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1. Introduction

1.1. Javaplex. Javaplex is a Java software package for computing the persistent homology of filtered sim-
plicial complexes (or more generally, filtered chain complexes), with special emphasis on applications arising
in topological data analysis [Tausz et al. 2014]. The main author is Andrew Tausz. Javaplex is a re-
write of the JPlex package, which was written by Harlan Sexton and Mikael Vejdemo–Johansson. The
main motivation for the development of Javaplex was the need for a flexible platform that supported
new directions of research in topological data analysis and computational persistent homology. The web-
site for Javaplex is http://appliedtopology.github.io/javaplex/, the documentation overview is at
https://github.com/appliedtopology/javaplex/wiki/Overview, and the javadoc tree for the library is
at http://appliedtopology.github.io/javaplex/doc/.

This tutorial is written for those using Javaplex with Matlab. However, one can run Javaplex without
Matlab; see https://github.com/appliedtopology/javaplex/wiki/Interoperability.

If you are interested in Javaplex, then you may also be interested in the software package Dionysus by
Dmitriy Morozov (http://www.mrzv.org/software/dionysus) or the software package Persus by Vidit
Nanda (http://www.sas.upenn.edu/~vnanda/perseus/index.html).

Please email Henry at adams@math.colostate.edu or Andrew at andrew.tausz@gmail.com if you have
questions about this tutorial.

1.2. License. Javaplex is an open source software package under the Open BSD License. The source code
can be found at https://github.com/appliedtopology/javaplex.

1.3. Installation for Matlab. Open Matlab and check which version of Java is being used. In this tutorial,
the symbol >> precedes commands to enter into your Matlab window.

>> version -java

ans = Java 1.5.0_13 with Apple Inc. Java Hotspot(TM) Client VM mixed mode, sharing

Javaplex requires version number 1.5 or higher.

To install Javaplex for Matlab, go to the latest release at https://github.com/appliedtopology/javaplex/
releases/latest/. Download the zip file containing the Matlab examples, which should be called something
like matlab-examples-4.2.3.zip. Extract the zip file. The resulting folder should be called matlab examples;
make sure you know the location of this folder and that it is not inside the zip file.

In Matlab, change Matlab’s “Current Folder” to the directory matlab examples that you just extracted
from the zip file. Run the load javaplex.m file.

>> load_javaplex

Installation is complete. Confirm that Javaplex is working properly with the following command.

>> api.Plex4.createExplicitSimplexStream()

ans = edu.stanford.math.plex4.streams.impl.ExplicitSimplexStream@513fd4

Your output should be the same except for the last several characters. Each time upon starting a new Matlab
session, you will need to run load javaplex.m.

1.4. Accompanying files. The folder tutorial examples contains Matlab scripts, such as
explicit simplex example.m or house example.m, which list all of the commands in this tutorial. This
means that you don’t need to type in each command individually. The folder tutorial examples also
contains the Matlab data files, such as pointsRange.mat or pointsTorusGrid.mat, which are used in this

2

http://appliedtopology.github.io/javaplex/
https://github.com/appliedtopology/javaplex/wiki/Overview
http://appliedtopology.github.io/javaplex/doc/
https://github.com/appliedtopology/javaplex/wiki/Interoperability
http://www.mrzv.org/software/dionysus
http://www.sas.upenn.edu/~vnanda/perseus/index.html
https://github.com/appliedtopology/javaplex
https://github.com/appliedtopology/javaplex/releases/latest/
https://github.com/appliedtopology/javaplex/releases/latest/
https://github.com/appliedtopology/javaplex/tree/master/src/matlab/for_distribution/tutorial_examples
https://github.com/appliedtopology/javaplex/tree/master/src/matlab/for_distribution/tutorial_examples/explicit_simplex_example.m
https://github.com/appliedtopology/javaplex/tree/master/src/matlab/for_distribution/tutorial_examples/house_example.m
https://github.com/appliedtopology/javaplex/tree/master/src/matlab/for_distribution/tutorial_examples
https://github.com/appliedtopology/javaplex/tree/master/src/matlab/for_distribution/tutorial_examples/pointsRange.mat
https://github.com/appliedtopology/javaplex/tree/master/src/matlab/for_distribution/tutorial_examples/pointsTorusGrid.mat


tutorial. The folder tutorial solutions contains the solution scripts, such as exercise 1.m, for all of the
tutorial exercises. See Appendix B for exercise solutions.

2. Math review

Below is a brief math review. For more details, see Armstrong [1983], Edelsbrunner and Harer [2010],
Edelsbrunner et al. [2002], Hatcher [2002], and Zomorodian and Carlsson [2005].

2.1. Simplicial complexes. An abstract simplicial complex is given by the following data.

• A set Z of vertices or 0-simplices.
• For each k ≥ 1, a set of k-simplices σ = [z0, z1, . . . , zk], where zi ∈ Z.
• Each k-simplex has k + 1 faces obtained by deleting one of the vertices. The following membership

property must be satisfied: if σ is in the simplicial complex, then all faces of σ must be in the
simplicial complex.

We think of 0-simplices as vertices, 1-simplices as edges, 2-simplices as triangular faces, and 3-simplices as
tetrahedrons.

2.2. Homology. Betti numbers help describe the homology of a simplicial complex X. The value Bettik,
where k ∈ N, is equal to the rank of the k-th homology group of X. Roughly speaking, Bettik gives the
number of k-dimensional holes. In particular, Betti0 is the number of connected components. For instance,
a k-dimensional sphere has all Betti numbers equal to zero except for Betti0 = Bettik = 1.

2.3. Filtered simplicial complexes. A filtration on a simplicial complex X is a collection of subcomplexes
{X(t) | t ∈ R} of X such that X(t) ⊂ X(t′) whenever t ≤ t′. The filtration value of a simplex σ ∈ X is the
smallest t such that σ ∈ X(t). In Javaplex, filtered simplicial complexes (or more generally filtered chain
complexes) are called streams.

2.4. Persistent homology. Betti intervals help describe how the homology of X(t) changes with t. A
k-dimensional Betti interval, with endpoints [tstart, tend), corresponds roughly to a k-dimensional hole that
appears at filtration value tstart, remains open for tstart ≤ t < tend, and closes at value tend. We are often
interested in Betti intervals that persist for a long filtration range.

Persistent homology depends heavily on functoriality: for t ≤ t′, the inclusion i : X(t)→ X(t′) of simplicial
complexes induces a map i∗ : Hk(X(t))→ Hk(X(t′)) between homology groups.

3. Explicit simplex streams

In Javaplex, filtered simplicial complexes (or more generally filtered chain complexes) are called streams.
The class ExplicitSimplexStream allows one to build a simplicial complex from scratch. In Section 5 we will
learn about other automated methods of generating simplicial complexes; namely the Vietoris–Rips, witness,
and lazy witness constructions.

3.1. Computing homology. You should change your current Matlab directory to tutorial examples,
perhaps using the following command.

>> cd tutorial_examples

The Matlab script corresponding to this section is explicit simplex example.m, which is in the folder
tutorial examples. You may copy and paste commands from this script into the Matlab window, or you
may run the entire script at once with the following command.
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>> explicit_simplex_example

Circle example. Let’s build a simplicial complex homeomorphic to a circle. We have three 0-simplices: [0],
[1], [2], and three 1-simplices: [0,1], [0,2], [1,2].

0

1

2

To build a simplicial complex in Javaplex we simply build a stream in which all filtration values are zero.
First we create an empty explicit simplex stream. Many command lines in this tutorial will end with a
semicolon to supress unwanted output.

>> stream = api.Plex4.createExplicitSimplexStream();

Next we add simplicies using the methods addVertex and addElement. The first creates a vertex with a
specified index, and the second creates a k-simplex (for k > 0) with the specified array of vertices. Since we
don’t specify any filtration values, by default all added simplices will have filtration value zero.

>> stream.addVertex(0);

>> stream.addVertex(1);

>> stream.addVertex(2);

>> stream.addElement([0, 1]);

>> stream.addElement([0, 2]);

>> stream.addElement([1, 2]);

>> stream.finalizeStream();

After we are done building the complex, calling the method finalizeStream is necessary before working
with this complex!

We print the total number of simplices in the complex.

>> num_simplices = stream.getSize()

num_simplices = 6

We create an object that will compute the homology of our complex. The first input parameter 3 indicates
that homology will be computed in dimensions 0, 1, and 2 — that is, in all dimensions strictly less than 3.
The second input 2 means that we will compute homology with Z2 coefficients, and this input can be any
prime number.

>> persistence = api.Plex4.getModularSimplicialAlgorithm(3, 2);

We compute and print the intervals.

>> circle_intervals = persistence.computeIntervals(stream)

circle_intervals =

Dimension: 1

[0.0, infinity)

Dimension: 0

[0.0, infinity)

4



This gives us the expected Betti numbers Betti0 = 1 and Betti1 = 1.

The persistence algorithm computing intervals can also find a representative cycle for each interval. However,
there is no guarantee that the produced representative will be geometrically nice.

>> circle_intervals = persistence.computeAnnotatedIntervals(stream)

circle_intervals =

Dimension: 1

[0.0, infinity): [1,2] + [0,2] + [0,1]

Dimension: 0

[0.0, infinity): [0]

A representative cycle generating the single 0-dimensional homology class is [0], and a representative cycle
generating the single 1-dimensional homology class is [1,2] + [0,2] + [0,1].

9-sphere example. Let’s build a 9-sphere, which is homeomorphic to the boundary of a 10-simplex. First we
add a single 10-simplex to an empty explicit simplex stream. The result is not a simplicial complex because
it does not contain the faces of the 10-simplex. We add all faces using the method ensureAllFaces. Then,
we remove the 10-simplex using the method removeElementIfPresent. What remains is the boundary of a
10-simplex, that is, a 9-sphere.

>> dimension = 9;

>> stream = api.Plex4.createExplicitSimplexStream();

>> stream.addElement(0:(dimension + 1));

>> stream.ensureAllFaces();

>> stream.removeElementIfPresent(0:(dimension + 1));

>> stream.finalizeStream();

In the above, the finalizeStream method is used to ensure that the stream has been fully constructed
and is ready for consumption by a persistence algorithm. It should be called every time after you build an
explicit simplex stream.

We print the total number of simplices in the complex.

>> num_simplices = stream.getSize()

num_simplices = 2046

We get the persistence algorithm

persistence = api.Plex4.getModularSimplicialAlgorithm(dimension + 1, 2);

and compute and print the intervals.

>> n_sphere_intervals = persistence.computeIntervals(stream)

n_sphere_intervals =

Dimension: 9

[0.0, infinity)

Dimension: 0

[0.0, infinity)

This gives us the expected Betti numbers Betti0 = 1 and Betti9 = 1.

Try computing a representative cycle for each barcode.
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>> n_sphere_intervals = persistence.computeAnnotatedIntervals(stream)

We don’t display the output from this command in the tutorial, because the representative 9-cycle is very
long and contains all eleven 9-simplices.

See Appendix B for exercise solutions.

Exercise 1. Build a simplicial complex homeomorphic to the torus. Compute its Betti numbers. Hint: You
will need at least 7 vertices [Hatcher 2002, page 107]. We recommend using a 3× 3 grid of 9 vertices.

Exercise 2. Build a simplicial complex homeomorphic to the Klein bottle. Check that it has the same Betti
numbers as the torus over Z2 coefficients but different Betti numbers over Z3 coefficients.

Exercise 3. Build a simplicial complex homeomorphic to the projective plane. Find its Betti numbers over
Z2 and Z3 coefficients.

3.2. Computing persistent homology. Let’s build a stream with nontrivial filtration values. If your
filtration values are not all integers, then please see the remark at the end of this section.

House example. The Matlab script corresponding to this section is house example.m.

2 JPLEX WITH BEANSHELL TUTORIAL

Please email henrya@caltech.edu with questions about this tutorial or with sug-
gestions for how to improve it.

1.2. Installation for BeanShell. This section is a summary of the more detailed
installation instructions in overview.htm, which in particular also discuss logging
capabilities and increasing available memory.

First, you must have a Java Virtual Machine installed. Copy jplex.jar to your
home directory or a subdirectory thereof. In a command window or shell, enter the
following command.

java -cp plex.jar JPlex

A Graphical User Interface (GUI) window pops up that is a slightly modified version
of BeanShell. The prompt in this window is plex>. Confirm that JPlex is working
with the following command.

plex> Simplex.makePoint(1,2);

<<(2) 1>>

All output that BeanShell prints will be wrapped in “< >”. Some methods in this
tutorial print superfluous output, say of the form <[[I@b3236f> or
<[Ledu.stanford.math.plex.PersistenceInterval$Float;@916ab8>. Such out-
put is not included in the text of this tutorial, even though it will appear in your
GUI window.

1.3. Persistent homology. One way to describe the topology of a simplicial com-
plex X is with Betti numbers. The value Bettik, for k ∈ N, is equal to the rank
of the k-th homology group of X. Roughly speaking, Bettik equals the number of
k-dimensional holes of X, and in particular Betti0 equals the number of connected
components. For instance, a n-dimensional sphere has all Betti numbers equal to
zero except for Betti0 = Bettin = 1.

A filtration on a simplicial complex X = X∞ is a collection of subcomplexes
{Xt | t ∈ R} such that Xt ⊂ Xs whenever t ≤ s. The filtration time of a sim-
plex σ ∈ X is the smallest t such that σ ∈ Xt. Betti intervals describe how the
topology of Xt varies with t. A k-dimensional Betti interval, with endpoints [tstart,
tend), corresponds to a k-dimensional hole that appears in the filtration at time
tstart, remains open for tstart ≤ t < tend, and closes at time tend.

2. Streams

2.1. Class SimplexStream. In JPlex, a filtered simplicial complex is called a
stream, and streams are implemented by the class SimplexStream. The subclass
ExplicitStream allows us to build or edit a SimplexStream instance by hand.

2.2. Subclass ExplicitStream. Let’s build from scratch a
stream representing this house. First we get an empty Explicit-
Stream instance.

plex> ExplicitStream house = new ExplicitStream();

We build a house, with the vertices and edges on the square appearing at value 0, with
the top vertex appearing at value 1, with the roof edges appearing at values 2 and 3, and
with the roof 2-simplex appearing at value 7.

>> stream = api.Plex4.createExplicitSimplexStream();

>> stream.addVertex(1, 0);

>> stream.addVertex(2, 0);

>> stream.addVertex(3, 0);

>> stream.addVertex(4, 0);

>> stream.addVertex(5, 1);

>> stream.addElement([1, 2], 0);

>> stream.addElement([2, 3], 0);

>> stream.addElement([3, 4], 0);

>> stream.addElement([4, 1], 0);

>> stream.addElement([3, 5], 2);

>> stream.addElement([4, 5], 3);

>> stream.addElement([3, 4, 5], 7);

>> stream.finalizeStream();

We get the persistence algorithm with Z2 coefficients

>> persistence = api.Plex4.getModularSimplicialAlgorithm(3, 2);

and compute the intervals.

>> intervals = persistence.computeIntervals(stream)

intervals =

Dimension: 1

[3.0, 7.0)

[0.0, infinity)

Dimension: 0

[1.0, 2.0)

[0.0, infinity)
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There are four intervals. The first is a Betti1 interval, starting at filtration value 3 and
ending at 7, with a representative cycle formed by the three edges of the roof. This
1-dimensional hole forms when edge [4, 5] appears at filtration value 3 and closes when
2-simplex [3, 4, 5] appears at filtration value 7.

We can also store the intervals as Matlab matrices.

>> intervals_dim0 = edu.stanford.math.plex4.homology.barcodes.BarcodeUtility...

.getEndpoints(intervals, 0, 0)

intervals_dim0 =

0 Inf

1 2

>> intervals_dim1 = edu.stanford.math.plex4.homology.barcodes.BarcodeUtility...

.getEndpoints(intervals, 1, 0)

intervals_dim1 =

0 Inf

3 7

The second input of this command is the dimension of the intervals, and the third input is a Boolean flag:
0 to include infinite intervals, and 1 to exclude infinite intervals.

We compute a representative cycle for each barcode.

>> intervals = persistence.computeAnnotatedIntervals(stream)

intervals =

Dimension: 1

[3.0, 7.0): [4,5] + [3,4] + -[3,5]

[0.0, infinity): [1,4] + [2,3] + [1,2] + [3,4]

Dimension: 0

[1.0, 2.0): -[3] + [5]

[0.0, infinity): [1]

One Betti0 interval and one Betti1 interval are semi-infinite.

>> infinite_barcodes = intervals.getInfiniteIntervals()

infinite_barcodes =

Dimension: 1

[0.0, infinity): [1,4] + [2,3] + [1,2] + [3,4]

Dimension: 0

[0.0, infinity): [1]

We can print the Betti numbers at the largest filtration value (7 in this case) as an array

>> betti_numbers_array = infinite_barcodes.getBettiSequence()

betti_numbers_array =

1

1

or as a list with entries of the form k : Bettik.
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>> betti_numbers_string = infinite_barcodes.getBettiNumbers()

betti_numbers_string = {0: 1, 1: 1}

The Matlab function plot barcodes.m lets us display the intervals as Betti barcodes. The Matlab structure
array options contains different options for the plot. We choose the filename house and we choose the
maximum filtration value for the plot to be eight.

>> options.filename = ’house’;

>> options.max_filtration_value = 8;

>> plot_barcodes(intervals, options);

The file house.png is saved to your current directory.

The filtration values are on the horizontal axis. The Bettik number of the stream at filtration value t is the
number of intervals in the dimension k plot that intersect a vertical line through t. Check that the displayed
intervals agree with the filtration values we built into the house stream. At value 0, a connected component
and a 1-dimensional hole form. At value 1, a second connected component appears, which joins to the first
at value 2. A second 1-dimensional hole forms at value 3, and closes at value 7.

Remark. The methods addElement and removeElementIfPresent do not necessarily enforce the definition
of a stream. They allow us to build inconsistent complexes in which some simplex σ ∈ X(t) contains
a subsimplex σ′ /∈ X(t), meaning that X(t) is not a simplicial complex. The method validateVerbose

returns 1 if our stream is consistent and returns 0 with explanation if not.

>> stream.validateVerbose()

ans = 1
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>> stream.addElement([1, 4, 5], 0);

>> stream.validateVerbose()

Filtration index of face [4,5] exceeds that of element [1,4,5] (3 > 0)

Stream does not contain face [1,5] of element [1,4,5]

ans = 0

Remark. If you want to use filtration values that are not integers, then you first need to specify an upper
bound on the filtration values in your complex. This is demonstrated below, where the non-integer filtration
value is 17.23 and the upper bound is 100.

>> stream = api.Plex4.createExplicitSimplexStream(100);

>> stream.addVertex(1, 17.23);

>> stream.finalizeStream();

4. Point cloud data

A point cloud is a finite metric space, that is, a finite set of points equipped with a notion of distance. One
can create a Euclidean metric space by specifying the coordinates of points in Euclidean space, or one can
create an explicit metric space by specifying all pairwise distances between points. In Section 5 we will learn
how to build streams from point cloud data.

4.1. Euclidean metric spaces. The Matlab script corresponding to this section is pointcloud example.m.

House example. Let’s give Euclidean coordinates to the points of our house.

Figure 1. The house point cloud

You can enter these coordinates manually.

>> point_cloud = [-1,0; 1,0; 1,2; -1,2; 0,3]

point_cloud =

-1 0

1 0

1 2

-1 2

0 3

Or alternatively, these coordinates are stored as a Javaplex example.

>> point_cloud = examples.PointCloudExamples.getHouseExample();

We create a metric space using these coordinates. The input to the EuclideanMetricSpace method is a
matrix whose i-th row lists the coordinates of the i-th point.

>> m_space = metric.impl.EuclideanMetricSpace(point_cloud);
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We can return the coordinates of a specific point. Note the points are indexed starting at 0.

>> m_space.getPoint(0)

ans =

-1

0

>> m_space.getPoint(2)

ans =

1

2

A metric space can return the distance between any two points.

>> m_space.distance(m_space.getPoint(0), m_space.getPoint(2))

ans = 2.8284

Figure 8 example. We select 1,000 points randomly from a figure eight, that is, the union of unit circles
centered at (0, 1) and (0,−1).

>> point_cloud = examples.PointCloudExamples.getRandomFigure8Points(1000);

We plot the points.

>> figure

>> scatter(point_cloud(:,1), point_cloud(:,2), ’.’)

>> axis equal

Torus example. We select 2,000 points randomly from a torus in R3 with inner radius 1 and outer radius 2.
The first input is the number of points, the second input is the inner radius, and the third input is the outer
radius

>> point_cloud = examples.PointCloudExamples.getRandomTorusPoints(2000, 1, 2);

We plot the points.

>> figure

>> scatter3(point_cloud(:,1), point_cloud(:,2), point_cloud(:,3), ’.’)

>> axis equal

>> view(60,40)

Sphere product example. We select 1,000 points randomly from the unit torus S1×S1 in R4. The first input
is the number of points, the second input is the dimension of each sphere, and the third input is the number
of sphere factors.

>> point_cloud = examples.PointCloudExamples.getRandomSphereProductPoints(1000, 1, 2);

Plotting the third and fourth coordinates of each point shows a circle S1.

>> figure

>> scatter(point_cloud(:,3), point_cloud(:,4), ’.’)

>> axis equal
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4.2. Explicit metric spaces. We can also create a metric space from a distance matrix using the method
ExplicitMetricSpace. For a point cloud in Euclidean space, this method is generally less convenient than
the command EuclideanMetricSpace. However, method ExplicitMetricSpace can be used for a point
cloud in an arbitrary (perhaps non-Euclidean) metric space.

The Matlab script corresponding to this section is explicit metric space example.m.

House example. The matrix distances summarizes the metric for our house points in Figure 1: entry (i, j)
is the distance from point i to point j.

>> distances = [0,2,sqrt(8),2,sqrt(10);

2,0,2,sqrt(8),sqrt(10);

sqrt(8),2,0,2,sqrt(2);

2,sqrt(8),2,0,sqrt(2);

sqrt(10),sqrt(10),sqrt(2),sqrt(2),0]

distances =

0 2.0000 2.8284 2.0000 3.1623

2.0000 0 2.0000 2.8284 3.1623

2.8284 2.0000 0 2.0000 1.4142

2.0000 2.8482 2.0000 0 1.4142

3.1623 3.1623 1.4142 1.4142 0

We create a metric space from this distance matrix.

>> m_space = metric.impl.ExplicitMetricSpace(distances);

We return the distance between points 0 and 2.

>> m_space.distance(0, 2)

ans = 2.8284

Remark. Be careful: the constructor metric.impl.ExplicitMetricSpace() will accept matrices that fail
to be symmetric, square, or nonnegative, creating “metrics” that do not satisfy the mathematical definition,
and which may lead to errors down the road. The triangle inequality is similarly easy to ignore, but this is
often useful: sometimes real world “distances” or “similarities” satisfy all of the axioms of a metric except
for the triangle inequality, and one can still define a Vietoris–Rips complex on top of this data.

Exercise 4. One way to produce a torus is to take a square [0, 1] × [0, 1] and then identify opposite sides.
This is called the flat torus. More explicitly, the flat torus is the quotient space

([0, 1]× [0, 1])/ ∼,
where (0, y) ∼ (1, y) for all y ∈ [0, 1] and where (x, 0) ∼ (x, 1) for all x ∈ [0, 1]. The Euclidean metric on
[0, 1] × [0, 1] induces a metric on the flat torus. For example, in the induced metric on the flat torus, the
distance between (0, 12 ) and (1, 12 ) is zero, since these two points are identified. The distance between ( 1

10 ,
1
2 )

and ( 9
10 ,

1
2 ) is 2

10 , by passing through the point (0, 12 ) ∼ (1, 12 ).

Write a Matlab script or function that selects 1,000 random points from the square [0, 1] × [0, 1] and then
computes the 1,000 × 1,000 distance matrix for these points under the induced metric on the flat torus.
Create an explicit metric space from this distance matrix.

This exercise is continued by Exercise 16.

Exercise 5. One way to produce a Klein bottle is to take a square [0, 1] × [0, 1] and then identify opposite
edges, with the left and right sides identified with a twist. This is called the flat Klein bottle. More explicitly,
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the flat Klein bottle is the quotient space

([0, 1]× [0, 1])/ ∼,
where (0, y) ∼ (1, 1− y) for all y ∈ [0, 1] and where (x, 0) ∼ (x, 1) for all x ∈ [0, 1]. The Euclidean metric on
[0, 1]× [0, 1] induces a metric on the flat Klein bottle. For example, in the induced metric on the flat Klein
bottle, the distance between (0, 4

10 ) and (1, 6
10 ) is zero, since these two points are identified. The distance

between ( 1
10 ,

4
10 ) and ( 9

10 ,
6
10 ) is 2

10 , by passing through the point (0, 4
10 ) ∼ (1, 6

10 ).

Write a Matlab script or function that selects 1,000 random points from the square [0, 1] × [0, 1] and then
computes the 1,000 × 1,000 distance matrix for these points under the induced metric on the flat Klein
bottle. Create an explicit metric space from this distance matrix.

This exercise is continued by Exercise 17.

Exercise 6. One way to produce a projective plane is to take the unit sphere S2 ⊂ R3 and then identify
antipodal points. More explicitly, the projective plane is the quotient space

S2/(x ∼ −x).

The Euclidean metric on S2 induces a metric on the projective plane.

Write a Matlab script or function that selects 1,000 random points from the unit sphere S2 ⊂ R3 and then
computes the 1,000 × 1,000 distance matrix for these points under the induced metric on the projective
plane. Create an explicit metric space from this distance matrix.

This exercise is continued by Exercise 18.

5. Streams from point cloud data

In Section 3 we built streams explicitly, or by hand. In this section we construct streams from a point cloud
Z. We build Vietoris–Rips, witness, and lazy witness streams. See de Silva and Carlsson [2004] for additional
information.

The Vietoris–Rips, witness, and lazy witness streams all take three of the same inputs: the maximum
dimension dmax of any included simplex, the maximum filtration value tmax, and the number of divisions
N . These inputs allow the user to limit the size of the constructed stream, for computational efficiency.
No simplices above dimension dmax are included. The persistent homology of the resulting stream can be
calculated only up to dimension dmax − 1 since homology in dimension dmax − 1 depends on the boundary
matrix from dmax-simplices to (dmax − 1)-simplices. Also, instead of computing filtered simplcial complex
X(t) for all t ≥ 0, we only compute X(t) for

t ∈
{

0,
tmax
N − 1

,
2tmax
N − 1

,
3tmax
N − 1

, . . . ,
(N − 2)tmax

N − 1
, tmax

}
.

The number of divisions N is an optional input. If this input parameter is not specified, then the default
value N = 20 is used.

When working with a new dataset, don’t choose dmax and tmax too large initially. First get a feel for how
fast the simplicial complexes are growing, and then raise dmax and tmax nearer to the computational limits.
If you ever choose dmax or tmax too large and Matlab seems to be running forever, pressing the control

and c buttons simultaneously may halt the computation. See also the remark in Section 7.1.

5.1. Vietoris–Rips streams. Let d( · , · ) denote the distance between two points in metric space Z. A
natural stream to build is the Vietoris–Rips stream. The complex VR(Z, t) is defined as follows:

• the vertex set is Z.
• for vertices a and b, edge [ab] is included in VR(Z, t) if d(a, b) ≤ t.
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• a higher dimensional simplex is included in VR(Z, t) if all of its edges are.

Note that VR(Z, t) ⊂ VR(Z, t′) whenever t ≤ t′, so the Vietoris–Rips stream is a filtered simplicial complex.
Since a Vietoris–Rips complex is the maximal simplicial complex that can be built on top of its 1-skeleton,
it is an example of a clique complex or a flag complex.

The Matlab script corresponding to this section is rips example.m.

House example. Let’s build a Vietoris–Rips stream from the house point cloud in Section 4.1, where the
metric space is Z = {(−1, 0), (1, 0), (1, 2), (−1, 2), (0, 3)}. Note this stream is different than the explicit house
stream we built in Section 3.2.

>> max_dimension = 3;

>> max_filtration_value = 4;

>> num_divisions = 100;

>> point_cloud = examples.PointCloudExamples.getHouseExample();

>> stream = api.Plex4.createVietorisRipsStream(point_cloud, max_dimension, ...

max_filtration_value, num_divisions);

The ellipses in the command above should be omitted; they are included only to indicate that this command
continues onto the next line.

The order of the inputs is createVietorisRipsStream(Z, dmax, tmax, N). For a Vietoris–Rips stream,
the parameter tmax is the maximum possible edge length. Since tmax = 4 is greater than the diameter (

√
10)

of our point cloud, all edges will eventually form.

Since dmax = 3 we can compute up to second dimensional persistent homology.

>> persistence = api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

>> intervals = persistence.computeIntervals(stream);

We display the Betti intervals. Parameter options.max filtration value is the largest filtration value
to be displayed; typically options.max filtration value is chosen to be max filtration value. Pa-
rameter options.max dimension is the largest persistent homology dimension to be displayed; typically
options.max dimension is chosen to be max dimension - 1 because in a stream with simplices computed
up to dimension dmax we can only compute persistent homology up to dimension dmax − 1.

>> options.filename = ’ripsHouse’;

>> options.max_filtration_value = max_filtration_value;

>> options.max_dimension = max_dimension - 1;

>> plot_barcodes(intervals, options);

The file ripsHouse.png is saved to your current directory.
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Check that these plots are consistent with the Vietoris–Rips definition: edges [3, 5] and [4, 5] appear at

filtration value t =
√

2; the square appears at t = 2; the square closes at t =
√

8.

Torus example. Try the following sequence of commands. We start with 400 points from a 20× 20 grid on
the unit torus S1 × S1 in R4, and add a small amount of noise to each point. We build the Vietoris–Rips
stream.

>> max_dimension = 3;

>> max_filtration_value = 0.9;

>> num_divisions = 100;

Make sure you are in the directory tutorial examples (you may need to enter the command cd tutorial examples),
and then load the file pointsTorusGrid.mat. The matrix pointsTorusGrid appears in your Matlab
workspace.

>> load pointsTorusGrid.mat

>> point_cloud = pointsTorusGrid;

>> size(point_cloud)

ans = 400 4 % 400 points in dimension 4

>> stream = api.Plex4.createVietorisRipsStream(point_cloud, max_dimension, ...

max_filtration_value, num_divisions);

>> num_simplices = stream.getSize()

num_simplices = 82479
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>> persistence = api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

>> intervals = persistence.computeIntervals(stream);

>> options.filename = ’ripsTorus’;

>> options.max_filtration_value = max_filtration_value;

>> options.max_dimension = max_dimension - 1;

>> options.side_by_side = true;

>> plot_barcodes(intervals, options);

Setting the parameter options.side by side equal to true makes it such that the Betti barcodes of different
dimensions are plotted side by side instead of above and below each other. The file ripsTorus.png is saved
to your current directory.

The diameter of this torus (before adding noise) is
√

8, so choosing tmax = 0.9 likely will not show all
homological activity. However, the torus will be reasonably connected by this time. Note the semi-infinite
intervals match the correct numbers Betti0 = 1, Betti1 = 2, Betti2 = 1 for a torus.

>> infinite_barcodes = intervals.getInfiniteIntervals();

>> betti_numbers_array = infinite_barcodes.getBettiSequence()

betti_numbers_array =

1

2

1

15



This example makes it clear that the computed “semi-infinite” intervals do not necessarily persist until
t =∞: in a Vietoris–Rips stream, once t is greater than the diameter of the point cloud, the Betti numbers
for VR(Z, t) will be Betti0 = 1, Betti1 = Betti2 = ... = 0. The computed semi-infinite intervals are merely
those that persist until t = tmax.

Remark. We can build Vietoris–Rips streams not only on top of Euclidean point clouds, but also on top of
more general metric spaces. For example, if m space were an explicit metric space (see Section 4.2), then
we could call the following command.

>> stream = api.Plex4.createVietorisRipsStream(m_space, max_dimension, ...

max_filtration_value, num_divisions);

Exercise 7. Slowly increase the values for tmax, dmax and note how quickly the size of the Vietoris–Rips
stream and the time of computation grow. Either increasing tmax from 0.9 to 1 or increasing dmax from 3
to 4 roughly doubles the size of the Vietoris–Rips stream.

Exercise 8. Find a planar dataset Z ⊂ R2 and a filtration value t such that VR(Z, t) has nonzero Betti2.
Build a Vietoris–Rips stream to confirm your answer.

Exercise 9. Find a planar dataset Z ⊂ R2 and a filtration value t such that VR(Z, t) has nonzero Betti6.
When building a Vietoris–Rips stream to confirm your answer, don’t forget to choose dmax = 7.

5.2. Landmark selection. For larger datasets, if we include every data point as a vertex, as in the Vietoris–
Rips construction, our streams will quickly contain too many simplices for efficient computation. The witness
stream and the lazy witness stream address this problem. In building these streams, we select a subset L ⊂ Z,
called landmark points, as the only vertices. All data points in Z help serve as witnesses for the inclusion of
higher dimensional simplices.

There are two common methods for selecting landmark points. The first is to choose the landmarks L
randomly from point cloud Z. The second is a greedy inductive selection process called sequential maxmin.
In sequential maxmin, the first landmark is picked randomly from Z. Inductively, if Li−1 is the set of the first
i− 1 landmarks, then let the i-th landmark be the point of Z which maximizes the function z 7→ d(z, Li−1),
where d(z, Li−1) is the distance between the point z and the set Li−1.

Landmarks chosen using sequential maxmin tend to cover the dataset and to be spread apart from each
other. A disadvantage is that outlier points tend to be selected. However, outlier points are less of an issue
if one first takes dense core subsets as in Appendix A. Sequential maxmin landmarks are used by Adams
and Carlsson [2009] and Carlsson et al. [2008].

The Matlab script corresponding to this section is landmark example.m.

Figure 8 example. We create a point cloud of 1,000 points from a figure eight.

>> point_cloud = examples.PointCloudExamples.getRandomFigure8Points(1000);

We create both a random landmark selector and a sequential maxmin landmark selector. These selectors
will pick 100 landmarks each.

>> num_landmark_points = 100;

>> random_selector = api.Plex4.createRandomSelector(point_cloud, num_landmark_points);

>> maxmin_selector = api.Plex4.createMaxMinSelector(point_cloud, num_landmark_points);

We select 100 random landmarks and 100 landmarks via sequential maxmin. Note we need to increment the
indices by 1 since Java uses 0-based arrays.

>> random_points = point_cloud(random_selector.getLandmarkPoints() + 1, :);

>> maxmin_points = point_cloud(maxmin_selector.getLandmarkPoints() + 1, :);
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We plot the two sets of landmark points to see the difference between random and sequential maxmin
landmark selection.

>> subplot(1, 2, 1);

>> scatter(random_points(:,1), random_points(:, 2));

>> title(’Random landmark selection’);

>> subplot(1, 2, 2);

>> scatter(maxmin_points(:,1), maxmin_points(:, 2));

>> title(’Maxmin landmark selection’);

Sequential maxmin seems to do a better job of choosing landmarks that cover the figure eight and that are
spread apart.

Remark. We can select landmark points not only from Euclidean point clouds but also from more general
metric spaces. For example, if m space is an explicit metric space, then we may select landmarks using a
command such as the following.

>> maxmin_selector = api.Plex4.createMaxMinSelector(m_space, num_landmark_points);

Given point cloud Z and landmark subset L, we define R = maxz∈Z
{
d(z, L)

}
. Number R reflects how finely

the landmarks cover the dataset. We often use it as a guide for selecting the maximum filtration value tmax
for a witness or lazy witness stream.

Exercise 10. Let Z be the point cloud in Figure 1 from Section 4.1, corresponding to the house point cloud.
Suppose we are using sequential maxmin to select a set L of 3 landmarks, and the first (randomly selected)
landmark is (1, 0). Find by hand the other two landmarks in L.

Exercise 11. Let Z be a point cloud and L a landmark subset. Show that if L is chosen via sequential
maxmin, then for any li, lj ∈ L, we have d(li, lj) ≥ R.
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5.3. Witness streams. Suppose we are given a point cloud Z and landmark subset L. Let mk(z) be the
distance from a point z ∈ Z to its (k+ 1)-th closest landmark point. The witness stream complex W(Z,L, t)
is defined as follows.

• the vertex set is L.
• for k > 0 and vertices li, the k-simplex [l0l1...lk] is in W(Z,L, t) if all of its faces are, and if there

exists a witness point z ∈ Z such that

max
{
d(l0, z), d(l1, z), ..., d(lk, z)

}
≤ t+mk(z).

Note that W(Z,L, t) ⊂ W(Z,L, t′) whenever t ≤ t′, so the witness stream is a filtered simplicial complex.
Note that a landmark point can serve as a witness point.

Exercise 12. Let Z be the point cloud in Figure 1 from Section 4.1, corresponding to the house point cloud.
Let L = {(1, 0), (0, 3), (−1, 0)} be the landmark subset. Find by hand the filtration value for the edge
between vertices (1, 0) and (0, 3). Which point or points witness this edge? What is the filtration value for
the lone 2-simplex [(1, 0), (0, 3), (−1, 0)]?

The Matlab script corresponding to this section is witness example.m.

Torus example. Let’s build a witness stream instance for 10,000 random points from the unit torus S1 × S1

in R4, with 50 sequential maxmin landmarks.

>> num_points = 10000;

>> num_landmark_points = 50;

>> max_dimension = 3;

>> num_divisions = 100;

>> point_cloud = examples.PointCloudExamples.getRandomSphereProductPoints(num_points, ...

1, 2);

>> landmark_selector = api.Plex4.createMaxMinSelector(point_cloud, num_landmark_points);

The next command returns the landmark covering measure R from Section 5.2. Often the value for tmax is
chosen in proportion to R.

>> R = landmark_selector.getMaxDistanceFromPointsToLandmarks()

R = 0.7033 % Generally close to 0.7

>> max_filtration_value = R / 8;

We create the witness stream.

>> stream = api.Plex4.createWitnessStream(landmark_selector, max_dimension, ...

max_filtration_value, num_divisions);

>> num_simplices = stream.getSize()

num_simplices = 1164 % Generally close to 1200

We plot the Betti intervals.

>> persistence = api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

>> intervals = persistence.computeIntervals(stream);

>> options.filename = ’witnessTorus’;

>> options.max_filtration_value = max_filtration_value;

>> options.max_dimension = max_dimension - 1;

>> plot_barcodes(intervals, options);
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The file witnessTorus.png is saved to your current directory.

The idea of persistent homology is that long intervals should correspond to real topological features, whereas
short intervals are considered to be noise. The plot above shows that for a long range, the torus numbers
Betti0 = 1, Betti1 = 2, Betti2 = 1 are obtained. Your plot should contain a similar range.

The witness stream above contains approximately 2,000 simplices, fewer than the approximately 80,000
simplices in the Vietoris–Rips stream from the torus example in Section 5.1. This is despite the fact that we
started with a point cloud of 100,000 points in the witness case, but of only 400 points in the Vietoris–Rips
case. This supports our belief that the witness stream returns good results at lower computational expense.

5.4. Lazy witness streams. A lazy witness stream is similar to a witness stream. However, there is an
extra parameter ν, typically chosen to be 0, 1, or 2, which helps determine how the lazy witness complexes
LWν(Z,L, t) are constructed. See de Silva and Carlsson [2004] for more information.

Suppose we are given a point cloud Z, landmark subset L, and parameter ν ∈ N. If ν = 0, let m(z) = 0 for
all z ∈ Z. If ν > 0, let m(z) be the distance from z to the ν-th closest landmark point. The lazy witness
complex LWν(Z,L, t) is defined as follows.

• the vertex set is L.
• for vertices a and b, edge [ab] is in LWν(Z,L, t) if there exists a witness z ∈ Z such that

max
{
d(a, z), d(b, z)

}
≤ t+m(z).

• a higher dimensional simplex is in LWν(Z,L, t) if all of its edges are.
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Note that LWν(Z,L, t) ⊂ LWν(Z,L, t′) whenever t ≤ t′, so the lazy witness stream is a filtered simplicial
complex. The adjective lazy refers to the fact that the lazy witness complex is a flag complex: since the
1-skeleton determines all higher dimensional simplices, less computation is involved.

Exercise 13. Let Z be the point cloud in Figure 1 from Section 4.1, corresponding to the house point cloud.
Let L = {(1, 0), (0, 3), (−1, 0)} be the landmark subset. Let ν = 1. Find by hand the filtration value for the
edge between vertices (1, 0) and (0, 3). Which point or points witness this edge? What is the filtration value
for the lone 2-simplex [(1, 0), (0, 3), (−1, 0)]?

Exercise 14. Repeat the above exercise with ν = 0 and with ν = 2.

Exercise 15. Check that the 1-skeleton of a witness complex W(Z,L, t) is the same as the 1-skeleton of a
lazy witness complex LW2(Z,L, t). As a consequence, LW2(Z,L, t) is the flag complex of W(Z,L, t).

2-sphere example. The Matlab script corresponding to this example is lazy witness example.m.

We use parameter ν = 1.

>> max_dimension = 3;

>> num_points = 1000;

>> num_landmark_points = 50;

>> nu = 1;

>> num_divisions = 100;

>> point_cloud = examples.PointCloudExamples.getRandomSpherePoints(num_points, ...

max_dimension - 1);

>> landmark_selector = api.Plex4.createMaxMinSelector(point_cloud, num_landmark_points);

Often tmax is chosen in proportion to R.

>> R = landmark_selector.getMaxDistanceFromPointsToLandmarks()

R = 0.3841 % Generally close to 0.38

>> max_filtration_value = 2 * R;

>> stream = streams.impl.LazyWitnessStream(landmark_selector.getUnderlyingMetricSpace(), ...

landmark_selector, max_dimension, max_filtration_value, nu, num_divisions);

>> stream.finalizeStream()

>> num_simplices = stream.getSize()

num_simplices = 56518 % Generally close to 50000

>> persistence = api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

>> intervals = persistence.computeIntervals(stream);

>> options.filename = ’lazySphere’;

>> options.max_filtration_value = max_filtration_value;

>> options.max_dimension = max_dimension - 1;

>> plot_barcodes(intervals, options);

The file lazySphere.png is saved to your current directory.

20

https://github.com/appliedtopology/javaplex/tree/master/src/matlab/for_distribution/tutorial_examples/lazy_witness_example.m


Exercise 16. In Exercise 4 you created an explicit metric space for 1,000 random points on a flat torus.
Build a lazy witness stream on this explicit metric space with 50 landmarks chosen via sequential maxmin
and with ν = 1. Confirm the barcodes match the homology of a torus.

Exercise 17. In Exercise 4 you created an explicit metric space for 1,000 random points on a flat Klein bottle.
Build a lazy witness stream on this explicit metric space with 50 landmarks chosen via sequential maxmin
and with ν = 1. Confirm the barcodes match the homology of a Klein bottle, over Z2 and Z3 coefficients.

Exercise 18. In Exercise 6 you created an explicit metric space for 1,000 random points on a projective
plane. Build a lazy witness stream on this explicit metric space with 50 landmarks chosen via sequential
maxmin and with ν = 1. Confirm the barcodes match the homology of a projective plane, over Z2 and Z3

coefficients.

Exercise 19. Sample points from an embedding of a double torus, that is, a surface of genus two, in R3.
Build a lazy witness stream on this Euclidean metric space. Confirm the barcodes match the homology of a
double torus. Choosing suitable parameters will not be easy.

6. Examples with real data

We now do two examples with real datasets: a data set of range image patches, and a data set of optical
image patches

6.1. Range image patches. The corresponding Matlab script is range image example.m, and it relies on
the files pointsRange.mat and dct.m.
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In On the nonlinear statistics of range image patches [Adams and Carlsson 2009], we study a space of range
image patches drawn from the Brown database [Lee et al. 2003]. A range image is like an optical image,
except that each pixel contains a distance instead of a grayscale value. Our space contains high-contrast,
normalized, 5× 5 pixel patches. We write each 5× 5 patch as a vector with 25 coordinates and think of our
patches as point cloud data in R25. We select from this space the 30% densest vectors, based on a density
estimator called ρ300 (see Appendix A). In Adams and Carlsson [2009] this dense core subset is denoted
X5(300, 30), and it contains 15,000 points. In the next example we verify a result from Adams and Carlsson
[2009]: X5(300, 30) has the topology of a circle.

Make sure you are in the directory tutorial examples (you may need to enter the command cd tutorial examples),
and then load the file pointsRange.mat. The matrix pointsRange appears in your Matlab workspace.

>> load pointsRange.mat

>> size(pointsRange)

ans = 15000 25 % 15000 points in dimension 25

Matrix pointsRange is in fact X5(300, 30): each of its rows is a vector in R25. Display some of the coordinates
of pointsRange. It is not easy to visualize a circle by looking at these coordinates!

We pick 50 sequential maxmin landmark points, we find the value of R, and we build the lazy witness stream
with parameter ν = 1.

>> max_dimension = 3;

>> num_landmark_points = 50;

>> nu = 1;

>> num_divisions = 500;

>> landmark_selector = api.Plex4.createMaxMinSelector(pointsRange, num_landmark_points);

>> R = landmark_selector.getMaxDistanceFromPointsToLandmarks()

R = 0.7759 % Generally close to 0.75

>> max_filtration_value = R / 3;

>> stream = streams.impl.LazyWitnessStream(landmark_selector.getUnderlyingMetricSpace(), ...

landmark_selector, max_dimension, max_filtration_value, nu, num_divisions);

>> stream.finalizeStream()

>> num_simplices = stream.getSize()

num_simplices = 12036 % Generally between 10000 and 25000

>> persistence = api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

>> intervals = persistence.computeIntervals(stream);

>> options.filename = ’lazyRange’;

>> options.max_filtration_value = max_filtration_value;

>> options.max_dimension = max_dimension - 1;

>> plot_barcodes(intervals, options);

The file lazyRange.png is saved to your current directory.
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Figure 2. Betti intervals for the lazy witness complex built from X5(300, 30)

The plots above show that for a long range, the circle Betti numbers Betti0 = Betti1 = 1 are obtained.
Your plot should contain a similar range. This is good evidence that the core subset X5(300, 30) is well-
approximated by a circle.

Our 5 × 5 normalized patches are currently in the pixel basis: every coordinate corresponds to the range
value at one of the 25 pixels. The Discrete Cosine Transform (DCT) basis is a useful basis for our patches
[Adams and Carlsson 2009; Lee et al. 2003]. We change to this basis in order to plot a projection of the
loop evidenced by Figure 6. The method dct.m returns the DCT change-of-basis matrix for square patches
of size specified by the input parameter.

>> pointsRangeDct = pointsRange * dct(5);

Two of the DCT basis vectors are horizontal and linear gradients.

We plot the projection of pointsRangeDct onto the linear gradient DCT basis vectors.

>> figure

>> scatter(pointsRangeDct(:,1), pointsRangeDct(:,5), ’.’)

>> axis square
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(a) Projection of X5(300, 30) (b) Range primary circle

The projection of X5(300, 30) in Figure (a) shows a circle. It is called the range primary circle and is
parameterized as shown in Figure (b).

6.2. Optical image patches. The corresponding Matlab script is optical image example.m, and it relies
on the files pointsOpticalDct k300.mat and pointsOpticalDct k15.mat.

The optical image database collected by van Hateren and van der Schaaf [1998] contains black and white
digital photographs from a variety of indoor and outdoor scenes. Lee et al. [2003] study 3× 3 patches from
these images, and Carlsson et al. [2008] continue the analysis of image patches using persistent homology.
Carlsson et al. [2008] begin with a large collection of high-contrast, normalized 3 × 3 pixel patches, each
thought of as a point in R9. They change to the Discrete Cosine Transform (DCT) basis, which maps the
patches to the unit sphere S7 ⊂ R8. They select from this space the 30% densest vectors, based first on the
density estimator ρ300 (see Appendix A), and next based on the density estimator ρ15. In Carlsson et al.
[2008] these dense core subset are denoted X(300, 30) and X(15, 30), and they contain 15,000 points. In the
next example we verify two results from Carlsson et al. [2008]: X(300, 30) has the topology of a circle, and
X(15, 30) has the topology of a three circle model.

Make sure you are in the directory tutorial examples (you may need to enter the command cd tutorial examples),
and then load the file pointsOpticalDct k300.mat. The matrix pointsOpticalDct k300 appears in your
Matlab workspace.

>> load pointsOpticalDct_k300.mat

>> size(pointsOpticalDct_k300)

ans = 15000 8 % 15000 points in dimension 8

Matrix pointsOpticalDct k300 is in fact X(300, 30): each of its rows is a vector in R8.

We pick 50 sequential maxmin landmark points, we find the value of R, and we build the lazy witness stream
with parameter ν = 1.

>> max_dimension = 3;

>> num_landmark_points = 50;

>> nu = 1;
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>> num_divisions = 500;

>> landmark_selector = api.Plex4.createMaxMinSelector(pointsOpticalDct_k300, ...

num_landmark_points);

>> R = landmark_selector.getMaxDistanceFromPointsToLandmarks()

R = 0.5919

>> max_filtration_value = R / 4;

>> stream = streams.impl.LazyWitnessStream(landmark_selector.getUnderlyingMetricSpace(), ...

landmark_selector, max_dimension, max_filtration_value, nu, num_divisions);

>> stream.finalizeStream()

>> num_simplices = stream.getSize()

num_simplices = 2351

>> persistence = api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

>> intervals = persistence.computeIntervals(stream);

>> options.filename = ’lazyOpticalDct-k300’;

>> options.max_filtration_value = max_filtration_value;

>> options.max_dimension = max_dimension - 1;

>> plot_barcodes(intervals, options);

The file lazyOpticalDct-k300.png is saved to your current directory.

Figure 3. Betti intervals for the lazy witness complex built from X(300, 30)

25



The plots above show that for a long range, the circle Betti numbers Betti0 = Betti1 = 1 are obtained.
Your plot should contain a similar range. This is good evidence that the core subset X(300, 30) is well-
approximated by a circle.

We plot the projection of pointsOpticalDct k300 onto the linear gradient DCT basis vectors.

>> figure

>> scatter(pointsOpticalDct_k300(:,1), pointsOpticalDct_k300(:,2), ’.’)

>> axis square

(a) Projection of X(300, 30) (b) Optical primary circle

The projection of X(300, 30) in Figure (a) shows a circle. It is called the optical primary circle and is
parameterized as shown in Figure (b).

We next analyze the core subsetX(15, 30). Load the file pointsOpticalDct k15.mat. The matrix pointsOpticalDct k15

appears in your Matlab workspace.

>> load pointsOpticalDct_k15.mat

>> size(pointsOpticalDct_k15)

ans = 15000 8 % 15000 points in dimension 8

Matrix pointsOpticalDct k15 is in fact X(15, 30): each of its rows is a vector in R8.

We pick 50 sequential maxmin landmark points, we find the value of R, and we build the lazy witness stream
with parameter ν = 1.

>> max_dimension = 3;

>> num_landmark_points = 50;

>> nu = 1;

>> num_divisions = 500;

>> landmark_selector = api.Plex4.createMaxMinSelector(pointsOpticalDct_k15, ...

num_landmark_points);

>> R = landmark_selector.getMaxDistanceFromPointsToLandmarks()

R = 0.6554
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>> max_filtration_value = R / 4;

>> stream = streams.impl.LazyWitnessStream(landmark_selector.getUnderlyingMetricSpace(), ...

landmark_selector, max_dimension, max_filtration_value, nu, num_divisions);

>> stream.finalizeStream()

>> num_simplices = stream.getSize()

num_simplices = 1570

>> persistence = api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

>> intervals = persistence.computeIntervals(stream);

>> options.filename = ’lazyOpticalDct-k15’;

>> options.max_filtration_value = max_filtration_value;

>> options.max_dimension = max_dimension - 1;

>> plot_barcodes(intervals, options);

The file lazyOpticalDct-k15.png is saved to your current directory.

Figure 4. Betti intervals for the lazy witness complex built from X(15, 30)

The plots above show that for a long range, the Betti numbers Betti0 = 1 and Betti1 = 5 are obtained. Your
plot should contain a similar range. This is good evidence that the core subset X(15, 30) is well-approximated
by a connected space with five loops.

We plot the projection of pointsOpticalDct k300 onto the linear gradient DCT basis vectors.
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>> figure

>> scatter(pointsOpticalDct_k15(:,1), pointsOpticalDct_k15(:,2), ’.’)

>> axis square

(a) Projection of X(15, 30) (b) Three circle model

Figure (a) shows a projection of X(15, 30). The space X(15, 30) is parameterized by the three circle model
shown in Figure (b). The solid outer circle in the three circle model is the primary circle and contains
linear gradients. The dotted and dashed inner circles are the horizontal and vertical secondary circles which
contain quadratic gradients. Each secondary circle intersects the primary circle twice, but the secondary
circles do not intersect each other; this results in a connected space with Betti1 = 5. The primary circle
reflects nature’s preference for linear gradients in all directions, and the secondary circles reflect nature’s
preference for the horizontal and vertical directions.

6.3. Cyclo-octane molecule conformations. The corresponding Matlab script is cyclo octane example.m,
and it relies on the file pointsCycloOctane.mat.

The cyclo-octane molecule C8H16 consists of a ring of 8 carbons atoms, each bonded to a pair of hydrogen
atoms (Figure 5). A conformation of this molecule is a chemically and physically possible realization in 3D
space, modulo translations and rotations. The locations of the carbon atoms in a conformation determine
the locations of the hydrogen atoms via energy minimization, and hence each molecule conformation can be
mapped to a point in R24 = R8·3, as there are eight carbon atoms in the molecule and each carbon location is
represented by three coordinates x, y, z. This map realizes the conformation space of cyclo-octane as a subset
of R24. It turns out that the conformation space is a two-dimensional stratefied space, i.e. a two-dimensional
manifold with singularities. Furthermore, Brown et al. [2008], Martin et al. [2010], and Martin and Watson
[2011] show that the conformation space of cyclo-octane is the union of a sphere with a Klein bottle, glued
together along two circles of singularities (see Figures 7 and 8 in Martin and Watson [2011]). Indeed, the
algorithm they develop allows them to triangulate this conformation space from a finite sample.

Zomorodian [2012] uses the cyclo-octane dataset as an example to show that we can efficiently recover
the homology groups of the conformation space using persistent homology. In this section we essentially
follow Zomorodian’s example. We begin with a sample of 6,040 points on the conformation space (this
data is publicly available at Shawn Martin’s webpage http://www.sandia.gov/~smartin/software.html)
and compute the resulting persistent homology. We obtain the Betti numbers Betti0 = Betti1 = 1 and
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Figure 5. The cyclo-octane molecule consists of a ring of 8 carbon atoms (black), each
bonded to a pair of hydrogen atoms (white).

Betti2 = 2, which match the homology groups of the union of a sphere with a Klein bottle, glued together
along two circles of singularities.

Make sure you are in the directory tutorial examples (you may need to enter the command cd tutorial examples),
and then load the file pointsCycloOctane.mat. The matrix pointsCycloOctane appears in your Matlab
workspace.

>> load pointsCycloOctane.mat

>> size(pointsCycloOctane)

ans = 6040 24 % 6040 points in dimension 24

Matrix pointsCycloOctane is a sample of 6,040 points from the cyclo-octane conformation space: each of
its rows is a vector in R24.

We pick 100 sequential maxmin landmark points, and we build the lazy witness stream with parameter
ν = 1.

>> max_dimension = 3;

>> num_landmark_points = 100;

>> max_filtration_value = 0.5;

>> nu = 1;

>> num_divisions = 500;

>> landmark_selector = api.Plex4.createMaxMinSelector(pointsCycloOctane, ...

num_landmark_points);

>> R = landmark_selector.getMaxDistanceFromPointsToLandmarks()

R = 0.8046

>> stream = streams.impl.LazyWitnessStream(landmark_selector.getUnderlyingMetricSpace(), ...

landmark_selector, max_dimension, max_filtration_value, nu, num_divisions);

>> stream.finalizeStream()

>> num_simplices = stream.getSize()

num_simplices = 8025

>> persistence = api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

>> intervals = persistence.computeIntervals(stream);

>> options.filename = ’lazyCycloOctane’;
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>> options.max_filtration_value = max_filtration_value;

>> options.max_dimension = max_dimension - 1;

>> plot_barcodes(intervals, options);

The file lazyCycloOctane.png is saved to your current directory.

Figure 6. Betti intervals for the lazy witness complex built from X(300, 30)

The plots above show that for a long range, the Betti numbers Betti0 = Betti1 = 1 and Betti2 = 2 are
obtained, which matches the homology of the union of a sphere with a Klein bottle, glued together along
two circles of singularities.

7. Remarks

7.1. Java heap size. Depending on the size of your Javaplex computations, you may need to increase the
maximum Java heap size. This should not be necessary for the examples in this tutorial.

The following command returns your maximum heap size in bytes.

>> java.lang.Runtime.getRuntime.maxMemory

ans = 130875392

My Matlab installation sets the limit to approximately 128 megabytes by default. To increase your limit
to, say, 1.5 gigabytes, create a file named java.opts in your Matlab directory which contains the text
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-Xmx1500m and then restart Matlab. For more information, please see this link: http://www.mathworks.

com/support/solutions/en/data/1-18I2C/.

7.2. Matlab functions with Javaplex commands. Writing Matlab functions is very useful. In order to
include Javaplex commands in an m-file function, include the command import edu.stanford.math.plex4.*;

as the second line of the function — that is, as the first line underneath the function header. We include the
m-file eulerCharacteristic.m as an example Matlab function.

Euler characteristic example. The corresponding Matlab script is euler characteristic example.m, and
it relies on the file eulerCharacteristic.m.

First we create a 6-dimensional sphere.

>> dimension = 6;

>> stream = api.Plex4.createExplicitSimplexStream();

>> stream.addElement(0:(dimension + 1));

>> stream.ensureAllFaces();

>> stream.removeElementIfPresent(0:(dimension + 1));

>> stream.finalizeStream();

The function eulerCharacteristic.m accepts an explicit simplex stream and its dimension as input. The
function demonstrates two different methods for computing the Euler characteristic.

>> eulerCharacteristic(stream, dimension)

The Euler characteristic is 2 = 8 - 28 + 56 - 70 + 56 - 28 + 8, using the alternating

sum of cells.

The Euler characteristic is 2 = 1 - 0 + 0 - 0 + 0 - 0 + 1, using the alternating sum

of Betti numbers.

7.3. Displaying the simplices in a stream. It is possible to display the simplices in a stream, along with
their filtration values. You can also obtain the vertices of each simplex as a Matlab matrix. For an example
of how to do this, please see the file dump example.m in the folder basic examples.

7.4. Computing the bottleneck distance. It is possible to compute the bottleneck distance between two
barcodes. For an example of how to do this, please see the file bottleneck distance example.m in the
folder tutorial examples.

8. Acknowledgements

We would like to thank the authors of Brown et al. [2008], Martin et al. [2010], and Martin and Watson
[2011] for allowing us to use the cyclo-octane dataset in this tutorial.

Appendices

Appendix A. Dense core subsets

A core subset of a dataset is a collection of the densest points, such as X5(300, 30) in Section 6. Since there
are many density estimators, and since we can choose any number of the densest points, a dataset has a
variety of core subsets. In this appendix we discuss how to create core subsets.
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Real datasets can be very noisy, and outlier points can significantly alter the computed topology. Therefore,
instead of trying to approximate the topology of an entire dataset, we often proceed as follows. We create
a family of core subsets and identify their topologies. Looking at a variety of core subsets can give a good
picture of the entire dataset.

See Carlsson et al. [2008] and de Silva and Carlsson [2004] for an example using multiple core subsets. The
dataset contains high-contrast patches from natural images. The authors use three density estimators. As
they change from the most global to the most local density estimate, the topologies of the core subsets
change from a circle, to three intersecting circles, to a Klein bottle.

One way to estimate the density of a point z in a point cloud Z is as follows. Let ρk(z) be the distance from
z to its k-th closest neighbor. Let the density estimate at z be 1

ρk(z)
. Varying parameter k gives a family

of density estimates. Using a small value for k gives a local density estimate, and using a larger value for k
gives a more global estimate.

For Euclidean datasets, one can use the m-file kDensitySlow.m to produce density estimates 1
ρk

. The

following command is typical.

>> densities = kDensitySlow(points, k);

Input points is an N × n matrix of N points in Rn. Input k is the density estimate parameter. Output
densities is a vertical vertex of length N containing the density estimate at each point.

M-file coreSubset.m builds a core subset. The following command is typical.

>> core = coreSubset(points, densities, numPoints);

Inputs points and densities are as above. Output core is a numPoints × n matrix representing the
numPoints densest points.

Prime numbers example. The Matlab script corresponding to this example is core subsets example.m.

The command primes(3571) returns a vector listing all prime numbers less than or equal to 3571, which is
the 500-th prime. We think of these primes as points in R and build the core subset of the 10 densest points
with density parameter k = 1.

>> p = primes(3571)’;

>> length(p)

ans = 500

>> densities1 = kDensitySlow(p, 1);

>> core1 = coreSubset(p, densities1, 10)

core1 =

2

3

5

7

11

13

17

19

29

31

We get a bunch of twin primes, which makes sense since k = 1. Let’s repeat with k = 50.
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>> densities50 = kDensitySlow(p, 50);

>> core50 = coreSubset(p, densities50, 10)

core50 =

113

127

109

131

107

137

139

157

149

151

With k = 50, we expect the densest points to be slightly larger than the 25-th prime, which is 97.

Note: As its name suggests, the m-file kDensitySlow.m is not the most efficient way to calculate ρk for large
datasets. There is a faster file kDensity.m for this purpose, which uses the kd-tree data structure. It is not
included in the tutorial because it requires one to download a kd-tree package for Matlab, available at http:
//www.mathworks.com/matlabcentral/fileexchange/21512-kd-tree-for-matlab. Please email Henry
at adams@math.colostate.edu if you’re interested in using kDensity.m.

Appendix B. Exercise solutions

Several exercise solutions are accompanied by Matlab scripts, which are available in the folder tutorial solutions.

Exercise 1. Build a simplicial complex homeomorphic to the torus. Compute its Betti numbers. Hint: You
will need at least 7 vertices [Hatcher 2002, page 107]. We recommend using a 3× 3 grid of 9 vertices.

Solution. See the Matlab script exercise 1.m in folder tutorial solutions for a solution. We use 9
vertices, which we think of as a 3× 3 grid numbered as a telephone keypad. We identify opposite sides.

Exercise 2. Build a simplicial complex homeomorphic to the Klein bottle. Check that it has the same Betti
numbers as the torus over Z2 coefficients but different Betti numbers over Z3 coefficients.
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Solution. See the Matlab script exercise 2.m for a solution. We use 9 vertices, which we think of as a 3× 3
grid numbered as a telephone keypad. We identify opposite sides, with left and right sides identified with a
twist.

Exercise 3. Build a simplicial complex homeomorphic to the projective plane. Find its Betti numbers over
Z2 and Z3 coefficients.

Solution. See the Matlab script exercise 3.m for a solution. We use the minimal triangulation for the
projective plane, which contains 6 vertices.

Exercise 4. Write a Matlab script or function that selects 1,000 random points from the square [0, 1]× [0, 1]
and then computes the 1,000 × 1,000 distance matrix for these points under the induced metric on the flat
torus. Create an explicit metric space from this distance matrix.

Solution. See the Matlab script exercise 4.m and the Matlab function flatTorusDistanceMatrix.m for a
solution.

Exercise 5. Write a Matlab script or function that selects 1,000 random points from the square [0, 1]× [0, 1]
and then computes the 1,000 × 1,000 distance matrix for these points under the induced metric on the flat
Klein bottle. Create an explicit metric space from this distance matrix.

Solution. See the Matlab script exercise 5.m and the Matlab function flatKleinDistanceMatrix.m for a
solution.
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Exercise 6. Write a Matlab script or function that selects 1,000 random points from the unit sphere S2 ⊂ R3

and then computes the 1,000 × 1,000 distance matrix for these points under the induced metric on the
projective plane. Create an explicit metric space from this distance matrix.

Solution. See the Matlab script exercise 6.m and the Matlab function projPlaneDistanceMatrix.m for a
solution.

Exercise 7. Slowly increase the values for tmax, dmax and note how quickly the size of the Vietoris–Rips
stream and the time of computation grow. Either increasing tmax from 0.9 to 1 or increasing dmax from 3
to 4 roughly doubles the size of the Vietoris–Rips stream.

Solution. No solution included.

Exercise 8. Find a planar dataset Z ⊂ R2 and a filtration value t such that VR(Z, t) has nonzero Betti2.
Build a Vietoris–Rips stream to confirm your answer.

Solution. See the Matlab script exercise 8.m for a solution. Our planar dataset is 6 evenly spaced points
on the unit circle. We build a Vietoris–Rips stream which, at the correct filtration value, is an octahedron.

Exercise 9. Find a planar dataset Z ⊂ R2 and a filtration value t such that VR(Z, t) has nonzero Betti6.
When building a Vietoris–Rips stream to confirm your answer, don’t forget to choose dmax = 7.

Solution. See the Matlab script exercise 9.m for a solution. Our planar dataset is 14 evenly spaced points
on the unit circle. We build a Vietoris–Rips stream which, at the correct filtration value, is homeomorphic
to the 6-sphere. It has 14 vertices because it is obtained by suspending the 0-sphere six times, for a total of
2 + (6× 2) = 14 vertices.

Exercise 10. Let Z be the point cloud in Figure 1 from Section 4.1, corresponding to the house point cloud.
Suppose we are using sequential maxmin to select a set L of 3 landmarks, and the first (randomly selected)
landmark is (1, 0). Find by hand the other two landmarks in L.

Solution. L is the set {(1, 0), (0, 3), (−1, 0)}.
Exercise 11. Let Z be a point cloud and L a landmark subset. Show that if L is chosen via sequential
maxmin, then for any li, lj ∈ L, we have d(li, lj) ≥ R.

Solution. Without loss of generality, assume that i < j and that landmarks li and lj were the i-th and
j-th landmarks selected by the inductive sequential maxmin process. Let Lj−1 be the first j − 1 landmarks
chosen.

We proceed using a proof by contradiction. Suppose that d(li, lj) < R. By definition of R, there exists a
z ∈ Z such that d(z, L) = R. Note that

d(lj , Lj−1) ≤ d(lj , li) = d(li, lj) < R = d(z, L) ≤ d(z, Lj−1).

This contradicts the fact that landmark lj was chosen at the j-th step of sequential maxmin. Hence, it must
be the case that d(li, lj) ≥ R.

Exercise 12. Let Z be the point cloud in Figure 1 from Section 4.1, corresponding to the house point cloud.
Let L = {(1, 0), (0, 3), (−1, 0)} be the landmark subset. Find by hand the filtration value for the edge
between vertices (1, 0) and (0, 3). Which point or points witness this edge? What is the filtration value for
the lone 2-simplex [(1, 0), (0, 3), (−1, 0)]?

Solution. The edge between (1, 0) and (0, 3) has filtration value zero. Points (1, 2) or (0, 3) witness this edge.
The lone 2-simplex has filtration value zero.

Exercise 13. Let Z be the point cloud in Figure 1 from Section 4.1, corresponding to the house point cloud.
Let L = {(1, 0), (0, 3), (−1, 0)} be the landmark subset. Let ν = 1. Find by hand the filtration value for the
edge between vertices (1, 0) and (0, 3). Which point or points witness this edge? What is the filtration value
for the lone 2-simplex [(1, 0), (0, 3), (−1, 0)]?

Solution. The edge between (1, 0) and (0, 3) has filtration value 2−
√

2. Point (1, 2) witnesses this edge. The

lone 2-simplex has filtration value
√

2, which is when the edge between (1, 0) and (−1, 0) appears.
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Exercise 14. Repeat the above exercise with ν = 0 and with ν = 2.

Solution. First we do the case when ν = 0. The edge between (1, 0) and (0, 3) has filtration value 2. Point
(1, 2) witnesses this edge. The lone 2-simplex has filtration value 2.

Next we do the case when ν = 2. The edge between (1, 0) and (0, 3) has filtration value zero. Points (1, 2)
or (0, 3) witness this edge. The lone 2-simplex has filtration value zero.

Exercise 15. Check that the 1-skeleton of a witness complex W(Z,L, t) is the same as the 1-skeleton of a
lazy witness complex LW2(Z,L, t). As a consequence, LW2(Z,L, t) is the flag complex of W(Z,L, t).

Solution. This follows from the definition of the witness stream and the definition of the lazy witness stream
for ν = 2.

Exercise 16. In Exercise 4 you created an explicit metric space for 1,000 random points on a flat torus.
Build a lazy witness stream on this explicit metric space with 50 landmarks chosen via sequential maxmin
and with ν = 1. Confirm the barcodes match the homology of a torus.

Solution. See the Matlab script exercise 16.m and the Matlab function flatTorusDistanceMatrix.m for
a solution.

Exercise 17. In Exercise 5 you created an explicit metric space for 1,000 random points on a flat Klein bottle.
Build a lazy witness stream on this explicit metric space with 50 landmarks chosen via sequential maxmin
and with ν = 1. Confirm the barcodes match the homology of a Klein bottle, over Z2 and Z3 coefficients.

Solution. See the Matlab script exercise 17.m and the Matlab function flatKleinDistanceMatrix.m for
a solution.

Exercise 18. In Exercise 6 you created an explicit metric space for 1,000 random points on a projective
plane. Build a lazy witness stream on this explicit metric space with 50 landmarks chosen via sequential
maxmin and with ν = 1. Confirm the barcodes match the homology of a projective plane, over Z2 and Z3

coefficients.

Solution. See the Matlab script exercise 18.m and the Matlab function projPlaneDistanceMatrix.m for
a solution.

Exercise 19. Sample points from an embedding of a double torus, that is, a surface of genus two, in R3.
Build a lazy witness stream on this Euclidean metric space. Confirm the barcodes match the homology of a
double torus. Choosing suitable parameters will not be easy.

Solution. See the Matlab script exercise 19.m and the Matlab function getDoubleTorusPoints.m. Thanks
to Ulrich Bauer for this solution.
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