
Supported Features and
Limitations of C++
Interoperability

Swift supports bidirectional interoperability with C++. This page describes which C++
interoperability features are supported in the upcoming Swift 5.9 release. It also talks about
the limitations in the current support for C++ interoperability. Additionally, it lists the set of
known issues that are related to C++ interoperability support.

C++ interoperability is an actively evolving feature of Swift. Certain aspects of its design and
functionality might change in future releases of Swift, as the Swift community gathers
feedback from real world adoption of C++ interoperability in mixed Swift and C++ codebases.
This page is going to be updated whenever a new release of Swift changes the supported
set of C++ interoperability features.

Platform Support
C++ interoperability is supported for development and deployment on all platforms that Swift
supports.

Compiler Support
C++ interoperability is supported in Swift 5.9 and above.

Swift’s support for bidirectional interoperability relies on a header generated by the Swift
compiler that can then be included by C++ code that wants to use Swift APIs. This header
uses Swift-specific compiler extensions that are supported only by the following C++
compilers:

Clang (starting with LLVM 11 and above)
Xcode’s Apple Clang

C++ code built with other compilers cannot call Swift functions or use Swift types from C++.

C++ Standard Library Support
Swift compiler uses the platform’s default C++ standard library when interoperating with
C++. This table shows which C++ standard library is used when building Swift code for a
specific deployment platform:

Platform running Swift application Default C++ Standard Library

macOS, iOS, watchOS, tvOS libc++

Ubuntu, CentOS, Amazon Linux libstdc++

Windows
Microsoft C++ Standard Library
(msvcprt)

Swift does not currently support selecting an alternative standard library for platforms that
support alternative standard libraries. For example, you can’t use libc++ when building Swift
code for Ubuntu, even though libc++ can be used when building C++ code for Ubuntu.

Mixed Swift and C++ code must use the same C++ standard library.

Supported C++ APIs
This section describes which C++ APIs are supported in Swift.

C++ Functions Supported in Swift
Swift supports calling most non-templated:

Top-level functions.
Functions inside of namespaces.
Member functions, both instance and static.
Constructors.

Functions and constructors that use r-value reference types are not yet available in Swift.

Virtual member functions are not yet available in Swift.

Swift supports calling some C++ function templates. Any function or function template that
uses a dependent type in its signature, or a universal reference (T &&) is not available in
Swift. Any function template with non-type template parameters is not available in Swift.
Variadic function templates are not available in Swift.

A C++ function whose return type is not supported in Swift, or with a parameter whose type
is not supported in Swift is not available in Swift.

C++ Types Supported in Swift
The following C++ types can be used in Swift:

Primitive types, like int and bool.
Pointers.
C++ references (excluding r-value reference / universal reference parameters).
Type aliases, only when the underlying type is supported in Swift.
Copyable structures and classes.

Swift 5.9 does not support C++ structures and classes that have a deleted copy
constructor, including move-only structures and classes.

The only exception are the non-copyable C++ structures and classes that
have been explicitly mapped to Swift reference types.

Enumerations. That includes scoped enumerations (enum class).

C++ types that become value types in Swift can be constructed and passed around by value.

C++ types that become reference types can’t be constructed directly by Swift code. They
can be passed around freely between Swift and C++.

C++ types defined inside of a C++ namespace are available in Swift.

Class and structure templates are not directly available in Swift. The instantiated
specializations of a class or structure template are available in Swift.

Public data members of a C++ structure or class are available in Swift when the type of such
data member is supported in Swift.

C++ Standard Library Types Supported in Swift
The following C++ standard library types are supported in Swift:

std::string, std::u16string.
Specializations of std::pair.
Specializations of std::vector.
Specializations of std::map and std::unordered_map.
Specializations of std::set and std::unordered_set.
Specializations of std::optional.
Specializations of std::shared_ptr.
Specializations of std::array.

Other standard library types, like std::unique_ptr, std::function and std::variant are
not yet supported in Swift.

Other C++ Features Handled by Swift

C++ Exceptions

Swift can interoperate with C++ code that throws exceptions. However, Swift does not
support catching C++ exceptions. Instead, the running program terminates with a fatal error
when a C++ exception that’s not caught by C++ code reaches Swift code.

Swift’s strict program termination enforcement for any uncaught exceptions is not supported
when running Swift code built with Swift 5.9 on Windows. Any mixed language program
running on Windows should always terminate when a C++ exception propagates through
Swift code as the program’s stack is unwound. Any attempt to recover from such uncaught
exception can lead to undefined behavior in your program.

Clang’s Availability Attributes

C++ APIs annotated with Clang’s availability attributes receive the same availability
annotation in Swift.

Supported Swift APIs
This section describes which Swift APIs get exposed to C++ in the generated header.

Swift Structures Supported by C++
Swift can generate C++ representation for most top-level Swift structures. The following
Swift structures are not yet supported:

Zero-sized structures that don’t have any stored properties.
Non-copyable structures.
Generic structures with generic constraints, or with more than 3 generic parameters, or
that have variadic generics.

Swift currently does not expose nested structures to C++.

Swift Classes and Actors Supported by C++
Swift can generate C++ representation for most top-level Swift classes and actors. The
following Swift classes are not yet supported:

Generic classes and actors.

Swift currently does not expose nested classes and actors to C++.

Swift Enumerations Supported by C++
Swift can generate C++ representation for most top-level Swift enumerations that do not
have associated values, and some top-level Swift enumerations that have associated values.
The following Swift enumerations are not yet supported:

Non-copyable enumerations.
Generic enumerations with generic constraints, or with more than 3 generic parameters,
or that have variadic generics.
Enumerations that have an enumeration case with more than one associated value.
Indirect enumerations.

Additionally, the types of all the associated values of an enumeration must be representable
in C++. The exact set of representable types is described below, in the section that describes
the representable parameter or return types.

Swift currently does not expose nested enumerations to C++.

Swift Functions and Properties Supported by C++
Any function, property, or initializer is exposed to C++ only when Swift can represent all of its
parameter and return types in C++. A parameter or return type can be represented in C++
only when:

it is a Swift structure / class / enumeration that is defined in the same Swift module.
or, it is a C++ structure, class or enumeration.
or, it is one of the supported Swift standard library types.

if it’s a generic type, like Array, its generic parameters must be bound to one of the
types listed here.

or, it is an UnsafePointer / UnsafeMutablePointer / Optional<UnsafePointer> /
Optional<UnsafeMutablePointer> that points to any type from the supported three
type categories listed above.

Functions or initializers that have a parameter type or a return type that’s not listed above can
not be represented in C++ yet. Properties of type that’s not listed above can not be
represented in C++ yet.

Additionally, the following Swift functions, properties and initializers can not yet be
represented in C++:

Asynchronous functions / properties.
Functions / properties / initializers that throw.
Generic functions / properties / initializers with generic constraints or variadic generics.
Functions that return an opaque type.
Functions / properties / initializers with the @_alwaysEmitIntoClient attribute.

Supported Swift Standard Library Types
Swift is able to represent the following Swift standard library types in C++:

Primitive types, such as Bool, Int, Float and their C variants like CInt.
The full list of supported primitive types is provided below.

Pointer types, like OpaquePointer, UnsafePointer, UnsafeMutablePointer,
UnsafeRawPointer and UnsafeMutableRawPointer.
String type.
Array type.
Optional type.

List Of Primitive Swift Types Supported by C++
This table lists the primitive Swift types defined in Swift’s standard library that can be
represented in C++:

Swift Type Corresponding C++ type

Bool bool

Int swift::Int

UInt swift::UInt

Int8 int8_t

Int16 int16_t

Int32 int32_t

Int64 int64_t

UInt8 uint8_t

UInt16 uint16_t

UInt32 uint32_t

UInt64 uint64_t

Float float

Double double

Float32 float

Float64 double

CBool bool

CChar char

CWideChar wchar_t

CChar16 char16_t

CChar32 char32_t

CSignedChar signed char

CShort short

CInt int

CLong long

CLongLong long long

CUnsignedChar unsigned char

CUnsignedShort unsigned short

CUnsignedInt unsigned int

CUnsignedLong unsigned long

CUnsignedLongLong unsigned long long

CFloat float

CDouble double

Known Issues
Swift 5.9 has some known issues and limitations related to C++ interoperability support. All of
the known issues are listed on github.

Known Swift Package Manager Issues
A Swift target that enables C++ interoperability in Swift package manager requires its
dependencies to enable C++ interoperability as well. The following issue tracks the status of
this limitation:

Swift should provide support for internal imports and resilience for all platforms (that
can be enabled in SwiftPM) to allow Swift modules to depend on C++ modules without
requiring that the clients enable C++ interoperability

The other known Swift package manager issues are listed here:

The C++ language standard that’s specified in the package manifest is not passed to
the Swift compiler when C++ interoperability is enabled for Swift code

Known Performance Issues and Limitations
Swift’s current support for C++ container types does not provide explicit performance
guarantees. Most notably, Swift can make a deep copy of a collection when it’s used in a
for-in loop in Swift.

The following issue tracks the status of this performance limitation:

Swift should provide language affordances that make it possible to avoid copying a C++
container when traversing through it in a for-in loop, or when using collection methods
like map and filter

Copyright © 2023 Apple Inc. All rights reserved.

Swift and the Swift logo are trademarks of Apple Inc.

Privacy Policy Cookies

Light Dark Auto

Swift.org
ABOUT SWIFT

BLOG

GETTING STARTED

DOWNLOAD

PLATFORM SUPPORT

DOCUMENTATION

COMMUNITY

COMMUNITY OVERVIEW

DIVERSITY

MENTORSHIP

CONTRIBUTING

CODE OF CONDUCT

OPN SOURC DVLOPMNT

SWIFT EVOLUTION

SOURCE CODE

CONTINUOUS
INTEGRATION

SOURCE COMPATIBILITY

SECURITY

OPN SOURC FFORTS

SWIFT COMPILER

STANDARD LIBRARY

PACKAGE MANAGER

CORE LIBRARIES

REPL, DEBUGGER &
PLAYGROUNDS

SWIFT ON SERVER

SWIFT.ORG WEBSITE

LANGUAGE WORKGROUP

C++ INTEROPERABILITY

DOCUMENTATION
WORKGROUP

http://www.apple.com/privacy/privacy-policy/
http://www.apple.com/legal/privacy/en-ww/cookies/
http://127.0.0.1:4000/documentation/cxx-interop/index
https://www.swift.org/platform-support/
https://clang.llvm.org/
http://127.0.0.1:4000/documentation/cxx-interop/index#mapping-c-types-to-swift-reference-types
https://clang.llvm.org/docs/AttributeReference.html#availability
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/opaquetypes
https://github.com/apple/swift/issues/66159
https://github.com/apple/swift/issues/66156
https://github.com/apple/swift-package-manager/issues/6565
http://127.0.0.1:4000/documentation/cxx-interop/index#working-with-c-containers
https://github.com/apple/swift/issues/66158
http://127.0.0.1:4000/
http://127.0.0.1:4000/about/
http://127.0.0.1:4000/blog/
http://127.0.0.1:4000/getting-started/
http://127.0.0.1:4000/download/
http://127.0.0.1:4000/platform-support/
http://127.0.0.1:4000/documentation/
http://127.0.0.1:4000/community/
http://127.0.0.1:4000/diversity/
http://127.0.0.1:4000/mentorship/
http://127.0.0.1:4000/contributing/
http://127.0.0.1:4000/code-of-conduct/
http://127.0.0.1:4000/swift-evolution/
http://127.0.0.1:4000/source-code/
http://127.0.0.1:4000/continuous-integration/
http://127.0.0.1:4000/source-compatibility/
http://127.0.0.1:4000/support/security.html
http://127.0.0.1:4000/swift-compiler/
http://127.0.0.1:4000/standard-library/
http://127.0.0.1:4000/package-manager/
http://127.0.0.1:4000/core-libraries/
http://127.0.0.1:4000/lldb/
http://127.0.0.1:4000/server/
http://127.0.0.1:4000/website/
http://127.0.0.1:4000/language-workgroup/
http://127.0.0.1:4000/cxx-interop-workgroup/
http://127.0.0.1:4000/documentation-workgroup/

