
Setting Up Mixed-Language
Swift and C++ Project

Swift supports bidirectional interoperability with C++. This page describes how to set up a
mixed-language Swift and C++ project using one of the supported IDEs or build systems. It
also describes how other build systems can enable C++ interoperability by describing how to
use C++ interoperability when invoking Swift compiler directly.

Mixing Swift and C++ Using Swift
Package Manager
The Swift package manager allows Swift code to use C++ APIs in Swift.

As of Swift 5.9, Swift package manager does not yet provide support for using Swift APIs
in C++.

Enabling C++ Interoperability in a Package Target
A specific target in a Swift package must enable C++ interoperability in order to be able to
import and use C++ APIs in Swift. The interoperabilityMode Swift build setting is used to
enable C++ interoperability for a target. For example, the following package manifest shows
how to enable C++ interoperability for a library target:

let package = Package(
 name: "LibraryThatUsesCxx",
 products: [
 .library(
 name: "libraryUsesCxx",
 targets: ["libraryUsesCxx"])
],
 targets: [
 .target(
 name: "libraryUsesCxx",
 swiftSettings: [.interoperabilityMode(.Cxx)])
]
)

Importing Headers from a C++ Package Target
Swift imports C++ headers using Clang modules. Swift package manager can generate a
module map file automatically for a C++ target that contains an umbrella header. The
generated module map file allows a Swift target that depends on such C++ target to import
the C++ headers from such target.

The umbrella header used by the C++ target must:

Use the name of the C++ target (with additional extension) as its file name.
Be placed in the include directory in the target.

The umbrella header can then include other C++ headers in the project, which will then be
imported into Swift.

For example, the following Swift package builds a Swift command line tool that uses a C++
library:

let package = Package(
 name: "CommandLineSwiftToolUsesCxx",
 products: [
 .library(
 name: "cxxLibrary",
 targets: ["cxxLibrary"]),
 .executable(
 name: "swiftCLITool",
 targets: ["swiftCLITool"])
],
 targets: [
 .target(
 name: "cxxLibrary")
 .executableTarget(
 name: "swiftCLITool",
 dependencies: ["cxxLibrary"],
 swiftSettings: [.interoperabilityMode(.Cxx)])
]
)

Swift package manager will automatically generate a module map for the C++ library in this
package, as it can find an umbrella header in the sources:

Sources
├── swiftCLITool
└── cxxLibrary
 ├── include
 │ ├── cxxLibrary.h [This is the umbrella header]
 │ └── classHeader.h
 ├── cxxLibrary.cpp
 └── classHeader.cpp

The umbrella header cxxLibrary.h contains some declarations and also includes the other
headers in the C++ target:

// Header file `cxxLibrary.h`
#pragma once

#include <cxxLibrary/classHeader.h>

The Swift code in the swiftCLITool can import cxxLibrary directly:

import cxxLibrary

All of the supported C++ APIs declared in the classHeader.h header file will then be
available in Swift.

Vending Packages That Enable C++ Interoperability
Enabling C++ interoperability for a Swift package manager target will need other targets that
depend on such target to enable C++ interoperability as well.

Enabling C++ interoperability is a breaking change for an existing package, and so it must be
done only in a new major semver version. Please bump up the package’s major version when
you enable C++ interoperability!

If you’d like to vend a package with a target that enables C++ interoperability, we recommend
that you:

Clearly communicate to clients that they have to enable C++ interoperability when
depending on targets from such package.

Mixing Swift and C++ Using Other
Build Systems
This section describes how to enable and use C++ interoperability when invoking the Swift
compiler directly. This should allow other build systems to configure a mixed-language Swift
and C++ project.

Enabling C++ Interoperability in the Swift Compiler
The -cxx-interoperability-mode= build flag is used to enable C++ interoperability in
the Swift compiler. It receives the interoperability compatibility version as its value. The only
supported value right now is default. The default value implies that the interoperability
compatibility version used by Swift matches the Swift language version.

Importing a C++ Clang Module When Invoking Compiler Directly
The following build flag allows Swift to find the C++ headers:

-I <path>: This flag tells Swift that it should look for imports in the directory specified
by the given path. This path should contain a module.modulemap file when you want to
import a C++ Clang module into Swift.

The -Xcc flag is used to pass additional C++ build settings to the C++ Clang compiler
embedded in the Swift compiler. For example, you can use Clang’s -std= flag to import C++
headers that require C++20 into Swift:

swiftc ... -Xcc -std=c++20 ...

Putting it all together, the following Swift compiler invocation lets you compile a Swift file that
imports a Clang module whose module map file is located in the include directory:

swiftc main.swift -cxx-interoperability-mode=default -I include -o main

Copyright © 2023 Apple Inc. All rights reserved.

Swift and the Swift logo are trademarks of Apple Inc.

Privacy Policy Cookies

Light Dark Auto

Swift.org
ABOUT SWIFT

BLOG

GETTING STARTED

DOWNLOAD

PLATFORM SUPPORT

DOCUMENTATION

COMMUNITY

COMMUNITY OVERVIEW

DIVERSITY

MENTORSHIP

CONTRIBUTING

CODE OF CONDUCT

OPN SOURC DVLOPMNT

SWIFT EVOLUTION

SOURCE CODE

CONTINUOUS
INTEGRATION

SOURCE COMPATIBILITY

SECURITY

OPN SOURC FFORTS

SWIFT COMPILER

STANDARD LIBRARY

PACKAGE MANAGER

CORE LIBRARIES

REPL, DEBUGGER &
PLAYGROUNDS

SWIFT ON SERVER

SWIFT.ORG WEBSITE

LANGUAGE WORKGROUP

C++ INTEROPERABILITY

DOCUMENTATION
WORKGROUP

http://www.apple.com/privacy/privacy-policy/
http://www.apple.com/legal/privacy/en-ww/cookies/
http://127.0.0.1:4000/documentation/cxx-interop/index
http://127.0.0.1:4000/package-manager/
http://127.0.0.1:4000/documentation/cxx-interop/index#importing-c-into-swift
http://127.0.0.1:4000/documentation/cxx-interop/index#creating-a-clang-module
https://semver.org/
http://127.0.0.1:4000/
http://127.0.0.1:4000/about/
http://127.0.0.1:4000/blog/
http://127.0.0.1:4000/getting-started/
http://127.0.0.1:4000/download/
http://127.0.0.1:4000/platform-support/
http://127.0.0.1:4000/documentation/
http://127.0.0.1:4000/community/
http://127.0.0.1:4000/diversity/
http://127.0.0.1:4000/mentorship/
http://127.0.0.1:4000/contributing/
http://127.0.0.1:4000/code-of-conduct/
http://127.0.0.1:4000/swift-evolution/
http://127.0.0.1:4000/source-code/
http://127.0.0.1:4000/continuous-integration/
http://127.0.0.1:4000/source-compatibility/
http://127.0.0.1:4000/support/security.html
http://127.0.0.1:4000/swift-compiler/
http://127.0.0.1:4000/standard-library/
http://127.0.0.1:4000/package-manager/
http://127.0.0.1:4000/core-libraries/
http://127.0.0.1:4000/lldb/
http://127.0.0.1:4000/server/
http://127.0.0.1:4000/website/
http://127.0.0.1:4000/language-workgroup/
http://127.0.0.1:4000/cxx-interop-workgroup/
http://127.0.0.1:4000/documentation-workgroup/

