added to a C++ type retroactively (after the type has
been defined). Such conformance enables the following use cases in Swift:

Generic Swift functions and types constrained by protocols can work with a conforming
C++ value.
A protocol type can represent a conforming C++ value.

For example, a Swift extension can add Hashable conformance to the C++ class Tree:

extension Tree: Hashable {
 static func == (lhs: Tree, rhs: Tree) -> Bool {
 return lhs.kind == rhs.kind
 }

 func hash(into hasher: inout Hasher) {
 hasher.combine(self.kind.rawValue)
 }
}

Such conformance then lets you use Tree as a key in a Swift dictionary:

let treeEmoji: Dictionary<Tree, String> = [
 Tree(.Oak): "

🌳

",
 Tree(.Redwood): "

🌲

"
]

Conforming Class Template to Swift Protocol
A Swift extension can add protocol conformance to a specific class template specialization in
Swift. For example, a specific specialization of the following class template:

template<class T>
class SerializedValue {
public:
 T deserialize() const;

 ...
};

using SerializedInt = SerializedValue<int>;
using SerializedFloat = SerializedValue<float>;

SerializedInt getSerializedInt();
SerializedFloat getSerializedFloat();

Can conform to a protocol using a Swift extension:

// Swift module 'Serialization'
protocol Deserializable {
 associatedtype ValueType

 func deserialize() -> ValueType
}

// `SerializedInt` specialization now conforms to `Serializable`
extension SerializedInt: Serializable {}

In the example above SerializedInt conforms to the Deserializable protocol. However,
other specializations of the class template, like SerializedFloat, do not conform to
Deserializable.

The SWIFT_CONFORMS_TO customization macro from the <swift/bridging> header can be
used to conform all specializations of a class template to a Swift protocol automatically. For
example, the definition of the SerializedValue class template can be annotated with
SWIFT_CONFORMS_TO:

template<class T>
class SerializedValue {
public:
 using ValueType = T;
 T deserialize() const;

 ...
} SWIFT_CONFORMS_TO(Serialization.Deserializable);

This makes all specializations, like SerializedInt and SerializedFloat, conform to
Deserializable automatically in Swift. This makes it possible to add functionality to all
specializations of a class template in Swift, by using a protocol extension:

extension Deserializable {
 // All specializations of the `SerializedValue` template now have
 // `deserializedDescription` property in Swift.
 var deserializedDescription: String {
 "serialized value \(deserialize().description)"
 }
}

This also lets you use any specialization in constrained generic code without any additional
explicit conformances:

func printDeserialized<T: Deserializable>(_ item: T) {
 print("obtained: \(item.deserializedDescription)")
}

// Both `SerializedInt` and `SerializedFloat` specializations automatically
// conform to `Deserializable`
printDeserialized(getSerializedInt())
printDeserialized(getSerializedFloat())

Working with C++ Containers
C++ container types, like the std::vector class template, typically provide iterator-based
APIs for users in C++. Using a C++ iterator is unsafe in Swift, as such use is not associated
with its owning container which can get destroyed while the iterator is still in use. Instead of
relying on C++ iterators, Swift attempts to automatically conform certain C++ container types
to protocols which allow safe access to the underlying container in Swift. Swift also provides
a handful of other protocols that provide safe access to the underlying container for types
that conform to them manually using an extension in Swift.

Using Random Access C++ Collections in Swift
Swift attemps to conform C++ containers that provide random access to their elements, like
std::vector, to Swift’s RandomAccessCollection protocol automatically. This makes it
possible to traverse through the collection’s elements safely, using familiar Swift control flow
statements and APIs. For example, you can traverse through the elements of the vector
returned by this function:

std::vector<Tree> getEnchantedTrees();

Using the for-in loop in Swift:

let trees = getEnchantedTrees()
for tree in trees {
 print(tree.kind)
}

Collection methods like map and filter are also available:

let oakTrees = getEnchantedTrees().filter { $0.kind == .Oak }

Swift’s count property returns the number of elements in such collection. Swift’s subscript
operator can be used to access a specific element in the collection as well. This makes it
possible to mutate individual elements in the C++ container:

var trees = getEnchantedTrees()
for i in 0..<trees.count {
 trees[i].kind = .Oak
}

A C++ container that conforms to RandomAccessCollection can be easily converted into a
Swift collection type, like Array:

let treesArray = Array<Tree>(getEnchantedTrees())

Swift does not convert C++ container types to Swift collection types automatically. Any
conversion from a C++ container type, like std::vector, to a Swift collection type, like
Array, is explicit in Swift.

Conformance Rules for Random Access C++ Collections

The following two conditions must be satisfied in order for a C++ container type to
automatically conform to RandomAccessCollection in Swift:

The C++ container type must have begin and end member functions. Both functions
must be constant and must return the same iterator type.
The C++ iterator type must satisfy the RandomAccessIterator C++ requirement. It
must be possible to advance it using operator += in C++ and also to subscript into it
using operator [] in C++.

When these conditions are satisfied, Swift conforms the Swift structure that represents the
underlying C++ container type to the CxxRandomAccessCollection protocol, which adds the
RandomAccessCollection conformance.

Using Sequential C++ Collections in Swift
The sequential C++ container types that do not provide random access to their elements are
automatically conformed to the CxxConvertibleToCollection protocol in Swift. This makes
it possible to easily convert them to Swift collection types like Array and Set in Swift. For
example, the std::set returned by this function:

std::set<int> getWinningNumers();

Can be easily converted to either an Array or Set in Swift:

let winners = getWinningNumers()
for number in Array(winners) {
 print(number)
}
let setOfWinners = Set(winners)

In addition to automatic conformances, Swift lets you conform a sequential C++ container to
the Sequence protocol manually, by providing a CxxSequence protocol that implements
Sequence for a conforming C++ container. Such conformance lets you use familiar APIs and
control flow statements for types that don’t provide random access to their elements. For
example, the std::set<TreeKind> container type:

using SetOfTreeKinds = std::set<TreeKind>;

Can be easily conformed to CxxSequence using an extension in Swift:

extension SetOfTreeKinds: CxxSequence { }

This lets you traverse through the elements of such set using the for-in loop in Swift:

let highTreeKinds: SetOfTreeKinds = getHighElevationTreeKinds()
for treeKind in highTreeKinds {
 print("Fact: \(treeKind) tree can survive above 5000 feet!")
}

Collection methods like map and filter are also available for types that conform to
CxxSequence.

Conformance Rules for CxxSequence Protocol

The following two conditions must be satisfied when conforming a C++ container type to
CxxSequence in Swift:

The C++ container type must have begin and end member functions. Both functions
must be constant and must return the same iterator type.
The C++ iterator type must satisfy the InputIterator C++ requirement. It must be
possible to increment it using operator ++ in C++ and also to dereference it using
operator * in C++.

Conforming a type to CxxSequence automatically conforms it to Swift’s Sequence protocol.

Using Associative Container C++ Types in Swift
Associative C++ container types, like std::map, provide efficient access to stored elements
using a lookup key. The find member function that performs such lookup is unsafe in Swift.
Instead of using find, Swift automatically conforms associative containers from the C++
standard library to the CxxDictionary protocol. Such conformance lets you use the
subscript operator when working with an associative C++ container in Swift. For example, the
std::unordered_map returned by this function:

std::unordered_map<std::string, std::string>
getAirportCodeToCityMappings();

Can be used like a dictionary in Swift, with the subscript returning a value stored in the
container, or nil if such value doesn’t exist:

let mapping = getAirportCodeToCityMappings();
if let dubCity = mapping["DUB"] {
 print(dubCity)
}

The provided subscript calls the container’s find method safely inside of its implementation.

Associative C++ containers can also be manually conformed to CxxSequence when you need
to traverse through their elements in Swift.

Swift does not conform custom associative C++ containers to CxxDictionary automatically.
A manually written Swift extension can be used to add the CxxDictionary conformance
retroactively for a custom associative container type.

Best Practices for Working with C++ Containers in Swift

Do Not Use C++ Iterators in Swift

As outlined at the start of this section, using C++ iterators is unsafe in Swift. It’s easy to
misuse C++ iterators, for instance:

it’s easy to use an iterator after the C++ container is destroyed.
it’s easy to dereference an iterator that has advanced past the container’s last element.

You should use protocols like CxxRandomAccessCollection, CxxSequence and
CxxDictionary when working with C++ containers instead of relying on C++ iterator APIs.

Member functions inside of C++ container types that return C++ iterators are marked unsafe
in Swift, just like member functions that return references. Other C++ APIs, like top-level
functions that take or return iterators could still be directly available in Swift. You should avoid
using such functions in Swift.

Avoiding Deep Container Copies

C++ container types become value types types in Swift. This means that Swift calls the
container’s copy constructor, which in turn copies all the elements, every time a copy is
made in Swift. For example, Swift will copy all of the elements from a std::vector<int>
represented by the CxxVectorOfInt type into a new vector whenever it’s passed into this
Swift function:

func takesVectorType(_ : CxxVectorOfInt) {
 ...
}

let vector = createCxxVectorOfInt()
takesVectorType(vector) // 'vector' is copied here.

Swift’s upcoming parameter ownership modifiers, which will be provided in Swift 5.9, will let
you avoid copies when passing immutable values to functions. Mutable values can be passed
by inout to a Swift function, which lets you avoid a deep copy of the C++ container:

func mutatesVectorType(_ : inout CxxVectorOfInt) {
 ...
}

var vector = createCxxVectorOfInt()
takesVectorType(&vector) // 'vector' is not copied!

Mapping C++ Types to Swift Reference
Types
The Swift compiler allows you to annotate some C++ types and import them as reference
types (or class types) in Swift. Whether a C++ type should be imported as a reference type
is a complex question, and there are two primary criteria that go into answering it.

The first criterion is whether object identity is part of the “value” of the type. Is comparing the
address of two objects just asking whether they’re stored at the same location, or it is
deciding whether they represent the “same object” in a more significant sense?

The second criterion whether objects of the C++ class are always passed around by
reference. Are objects predominantly passed around using a pointer or reference type, such
as a raw pointer (*), C++ reference (& or &&), or a smart pointer (like std::unique_ptr or
std::shared_ptr)? When passed by raw pointer or reference, is there an expectation that
that memory is stable and will continue to stay valid, or are receivers expected to copy the
object if they need to keep the value alive independently? If objects are generally allocated
and remain at a stable address, even if that address is not semantically part of the “value” of
an object, the class may be idiomatically a reference type. This will sometimes be a judgment
call for the programmer.

The first and most important criteria is often not possible for a compiler to answer
automatically by just looking at the code. If you want the Swift compiler to map a C++ type to
a Swift reference type, you must annotate the C++ type with one of the following
customization macros from the <swift/bridging> header:

SWIFT_IMMORTAL_REFERENCE
SWIFT_SHARED_REFERENCE
SWIFT_UNSAFE_REFERENCE

Immortal Reference Types
Immortal reference types are not designed to be managed individually by the program.
Objects of these types are allocated and then intentionally “leaked” without tracking their
uses. Sometimes these objects are not truly immortal: for example, they may be arena-
allocated, with an expectation that they will only be referenced from other objects within the
arena. Nonetheless, they aren’t expected to be individually managed.

The only reasonable thing Swift can do with immortal reference types is import them as
unmanaged classes. This is perfectly fine when objects are truly immortal. If the object is
arena-allocated, this is unsafe, but it’s essentially an unavoidable level of unsafety given the
choices of the C++ API.

To specify that a C++ type is an immortal reference type, apply the
SWIFT_IMMORTAL_REFERENCE attribute. Here’s an example of SWIFT_IMMORTAL_REFERENCE
being applied to the C++ type LoggerSingleton:

class LoggerSingleton {
public:
 LoggerSingleton(const LoggerSingleton &) = delete; // non-copyable

 static LoggerSingleton &getInstance();
 void log(int x);
} SWIFT_IMMORTAL_REFERENCE;

And now that LoggerSingleton is imported as a reference type in Swift, the programmer will
be able to use it in the following manner:

let logger = LoggerSingleton.getInstance()
logger.log(123)

Shared Reference Types
Shared reference types are reference-counted with custom retain and release operations. In
C++, this is nearly always done with a smart pointer like std::shared_ptr rather than
expecting programmers to manually use retain and release. This is generally compatible with
being imported as a managed type. Shared pointer types are either “intrusive” or “non-
intrusive”, which unfortunately ends up being relevant to semantics. std::shared_ptr is a
non-intrusive shared pointer, which supports pointers of any type without needing any
cooperation. Intrusive shared pointers require cooperation but support some additional
operations. Currently, Swift only supports importing intrusively reference counted types as
foreign reference types, but we intent to lift this restriction over time. (Today, you can still
often use non-intrusively reference counted types, such as std::shared_ptr, as value types
that own their storage.)

To specify that a C++ type is a shared reference type, use the SWIFT_SHARED_REFERENCE
attribute. This attribute expects two arguments: a retain and release function. These
functions must be global functions that take exactly one argument and return void. The
argument must be a pointer to the C++ type (not a base type). Swift will call these custom
retain and release functions where it would otherwise retain and release Swift classes. Here’s
an example of SWIFT_SHARED_REFERENCE being applied to the C++ type SharedObject:

class SharedObject : IntrusiveReferenceCounted<SharedObject> {
public:
 SharedObject(const SharedObject &) = delete; // non-copyable

 static SharedObject* create();
 void doSomething();
} SWIFT_SHARED_REFERENCE(retainSharedObject, releaseSharedObject);

void retainSharedObject(SharedObject *);
void releaseSharedObject(SharedObject *);

And now that SharedObject is imported as a reference type in Swift, the programmer will be
able to use it in the following manner:

let object = SharedObject.create()
object.doSomething()
// `object` will be released here.

Unsafe Reference Types
The SWIFT_UNSAFE_REFERENCE annotation macro has the same effect as
SWIFT_IMMORTAL_REFERENCE annotation macro. However, it communicates different
semantics: the type is intended to be used unsafely, rather than living for the duration of the
program.

Unique Reference Types
Unique reference types, such as types passed around by std::unique_ptr are not yet
supported by Swift.

Using C++ Standard Library from Swift
This section describes how to import the C++ standard library, and how to use the types
provided by it in Swift.

Importing C++ Standard Library
Swift can import the platform’s C++ standard library, by importing the CxxStdlib module.
The std namespace becomes std enumeration in Swift. The functions and types inside of
the std namespace become nested types and static functions in the std Swift enumeration.

The status page contains a list of the supported C++ standard libraries, that describes which
C++ standard libraries are supported on the platforms supported by Swift.

Using std::string
The std::string C++ type becomes a structure in Swift. It conforms to the
ExpressibleByStringLiteral protocol, so it can be initialized directly using a string literal in
Swift:

import CxxStdlib

let s: std.string = "Hello C++ world!"

Swift String can be easily converted to a C++ std::string:

let swiftString = "This is " + "a Swift string"
let cxxString = std.string(swiftString)

The same conversion can be made in the opposite direction, going from a C++ std::string
to a Swift String:

let cxxString = std.string("This is a C++ string")
let swiftString = String(cxxString)

Swift does not convert C++ std::string type to Swift’s String type automatically.

Accessing Swift APIs from C++
Swift compiler can generate a header file that contains C++ types and functions that
represent the Swift types and functions defined in a Swift module. Such header file can then
be included from C++ code, letting you use Swift types and call Swift functions from C++.

Swift considers all public types and functions defined in a Swift module as eligible to be
exposed to C++ when generating the generated header file. However, not all public types
and functions can be represented in C++ yet. The exact rules that determine which Swift
types and functions currently get exposed to C++ in the generated header are described in
the following status page section.

Using Swift Types and Functions from
C++
A wide array of Swift types and functions gets exposed to C++. This section goes over the
fundamentals of how the exposed Swift types and functions can be used from C++.

Calling Swift Functions
Top-level Swift functions that are exposed to C++ become inline C++ functions in the
generated header. The C++ functions are placed in the C++ namespace that represents the
Swift module. The body of such C++ function calls the native Swift function directly from
C++, without using any kind of indirection.

For example, the following Swift function gets exposed to C++ in the generated header:

// Swift module 'Greeter'

public func printWelcomeMessage(_ name: String) {
 print("Welcome \(name)")
}

C++ code can call printWelcomeMessage after including the generated header:

#include <Greeter-Swift.h>

void cPlusPlusCallsSwift() {
 Greeter::printWelcomeMessage("Theo");
}

Using Swift Structures In C++
Swift structures that are exposed to C++ become final C++ classes in the generated header.
Top-level structures are placed in the C++ namespace that represents the Swift module. The
exposed initializers, methods and properties defined inside of the Swift structure become
members of the C++ class.

The C++ class that represents a Swift structures is copyable. Its copy constructor copies the
underlying Swift value into a new value. The destructor of the C++ class destroys the
underlying Swift value.

As of Swift 5.9, C++ classes that represent Swift structures can not be moved in C++ using
std::move.

Creating a Swift Structure in C++

The exposed initializers of a Swift structure become static init member functions in the C++
class. The C++ code can then call one of such functions to create an instance of the
structure in C++.

For example, Swift exposes the MountainPeak structure shown below in the generated
header:

// Swift module 'Landscape'

public struct MountainPeak {

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/extensions
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/generics#Type-Constraints
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/protocols#Protocols-as-Types
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/named_req/RandomAccessIterator
https://en.cppreference.com/w/cpp/named_req/InputIterator
https://github.com/apple/swift-evolution/blob/main/proposals/0377-parameter-ownership-modifiers.md
http://127.0.0.1:4000/documentation/cxx-interop/status#c-standard-library-support
http://127.0.0.1:4000/documentation/cxx-interop/status#supported-swift-apis

public struct MountainPeak {
 let name: String
 let height: Float

 public init(name: String, height: Float) {
 self.name = name
 self.height = height
 }
}

The init static member function from the MountainPeak C++ class can be used to create a
MountainPeak instance in C++:

#include <Landscape-Swift.h>
using namespace Landscape;

void createMountainRange() {
 auto tallestMountain = MountainPeak::init("Everest", 8848.9);
}

Using Swift Classes in C++
Swift classes that are exposed to C++ become C++ classes in the generated header. Top-
level classes are placed in the C++ namespace that represents the Swift module. The
exposed initializers, methods and properties defined inside of the Swift structure become
members of the C++ class.

The C++ class that represents a Swift structures is copyable and movable. Its copy and move
constructors, and its destructor obey the rules of Swift’s automatic reference counting (ARC)
model that allows the program to release the Swift class instance when it’s no longer
referenced.

For example, Swift exposes the MountainRange class shown below in the generated header:

// Swift module 'Landscape'

public class MountainRange {
 let peaks: [MountainPeak]

 public init(peaks: [MountainPeak]) {
 self.peaks = peaks
 }
}

public func createSierras() -> MountainRange {
 ...
}

public func render(mountainRange: MountainRange) {
 ...
}

A MountainRange instance can then be passed around in C++ safely. ARC will release it once
it’s no longer in use:

#include <Landscape-Swift.h>
using namespace Landscape;

void renderSierras() {
 MountainRange range = createSierras();
 render(range);
 // The `MountainRange` instance that `range` points to is freed by ARC when
 // this C++ function returns.
}

The inheritance hierarchy of Swift classes is represented using a C++ inheritance hierarchy
formed by the C++ classes that represent the exposed Swift classes.

Using Swift Enumerations in C++
Swift enumerations that are exposed to C++ become C++ classes in the generated header.
Top-level enumerations are placed in the C++ namespace that represents the Swift module.
The exposed initializers, methods and properties defined inside of the Swift enumeration
become members of the C++ class.

The C++ class that represents a Swift enumeration is copyable. Its copy constructor copies
the underlying Swift value into a new value. The destructor of the C++ class destroys the
underlying Swift value. As of Swift 5.9, C++ classes that represent Swift enumerations can
not be moved in C++ using std::move.

The enumeration cases become static inline constant C++ data members in the C++
class that represents the enum. These members let you:

Construct a Swift enumeration that is set to the specific case value in C++.
Switch over a Swift enumeration using a switch statement in C++.

For example, the following Swift enumeration is exposed in the generated header:

// Swift module 'Landscape'

public enum VolcanoStatus {
 case dormant
 case active
}

A VolcanoStatus instance can be constructed from C++, by using operator() on one of its
members that represents an enumeration case. You can also reference such member in the
case condition inside of a switch statement in C++:

#include <Landscape-Swift.h>
using namespace Landscape;

VolcanoStatus invertVolcanoStatus(VolcanoStatus status) {
 switch (status) {
 case VolcanoStatus::dormant:
 return VolcanoStatus::active(); // Returns `VolcanoStatus.active` case.
 case VolcanoStatus::active:
 return VolcanoStatus::dormant(); // Returns `VolcanoStatus.dormant` case.
 }
}

The unknownDefault C++ member allows you to write an exhaustive C++ switch for a
resilient Swift enumeration, as such enumeration might get more cases in the future that the
C++ code does not know about.

Using Enumerations with Associated Values

Swift allows an enumeration to associate a set of values with a particular case. Enumerations
whose cases have one associated value, or no associated values, get exposed to C++. They
become C++ classes in the generated header. The interface of such C++ class closely
resembles the interface of a class generated for a Swift enumeration without associated
values. Such classes also contain additional getter member functions, that let you extract the
associated value stored in the enumeration once you determine which case the enumeration
is set to.

For example, the following Swift enumeration with associated values is exposed in the
generated header:

// Swift module 'Landscape'

public enum LandmarkIdentifier {
 case name(String)
 case id(Int)
}

The value associated with one of the cases of LandmarkIdentifier can be extracted by
calling the appropriate getter method in C++:

#include <Landscape-Swift.h>
#include <iostream>
using namespace Landscape;

void printLandmarkIdentifier(LandmarkIdentifier identifier) {
 switch (status) {
 case LandmarkIdentifier::name:
 std::cout << (std::string)identifier.getName();
 break;
 case LandmarkIdentifier::id:
 std::cout << "unnamed landmark #" << identifier.getId();
 break;
 }
}

A new LandmarkIdentifier instance can be constructed from C++ as well:

auto newLandmarkId = LandmarkIdentifier::id(1234);

Calling Swift Methods
Swift methods become member functions in C++.

Swift structures and enumerations have mutating and nonmutating methods. Nonmutating
methods become constant member functions in C++.

Accessing Swift Properties in C++
Both stored and computed properties become getter and setter member functions in C++.
The getter is a constant member function that returns the value of the Swift property.
Mutable properties have a setter in C++ as well. The setter is a member function and should
not be invoked on immutable instances of a Swift value type.

For example, the following Swift structure is exposed to C++ in the generated header:

public struct LandmarkLocation {
 public var latitude: Float
 public var longtitude: Float
}

C++ code can then call getLatitude and getLongtitude member functions to access the
stored property values.

Appendix
This section contains additional tables and references for certain topics that are outlined in
the documentation above.

List of Customization Macros in <swift/bridging>

Macro Documentation

SWIFT_NAME Renaming C++ APIs in Swift

SWIFT_COMPUTED_PROPERTY
Mapping Getters and Setters to
Computed Properties

SWIFT_CONFORMS_TO
Conforming Class Template to Swift
Protocol

SWIFT_IMMORTAL_REFERENCE Immortal Reference Types

SWIFT_SHARED_REFERENCE Shared Reference Types

SWIFT_UNSAFE_REFERENCE Unsafe Reference Types

Copyright © 2023 Apple Inc. All rights reserved.

Swift and the Swift logo are trademarks of Apple Inc.

Privacy Policy Cookies

Light Dark Auto

http://www.apple.com/privacy/privacy-policy/
http://www.apple.com/legal/privacy/en-ww/cookies/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/automaticreferencecounting

