
collaborative Protection Profile
for Application Software
Version 1.1,2023-08-16

Table of Contents
 Acknowledgements

o Revision History

 Preface

o Objectives of Document

o Scope of Document

o Intended Readership

o Related Documents

 1. PP Introduction

o 1.1. PP Reference Identification

o 1.2. TOE Overview

o 1.3. TOE Boundary

o 1.4. TOE Usage

 2. CC Conformance Claims

o 2.1. Components allowed with this cPP in a PP-Configuration

 3. Security Problem Definition

o 3.1. Threats

 3.1.1. T.LOCAL_ATTACK

 3.1.2. T.UNAUTHORIZED_ADMINISTRATOR_ACCESS

 3.1.3. T.WEAK_CRYPTOGRAPHY

 3.1.4. T.UNTRUSTED_COMMUNICATION_CHANNELS

 3.1.5. T.UPDATE_COMPROMISE

 3.1.6. T.PLATFORM_UPDATE

 3.1.7. T.DATA_LEAKAGE

o 3.2. Assumptions

 3.2.1. A.PLATFORM

 3.2.2. A.PROPER_USER

 3.2.3. A.PROPER_ADMIN

o 3.3. Organizational Security Policies

 4. Security Objectives

https://appswcpp.github.io/cPP/cPP_APP_SW.html#_acknowledgements
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_revision_history
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_preface
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_objectives_of_document
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_scope_of_document
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_intended_readership
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_related_documents
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_pp_introduction
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_pp_reference_identification
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_toe_overview
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_toe_boundary
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_toe_usage
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_cc_conformance_claims
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_components_allowed_with_this_cpp_in_a_pp_configuration
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_problem_definition
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_threats
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_t_local_attack
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_t_unauthorized_administrator_access
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_t_weak_cryptography
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_t_untrusted_communication_channels
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_t_update_compromise
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_t_platform_update
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_t_data_leakage
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_assumptions
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_a_platform
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_a_proper_user
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_a_proper_admin
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_organizational_security_policies
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_objectives

o 4.1. Security Objectives for the TOE

o 4.2. Security Objectives for the Operational Environment

 4.2.1. OE.PLATFORM

 4.2.2. OE.PROPER_USER

 4.2.3. OE.PROPER_ADMIN

 5. Security Functional Requirements

o 5.1. Conventions

o 5.2. Cryptograhic Support (FCS)

 5.2.1. Random Bit Generation Services (FCS_RBG)

 5.2.1.1. FCS_RBG_EXT.1 Random Bit Generation Services

 5.2.2. Storage of Credentials (FCS_STO)

 5.2.2.1. FCS_STO_EXT.1 Storage of Credentials

o 5.3. User Data Protection (FDP)

 5.3.1. Network communications (FDP_NET)

 5.3.1.1. FDP_NET_EXT.1 (Network Communications)

o 5.4. Security Management (FMT)

 5.4.1. Default Configuration (FMT_CFG)

 5.4.1.1. FMT_CFG_EXT.1 (Default Configuration)

 5.4.1.2. FMT_SMF.1 (Specification of Management Functions)

o 5.5. Protection of the TSF (FPT)

 5.5.1. Anti-Exploitation Capabilities (FPT_AEX_EXT)

 5.5.1.1. FPT_AEX_EXT.1 (Anti-Exploitation Capabilities)

 5.5.2. Integrity for Installation and Update (FPT_TUD_EXT)

 5.5.2.1. FPT_TUD_EXT.1 (Integrity for Installation and Update)

o 5.6. Trusted Channels (FTP)

 5.6.1. Data in Transit (FTP_DIT_EXT)

 5.6.1.1. FTP_DIT_EXT.1 (Data In Transit)

 6. Security Assurance Requirements

o 6.1. ASE: Security Target

o 6.2. ADV: Development

 6.2.1. Basic Functional Specification (ADV_FSP.1)

o 6.3. AGD: Guidance Documentation

 6.3.1. Operational User Guidance (AGD_OPE.1)

 6.3.2. Preparative Procedures (AGD_PRE.1)

o 6.4. Class ALC: Life-cycle Support

 6.4.1. Labelling of the TOE (ALC_CMC.1)

https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_objectives_for_the_toe
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_objectives_for_the_operational_environment
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_oe_platform
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_oe_proper_user
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_oe_proper_admin
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_functional_requirements
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_conventions
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_cryptograhic_support_fcs
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_random_bit_generation_services_fcs_rbg
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_rbg_ext_1_random_bit_generation_services
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_storage_of_credentials_fcs_sto
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_sto_ext_1_storage_of_credentials
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_user_data_protection_fdp
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_network_communications_fdp_net
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fdp_net_ext_1_network_communications
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_management_fmt
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_default_configuration_fmt_cfg
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fmt_cfg_ext_1_default_configuration
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fmt_smf_1_specification_of_management_functions
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_protection_of_the_tsf_fpt
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_anti_exploitation_capabilities_fpt_aex_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fpt_aex_ext_1_anti_exploitation_capabilities
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_integrity_for_installation_and_update_fpt_tud_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fpt_tud_ext_1_integrity_for_installation_and_update
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_trusted_channels_ftp
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_data_in_transit_ftp_dit_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_ftp_dit_ext_1_data_in_transit
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_assurance_requirements
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_ase_security_target
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_adv_development
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_basic_functional_specification_adv_fsp_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_agd_guidance_documentation
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_operational_user_guidance_agd_ope_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_preparative_procedures_agd_pre_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_class_alc_life_cycle_support
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_labelling_of_the_toe_alc_cmc_1

 6.4.2. TOE CM Coverage (ALC_CMS.1)

 6.4.3. Flaw remediation (ALC_FLR.3)

o 6.5. Class ATE: Tests

 6.5.1. Independent Testing – Conformance (ATE_IND.1)

o 6.6. Class AVA: Vulnerability Assessment

 6.6.1. Vulnerability Survey (AVA_VAN.1)

 Appendix A: Optional Requirements

o A.1. Class: Cryptographic Support (FCS)

 A.1.1. Cryptographic Key Management (FCS_CKM)

 A.1.1.1. FCS_CKM_EXT.1/Symmetric Cryptographic Key
Generation

o A.2. Class: Protection of the TSF (FPT)

 A.2.1. Use of Supported Services and APIs (FPT_API_EXT)

 A.2.1.1. FPT_API_EXT.2 (Use of Supported Services and APIs)

 Appendix B: Selection-Based Requirements

o B.1. Class: Cryptographic Support (FCS)

 B.1.1. Random Bit Generation (Extended – FCS_RBG_EXT)

 B.1.1.1. FCS_RBG_EXT.2 Random Bit Generation

 B.1.2. Cryptographic Key Management (FCS_CKM)

 B.1.2.1. FCS_CKM_EXT.1 Cryptographic Key Generation
Services

 B.1.2.2. FCS_CKM_EXT.1/Asymmetric Cryptographic Key
Generation (Refinement)

 B.1.2.3. FCS_CKM_EXT.1.1/PBKDF2 Password Conditioning

 B.1.2.4. FCS_CKM.2 Cryptographic Key Establishment
(Refinement)

 B.1.3. Cryptographic Operation (FCS_COP)

 B.1.3.1. FCS_COP.1/DataEncryption Cryptographic Operation
(AES Data Encryption/ Decryption)

 B.1.3.2. FCS_COP.1/SigGen Cryptographic Operation (Signature
Generation and Verification)

 B.1.3.3. FCS_COP.1/Hash Cryptographic Operation (Hash
Algorithm)

 B.1.3.4. FCS_COP.1/KeyedHash Cryptographic Operation
(Keyed Hash Algorithm)

 B.1.4. Cryptographic Protocols (Extended – FCS_HTTPS_EXT)

 B.1.4.1. FCS_HTTPS_EXT HTTPS Protocol

 B.1.4.1.1. FCS_HTTPS_EXT.1 HTTPS Protocol

https://appswcpp.github.io/cPP/cPP_APP_SW.html#_toe_cm_coverage_alc_cms_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_flaw_remediation_alc_flr_3
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_class_ate_tests
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_independent_testing_conformance_ate_ind_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_class_ava_vulnerability_assessment
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_vulnerability_survey_ava_van_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_optional_requirements
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_class_cryptographic_support_fcs
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_cryptographic_key_management_fcs_ckm
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_ext_1symmetric_cryptographic_key_generation
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_ext_1symmetric_cryptographic_key_generation
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_class_protection_of_the_tsf_fpt
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_use_of_supported_services_and_apis_fpt_api_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fpt_api_ext_2_use_of_supported_services_and_apis
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_selection_based_requirements
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_class_cryptographic_support_fcs_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_random_bit_generation_extended_fcs_rbg_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_rbg_ext_2_random_bit_generation
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_cryptographic_key_management_fcs_ckm_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_ext_1_cryptographic_key_generation_services
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_ext_1_cryptographic_key_generation_services
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_ext_1asymmetric_cryptographic_key_generation_refinement
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_ext_1asymmetric_cryptographic_key_generation_refinement
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_ext_1_1pbkdf2_password_conditioning
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_2_cryptographic_key_establishment_refinement
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_2_cryptographic_key_establishment_refinement
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_cryptographic_operation_fcs_cop
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_cop_1dataencryption_cryptographic_operation_aes_data_encryption_decryption
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_cop_1dataencryption_cryptographic_operation_aes_data_encryption_decryption
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_cop_1siggen_cryptographic_operation_signature_generation_and_verification
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_cop_1siggen_cryptographic_operation_signature_generation_and_verification
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_cop_1hash_cryptographic_operation_hash_algorithm
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_cop_1hash_cryptographic_operation_hash_algorithm
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_cop_1keyedhash_cryptographic_operation_keyed_hash_algorithm
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_cop_1keyedhash_cryptographic_operation_keyed_hash_algorithm
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_cryptographic_protocols_extended_fcs_https_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_https_ext_https_protocol
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_https_ext_1_https_protocol

 B.1.4.2. TLS Protocol

 B.1.4.3. SSH Protocol

 B.1.4.3.1. FCS_HTTPS_EXT.2 HTTPS Protocol with
Mutual Authentication

o B.2. Class: Identification and Authentication (FIA)

 B.2.1. Authentication Failure (FIA_AFL)

 B.2.1.1. FIA_AFL.1 Authentication Failure Management

 B.2.2. External Identity Provider (FIA_EIP_EXT)

 B.2.2.1. FIA_EIP_EXT.1 External Identity Provider

 B.2.3. User Identification and Authentication (FIA_UIA_EXT)

 B.2.3.1. FIA_UIA_EXT.1 User Identification and Authentication

 B.2.4. Authentication Mechanism (FIA_UAU_EXT)

 B.2.4.1. FIA_UAU_EXT.2 Authentication Mechanism

 B.2.4.2. FIA_UAU_EXT.5 User Authentication Mechanisms

 B.2.4.3. FIA_UAU.7 Protected Authentication Feedback

 B.2.5. X.509 Certificate Validation (FIA_X509_EXT)

 B.2.5.1. FIA_X509_EXT.1 X.509 Certificate Validation

 B.2.5.2. FIA_X509_EXT.2 X.509 Certificate Authentication

o B.3. (FMT) Specification of Management Functions

 B.3.1. FMT_SMR.2 Restrictions on Security Roles

o B.4. (FTA) TOE Access

 B.4.1. Default TOE Access Banner (FTA_TAB)

 B.4.1.1. FTA_TAB.1 Default TOE Access Banner

 Appendix C: Extended Component Definitions

o C.1. Cryptographic Support (FCS)

 C.1.1. Cryptographic Key Generation (FCS_CKM_EXT)

 C.1.1.1. Family Behaviour

 C.1.1.2. Component levelling

 C.1.1.3. Management: FCS_CKM_EXT.1

 C.1.1.4. Audit: FCS_CKM_EXT.1

 C.1.1.5. FCS_CKM_EXT.1 Cryptographic Key Generation
Services

 C.1.2. Cryptographic Protocols (FCS_HTTPS_EXT)

 C.1.2.1. Family Behaviour

 C.1.2.2. Component levelling

 C.1.2.3. Management: FCS_HTTPS_EXT.1

https://appswcpp.github.io/cPP/cPP_APP_SW.html#_tls_protocol
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_ssh_protocol
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_https_ext_2_https_protocol_with_mutual_authentication
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_https_ext_2_https_protocol_with_mutual_authentication
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_class_identification_and_authentication_fia
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_authentication_failure_fia_afl
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_afl_1_authentication_failure_management
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_external_identity_provider_fia_eip_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_eip_ext_1_external_identity_provider
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_user_identification_and_authentication_fia_uia_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_uia_ext_1_user_identification_and_authentication
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_authentication_mechanism_fia_uau_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_uau_ext_2_authentication_mechanism
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_uau_ext_5_user_authentication_mechanisms
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_uau_7_protected_authentication_feedback
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_x_509_certificate_validation_fia_x509_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_x509_ext_1_x_509_certificate_validation
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_x509_ext_2_x_509_certificate_authentication
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fmt_specification_of_management_functions
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fmt_smr_2_restrictions_on_security_roles
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fta_toe_access
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_default_toe_access_banner_fta_tab
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fta_tab_1_default_toe_access_banner
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_extended_component_definitions
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_cryptographic_support_fcs
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_cryptographic_key_generation_fcs_ckm_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fcs_ckm_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fcs_ckm_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_ext_1_cryptographic_key_generation_services_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_ckm_ext_1_cryptographic_key_generation_services_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_cryptographic_protocols_fcs_https_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fcs_https_ext_1

 C.1.2.4. Audit: FCS_HTTPS_EXT.1

 C.1.2.5. FCS_HTTPS_EXT.1 HTTPS Protocol

 C.1.3. Random Bit Generation (FCS_RBG_EXT)

 C.1.3.1. Family Behaviour

 C.1.3.2. Component levelling

 C.1.3.3. Management: FCS_RBG_EXT.1, FCS_RBG_EXT.2

 C.1.3.4. Audit: FCS_RBG_EXT.1, FCS_RBG_EXT.2

 C.1.3.5. FCS_RBG_EXT.2 Random Bit Generation

 C.1.3.6. FCS_RBG_EXT.2 Random Bit Generation Services

 C.1.4. Storage of Credentials (FCS_STO_EXT)

 C.1.4.1. Family Behaviour

 C.1.4.2. Component levelling

 C.1.4.3. Management: FCS_STO_EXT.1

 C.1.4.4. Audit: FCS_STO_EXT.1

 C.1.4.5. FCS_STO_EXT.1 Storage of Credentials

o C.2. Data Protection (FDP)

 C.2.1. Network Communications (FDP_NET_EXT)

 C.2.1.1. Family Behaviour

 C.2.1.2. Component levelling

 C.2.1.3. Management: FDP_NET_EXT.1

 C.2.1.4. Audit: FDP_NET_EXT.1

 C.2.1.5. FDP_NET_EXT.1 Network Communications

o C.3. Identification and Authentication (FIA)

 C.3.1. External Identity Provider (FIA_EIP_EXT)

 C.3.1.1. FIA_EIP_EXT.1 External Identity Provider

 C.3.2. User Identification and Authentication (FIA_UIA_EXT)

 C.3.2.1. Family Behaviour

 C.3.2.2. Component levelling

 C.3.2.3. Management: FIA_UIA_EXT.1

 C.3.2.4. Audit: FIA_UIA_EXT.1

 C.3.2.5. FIA_UIA_EXT.1 User Identification and Authentication

 C.3.3. User authentication (FIA_UAU_EXT)

 C.3.3.1. FIA_UAU_EXT.2 User Authentication

 C.3.3.2. FIA_UAU_EXT.5 User Authentication Mechanisms

 C.3.4. Authentication using X.509 certificates (FIA_X509_EXT)

 C.3.4.1. Family Behaviour

https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fcs_https_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_https_ext_1_https_protocol_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_random_bit_generation_fcs_rbg_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_3
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_3
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fcs_rbg_ext_1_fcs_rbg_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fcs_rbg_ext_1_fcs_rbg_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_rbg_ext_2_random_bit_generation_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_rbg_ext_2_random_bit_generation_services
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_storage_of_credentials_fcs_sto_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_4
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_4
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fcs_sto_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fcs_sto_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fcs_sto_ext_1_storage_of_credentials_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_data_protection_fdp
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_network_communications_fdp_net_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_5
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_5
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fdp_net_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fdp_net_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fdp_net_ext_1_network_communications_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_identification_and_authentication_fia
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_external_identity_provider_fia_eip_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_eip_ext_1_external_identity_provider_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_user_identification_and_authentication_fia_uia_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_6
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_6
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fia_uia_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fia_uia_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_uia_ext_1user_identification_and_authentication
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_user_authentication_fia_uau_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_uau_ext_2_user_authentication
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_uau_ext_5_user_authentication_mechanisms_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_authentication_using_x_509_certificates_fia_x509_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_7

 C.3.4.2. Component levelling

 C.3.4.3. Management: FIA_X509_EXT.1, FIA_X509_EXT.2

 C.3.4.4. Audit: FIA_X509_EXT.1, FIA_X509_EXT.2

 C.3.4.5. FIA_X509_EXT.1 Certificate Validation

 C.3.4.6. FIA_X509_EXT.1 X.509 Certificate Validation

 C.3.4.7. FIA_X509_EXT.2 X.509 Certificate Validation

o C.4. Security Management (FMT)

 C.4.1. Default Configuration (FMT_CFG_EXT)

 C.4.1.1. Family Behaviour

 C.4.1.2. Component levelling

 C.4.1.3. Management: FMT_CFG_EXT.1

 Audit: FMT_CFG_EXT.1

 C.4.1.4. FMT_CFG_EXT.1 Default Configuration

o C.5. Protection of the TSF (FPT)

 C.5.1. Anti-Exploitation Capabilities (FPT_AEX_EXT)

 C.5.1.1. Family Behaviour

 C.5.1.2. Component levelling

 C.5.1.3. Management: FPT_AEX_EXT.1

 C.5.1.4. Audit: FPT_AEX_EXT.1

 C.5.1.5. FPT_AEX_EXT.1 Anti-Exploitation Capabilities

 C.5.2. Use of Supported Services and APIs (FPT_API_EXT)

 C.5.2.1. Family Behaviour

 C.5.2.2. Component levelling

 C.5.2.3. Management: FPT_API_EXT.2

 C.5.2.4. Audit: FPT_API_EXT.2

 C.5.2.5. FPT_API_EXT.2 Use of Supported Services and APIs

 C.5.3. Integrity for Installation and Update (FPT_TUD_EXT)

 C.5.3.1. Family Behaviour

 C.5.3.2. Component levelling

 C.5.3.3. Management: FPT_TUD_EXT.1

 C.5.3.4. Audit: FPT_TUD_EXT.1

 C.5.3.5. FPT_TUD_EXT.1 Integrity of Installation and Upgrade

 C.5.3.5.1. FPT_TUD_EXT.1 Integrity of Installation and
Upgrade

o C.6. Trust Path/Channel (FTP)

 C.6.1. Data in Transit (FTP_DIT_EXT)

https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_7
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fia_x509_ext_1_fia_x509_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fia_x509_ext_1_fia_x509_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_x509_ext_1_certificate_validation
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_x509_ext_1_x_509_certificate_validation_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fia_x509_ext_2_x_509_certificate_validation
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_management_fmt_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_default_configuration_fmt_cfg_ext
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_8
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_8
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fmt_cfg_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fmt_cfg_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fmt_cfg_ext_1_default_configuration_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_protection_of_the_tsf_fpt_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_anti_exploitation_capabilities_fpt_aex_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_9
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_9
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fpt_aex_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fpt_aex_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fpt_aex_ext_1_anti_exploitation_capabilities_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_use_of_supported_services_and_apis_fpt_api_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_10
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_10
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fpt_api_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fpt_api_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fpt_api_ext_2_use_of_supported_services_and_apis_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_integrity_for_installation_and_update_fpt_tud_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_11
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_11
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_fpt_tud_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_fpt_tud_ext_1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fpt_tud_ext_1_integrity_of_installation_and_upgrade
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fpt_tud_ext_1integrity_of_installation_and_upgrade
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_fpt_tud_ext_1integrity_of_installation_and_upgrade
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_trust_pathchannel_ftp
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_data_in_transit_ftp_dit_ext_2

 C.6.1.1. Family Behaviour

 C.6.1.2. Component levelling

 C.6.1.3. Management: FTP_DIT_EXT.2

 C.6.1.4. Audit: FTP_DIT_EXT.2

 C.6.2. FTP_DIT_EXT.1 Data in Transit

 C.6.2.1. FTP_DIT_EXT.1 Data in Transit

 Appendix D: Entropy Documentation and Assessment

o D.1. Design Description

o D.2. Entropy Justification

o D.3. Operating Conditions

o D.4. Health Testing

 Appendix E: Application Software Equivalency Guidelines

o E.1. Introduction

o E.2. Approach to Equivalency Analysis

o E.3. Specific Guidance for Determining Product Model Equivalence

o E.4. Specific Guidance for Determining Product Version Equivalence

o E.5. Specific Guidance for Determining Platform Equivalence

o E.6. Platform Equivalence—Hardware/Virtual Hardware Platforms

o E.7. Platform Equivalence—OS Platforms

o E.8. Software-based Execution Environment Platform Equivalence

o E.9. Level of Specificity for Tested Configurations and Claimed Equivalent
Configurations

 E.9.1. Traditional Applications

 E.9.2. Software Based Execution Environments

 Appendix F: Rationales

o F.1. SFR Dependencies Analysis

 Appendix G: Glossary

 Appendix H: Acronyms

https://appswcpp.github.io/cPP/cPP_APP_SW.html#_family_behaviour_12
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_component_levelling_12
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_management_ftp_dit_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_audit_ftp_dit_ext_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_ftp_dit_ext_1_data_in_transit_2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_ftp_dit_ext_1_data_in_transit_3
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_entropy_documentation_and_assessment
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_design_description
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_entropy_justification
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_operating_conditions
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_health_testing
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_application_software_equivalency_guidelines
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_introduction
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_approach_to_equivalency_analysis
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_specific_guidance_for_determining_product_model_equivalence
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_specific_guidance_for_determining_product_version_equivalence
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_specific_guidance_for_determining_platform_equivalence
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_platform_equivalencehardwarevirtual_hardware_platforms
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_platform_equivalenceos_platforms
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_software_based_execution_environment_platform_equivalence
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_level_of_specificity_for_tested_configurations_and_claimed_equivalent_configurations
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_level_of_specificity_for_tested_configurations_and_claimed_equivalent_configurations
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_traditional_applications
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_software_based_execution_environments
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_rationales
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_sfr_dependencies_analysis
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_glossary
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_acronyms

Acknowledgements
This collaborative Protection Profile (cPP) was developed by the iTC for Application Software

international Technical Community (iTC) also known as AppSW-iTC with representatives from

industry, Government agencies, Common Criteria Test Laboratories, and members of academia.

Revision History

Table 1. Revision history

Version Date Description

1.0 2022-04-06 Initial release.

1.1 2023-08-16 Incorporated feedback from initial release.

Preface

Objectives of Document

This document presents the Common Criteria (CC) collaborative Protection Profile (cPP) to

express the security functional requirements (SFRs) and security assurance requirements (SARs)

for application software. The Evaluation activities that specify the actions the evaluator performs to

determine if a product satisfies the SFRs captured within this cPP, are described in [SD].

Scope of Document

The scope of the cPP within the development and evaluation process is described in the Common

Criteria for Information Technology Security Evaluation. In particular, a cPP defines the IT

security requirements of a generic type of TOE and specifies the functional security measures to be

offered by that TOE to meet stated requirements [[CC1], Section B.14].

Intended Readership

The target audiences of this cPP are developers, CC consumers, system integrators, evaluators and

schemes.

Although the cPP and SD may contain minor editorial errors, the cPP is recognized as living

document and the iTC is dedicated to ongoing updates and revisions. Please report any issues to

the AppSW-iTC.

https://appswcpp.github.io/cPP/cPP_APP_SW.html#SD
https://appswcpp.github.io/cPP/cPP_APP_SW.html#CC1

Related Documents
 [CC1] Common Criteria for Information Technology Security Evaluation, Part 1:

Introduction and General Model, CCMB-2017-04-001, Version 3.1 Revision 5, April
2017.

 [CC2] Common Criteria for Information Technology Security Evaluation, Part 2:
Security Functional Components, CCMB-2017-04-002, Version 3.1 Revision 5,
April 2017.

 [CC3] Common Criteria for Information Technology Security Evaluation, Part 3:
Security Assurance Components, CCMB-2017-04-003, Version 3.1 Revision 5,
April 2017.

 [CEM] Common Methodology for Information Technology Security Evaluation,
Evaluation Methodology, CCMB-2017-04-004, Version 3.1 Revision 5, April 2017.

 [CCADD] CC and CEM Addenda: Exact Conformance, Selection-Based SFRs,
Optional SFRs CCDB-2017-05-xxx, Version 0.5, May 2017

 [SD] Supporting Document Mandatory Technical Document: Evaluation Activities
for collaborative Protection Profile for Application Software, Version 1.1, February
2022

 [TLS Package] Functional Package for Transport Layer Security (TLS) v2.0, March
2019

 [SSH Package] Functional Package for SSH Version 1.0, May 2021

For more see the Common Criteria Portal.

1. PP Introduction

1.1. PP Reference Identification
 PP Reference: collaborative Protection Profile for Application Software

 PP Short Name: cPP_APP_SW_V1.1

 PP Version: 1.1

 PP Date: 2023-08-16

1.2. TOE Overview

This is a Collaborative Protection Profile (cPP) whose Target of Evaluation (TOE) is software

applications. Under this cPP software applications can be categorized under the following broad

categories:

http://www.commoncriteriaportal.org/

1. Enterprise Server Applications

2. Enterprise Server Applications with their Agent(s)

3. Enterprise Desktop Applications

4. Enterprise-grade Mobile Applications

This cPP is the Base-PP against which all of the above categories of software applications may be

evaluated. The Base-PP is sufficient to evaluate Enterprise Desktop Applications. Separate PP-

Modules will provide additional requirements for Enterprise Server Applications and Enterprise-

grade Mobile Applications

In addition to the above categories there are large number of applications (Desktop and Mobile)

that fall under “Consumer-grade” category. While such applications could be evaluated under the

Application Software cPP, it is not the intention of this iTC to specifically address this category.

The iTC doesn’t believe the consumer grade app ecosystem would support the historical cost and

timelines associated with a Common Criteria evaluation.

One more way (and perhaps a more useful way in the context of creating SFRs) to categorize apps

is based on type of installation/deployment. The following categories are in scope of the first

iteration of the cPP:

1. Traditional software running on an execution environment, e.g. enterprise agent
applications/sensors

2. Software appliance type of applications, e.g. enterprise management application

3. Distributed applications, e.g. enterprise resource planning systems

4. Virtualized and Containerized applications (e.g. running in a Docker container)

The following categories are out of scope of the first iteration of the cPP:

1. Software defined network appliances

2. Web applications

3. Applications running on bare metal i.e. directly on hardware without an execution
environment such as operating system.

Software defined network appliances are being covered by the Network iTC. Web applications are

significantly different in terms of their construction, operation, and threat model and are not

addressed in this cPP at this time.

1.3. TOE Boundary

The application, which consists of the software provided by its vendor, is installed onto the

platform(s) it operates on. It executes on the platform, which may be an operating system (Figure

1), hardware environment, a software based execution environment such as a container, or some

combination of these (Figure 2). Those platforms may themselves run within other environments,

such as virtual machines or operating systems, that completely abstract away the underlying

hardware from the application. The TOE is not accountable for security functionality that is

implemented by platform layers that are abstracted away. Some evaluation activities are specific to

the particular platform on which the application runs, in order to provide precision and

repeatability. The only platforms currently recognized by the cPP are those specified in the [SD].

To test on a platform for which there are no EAs, an interested party may contact the iTC with

proposed EAs. The iTC will determine if the proposed platform is appropriate for the PP and

accept, reject, or develop EAs as necessary in coordination with the technical community.

The TOE includes all application binaries, libraries and other dependencies specifically for the

application required to execute the application that are not provided by the TOE platform.

BIOS and other firmware, the operating system kernel, and other system software (such as drivers)

provided as part of the platform are outside the scope of this document.

For containerized applications, the container is treated as the TOE. Services, libraries, or run-times

that exist within the host OS are to be considered part of the TOE platform. At the time of this cPP

publication, all containerized applications are implemented using Linux-type operating systems.

When a containerized application claims conformance to this cPP, all EAs applicable to Linux

platforms are to be satisfied.

As far as virtualized applications are concerned, this version of the cPP covers a very narrow type;

applications that are installed on a virtualized instance of an OS/Platform are the only type of

applications covered. An application that is bundled together with a general purpose operating

system via a virtual machine is not considered substantially different than an application that is

installed traditionally. In either case the underlying OS is to be considered the TOE platform.

Figure 1. TOE as an Application and Kernel Module Running on an Operating System

Figure 2. TOE as an Application Running in an Execution Environment Plus Native Code

1.4. TOE Usage

The essence of the requirements for application software TOEs is that they are well behaved and

do not compromise the security of their operational environment.

Additionally, these requirements ensure that evaluated applications posses the following security

functions:

 Secure by Default

 Standards based cryptographic implementations

 Storage of sensitive data in a secure manner

 Communication with external entities using secure and well-known protocols

 Secure update mechanisms

Examples of applications are provided in the section above. This cPP forms the Base-PP and

would be applicable to all applications.

2. CC Conformance Claims
As defined by the references [CC1], [CC2] and [CC3], this cPP:

 conforms to the requirements of Common Criteria v3.1, Revision 5,

 is Part 2 extended,

 is Part 3 conformant,

https://appswcpp.github.io/cPP/cPP_APP_SW.html#CC1
https://appswcpp.github.io/cPP/cPP_APP_SW.html#CC2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#CC3

 Functional Package for Transport Layer Security (TLS) v2.0

 Functional Package for Secure Shell (SSH) v1.0

 does not claim conformance to any other security functional requirement
packages.

The methodology applied for the PP evaluation is defined in [CEM]. This cPP satisfies the

following Assurance Families: APE_CCL.1, APE_ECD.1, APE_INT.1, APE_OBJ.1, APE_REQ.1

and APE_SPD.1.

This cPP also applies the CC and CEM Addenda, Exact Conformance, Selection-Based SFRs,

Optional SFRs: V0.5 dated May 2017 noting that it is labelled as “for trial use”.

In order to be conformant to this cPP, a ST shall demonstrate Exact Conformance. Exact

Conformance, as a subset of Strict Conformance as defined by the CC, is defined as the ST

containing all of the SFRs in Security Functional Requirements (these are the mandatory SFRs) of

this cPP, and potentially SFRs from [Consistency Rationale] (these are selection-based SFRs)

and Selection-Based Requirements (these are optional SFRs) of this cPP. While iteration is

allowed, no additional requirements (from the CC parts 2 or 3, or definitions of extended

components not already included in this cPP) are allowed to be included in the ST. Further, no

SFRs in Security Functional Requirements of this cPP are allowed to be omitted.

The packages and modules to which exact conformance can be claimed in conjunction with this PP

are specified in the ‘Allowed With’ list at https://appswcpp.github.io.

This Protection Profile does not claim conformance to any other Protection Profile.

2.1. Components allowed with this cPP in a PP-
Configuration

The list of packages, PP-Modules and cPPs that may be used in conjunction with this cPP can be

found at: https://appswcpp.github.io/cPP/AppSW_cPP_allowed-with-list.pdf

The packages to which exact conformance can be claimed in conjunction with this PP are specified

in the Allowed Packages list.

PP-Modules that are allowed to specify this cPP as a base PP are specified in the Base PP list.

3. Security Problem Definition

3.1. Threats

Commented [my1]: There are some SFRs that they are

not available on evaluation process. FPT_TUD_EXT.1.3 ,
FMT_CFG_EXT.1.1, FPT_TUD_EXT.1.5. In this cPP two

SFRs have already omitted. The one SFRs that mostly are

not evaluating, however included on that.

https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_functional_requirements
https://appswcpp.github.io/cPP/cPP_APP_SW.html#Consistency%20Rationale
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_selection_based_requirements
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_functional_requirements
https://appswcpp.github.io/
https://appswcpp.github.io/cPP/AppSW_cPP_allowed-with-list.pdf

This section identifies the threats to be addressed by software applications complying with this

cPP.

3.1.1. T.LOCAL_ATTACK

An attacker as a non-administrative user of the underlying platform or application gains

unauthorized access to application data or functions. For example, attackers may provide

maliciously formatted input to the application in the form of files or other local communications

thus providing unauthorized access to plaintext sensitive data.

SFR Rationale:

 FPT_AEX_EXT.1 and FPT_API_EXT.2 define requirements to ensure that the
application doesn’t allow for exploiting memory or local storage access that may
be available to a local attacker. They also ensure that the application does not
subvert security mechanisms provided by the platform thereby allowing an
attacker with local access to exploit the application.

 Creating custom parsers have shown to create security vulnerabilities due to the
complication of dealing with various file formats. FPT_API_EXT.2 ensures that the
application uses platform provided parsers for well-known file types in order to
avoid introduction of these vulnerabilities.

 FCS_STO_EXT.1 defines requirements for securely storing credentials to protect
against a local attacker compromising and gaining access.

 FMT_CFG_EXT.1 ensures that the file permissions are set such that the application
and its data is protected from a local attacker.

3.1.2. T.UNAUTHORIZED_ADMINISTRATOR_ACCESS

An attacker may attempt to gain administrator access to the application by nefarious means such as

masquerading as an administrator to the application, replaying an administrative session (in its

entirety, or selected portions), or performing man-in-the-middle attacks, which would provide

access to the administrative session. Successfully gaining administrator access allows malicious

actions that compromise the security of the application to gain access to data.

SFR Rationale:

 FMT_CFG_EXT.1 ensures that an attacker cannot gain administrator access via
misconfiguration of the application.

 FCS_STO_EXT.1 and FCS_CKM_EXT.1/PBKDF2 ensures that if credentials are
stored, they are stored in a secure manner to prevent unauthorized access.

 FIA_AFL.1, FIA_EIP_EXT.1, FIA_UAU.7, FIA_UAU_EXT.5, FIA_UAU_EXT.2,
FIA_UIA_EXT.1, and FTA_TAB.1 ensures that an appropriate mechanism is in place
to ensure only an authorized user can interact with the application (if interactive).

 FTP_DIT_EXT.1 specifies the use of secure communication channels to protect
data in transit.

3.1.3. T.WEAK_CRYPTOGRAPHY

Attackers may exploit weak cryptographic algorithms or perform a cryptographic exhaust against

the key space. Poorly chosen encryption algorithms, modes, and key sizes will allow attackers to

compromise the algorithms, or brute force exhaust the key space and give them unauthorized

access allowing them to read, manipulate and/or control the traffic with minimal effort.

SFR Rationale:

 FCS_CKM_EXT.1/Asymmetric and FCS_CKM.2 defines the requirements for key
generation and key distribution respectively.

 FCS_COP.1 defines the requirements for use of cryptographic schemes.

 FCS_RBG_EXT.1 and FCS_RBG_EXT.2 defines the requirements for random bit
generation to support key generation and secure protocols (see SFRs resulting
from T.UNTRUSTED_COMMUNICATION_CHANNELS).

 FMT_SMF.1 defines the management of cryptographic functions.

3.1.4. T.UNTRUSTED_COMMUNICATION_CHANNELS

Attackers may take advantage of poorly designed or non-secure protocols or poor key management

to successfully perform man-in-the middle attacks, replay attacks, etc. Successful attacks will result

in loss of confidentiality and integrity of the critical network traffic, and potentially could lead to a

compromise of the application itself. Attackers may attempt to target applications that do not use

standardized secure tunneling protocols to protect the critical network traffic. This threat is of

particular concern when an application uses protocols that have not been subject to extensive peer

review.

SFR Rationale:

 FTP_DIT_EXT.1 defines how sensitive data is to be handled and specifies the use of
secure communication channels to protect sensitive data in transit.

 FIA_X509_EXT.1/Rev and FIA_X509_EXT.2 ensure that certificates used for secure
communication channels are validated properly to prevent someone gaining
unauthorized access to the TOE.

 FCS_HTTPS_EXT.1, [SSH Package], [TLS Package] ensures that the secure
communication protocols are used to secure the communication channels.

3.1.5. T.UPDATE_COMPROMISE

Threat agents may attempt to provide a compromised update of the application which undermines

the security functionality of the application. Non-validated updates or updates validated using non-

secure or weak cryptography leave the updated application vulnerable to surreptitious alteration.

SFR Rationale:

 FPT_TUD_EXT.1 ensures that a user can determine the current version of the TOE
and that the updates are cryptographically secured to protect against
compromising the update process.

3.1.6. T.PLATFORM_UPDATE

Updating the platform that the application operates on could break application’s functionality. As

such an end user might choose not to update the platform, thereby preventing the patching of

known issues on the platform. An attacker could exploit such unpatched vulnerabilities in the

platform to then mount an attack on the application.

SFR Rationale:

 FPT_AEX_EXT.1 and FPT_API_EXT.2 SFRs ensure that the TOE leverages the
functionality provided and supported by the platform. This ensures that when the
platform is updated, the supported functionality does not break and makes it
easier to keep the platform updated without having to worry about breaking the
applications running on the platform.

3.1.7. T.DATA_LEAKAGE

A software application may transmit or receive data that is unauthorized for transfer. This could

enable an attacker to read and/or modify the data.

SFR Rationale:

 FDP_NET_EXT.1 ensures that only those connections that are required for the TOE
to operate are available. This helps enumerate the type of connections thereby
helping security administrators identify granular filtering requirements through
the network.

 FMT_SMF.1 ensures that the data transmitted out of the TOE is limited to only that
which is required for TOE execution.

 FTP_DIT_EXT.1 ensures that if sensitive data needs to be transmitted, it is
transmitted using secure protocols.

3.2. Assumptions

This section describes the assumptions made in identification of the threats and security

requirements for software applications.

3.2.1. A.PLATFORM

The TOE relies upon a trustworthy computing platform for its execution. This includes the

underlying platform and whatever runtime environment it provides to the TOE.

[OE.PLATFORM]

3.2.2. A.PROPER_USER

The user of the application is trusted to use the software in compliance with the applied enterprise

security policy.

[OE.PROPER_USER]

3.2.3. A.PROPER_ADMIN

The administrator of the application is trusted to administer the software within compliance of the

applied enterprise security policy.

[OE.PROPER_ADMIN]

3.3. Organizational Security Policies

There are no OSPs for applications.

4. Security Objectives

4.1. Security Objectives for the TOE

This cPP does not define any security objectives for the TOE as it is a ‘low-assurance PP’ as

defined in [CC1, B.11].

4.2. Security Objectives for the Operational
Environment

Commented [my2]: Security Objectives were including in
previous version of App PP in EAL 1.

4.2.1. OE.PLATFORM

The TOE relies upon the underlying platform for its security and as a result this platform must be

trustworthy and appropriately protected. It is the organization’s responsibility to ensure that the

platform meets the trustworthiness requirements of the organization’s security policies.

4.2.2. OE.PROPER_USER

The user of the application uses the software within compliance of the applied enterprise security

policy.

4.2.3. OE.PROPER_ADMIN

The administrator of the application software is trusted to administer the software within

compliance of the applied enterprise security policy.

5. Security Functional Requirements
The individual security functional requirements are specified in the sections below. SFRs in this

section are mandatory SFRs that any conformant TOE must meet. Based on selections made in

these SFRs it will also be necessary to include some of the selection-based SFRs in Appendix B.

Additional optional SFRs may also be adopted from those listed in Appendix A.

The Evaluation Activities defined in [SD] describe actions that the evaluator will take in order to

determine compliance of a particular TOE with the SFRs. The content of these Evaluation

Activities will therefore provide more insight into deliverables required from TOE Developers.

5.1. Conventions

The following conventions are used for the completion of operations:

 [Italicized text within square brackets] indicates an operation to be completed by
the ST author.

 Bold text indicates additional text provided as a refinement.

 [Bold text within square brackets] indicates the completion of an assignment.

 [text within square brackets] indicates the completion of a selection.

 A text descriptor after an SFR name, e.g. "/Asymmetric" indicates the completion
of an iteration.

 Extended SFRs are identified by having a label “EXT” at the end of the SFR name.

Where compliance to RFCs is referred to in SFRs, this is intended to be demonstrated by

completing the corresponding evaluation activities in [SD] for the relevant SFR.

5.2. Cryptograhic Support (FCS)

This section defines cryptographic requirements that underlie other security properties of the TOE.

5.2.1. Random Bit Generation Services (FCS_RBG)

5.2.1.1. FCS_RBG_EXT.1 Random Bit Generation Services

FCS_RBG_EXT.1.1 The application shall [selection: use no DRBG functionality, invoke

platform-provided DRBG functionality, implement DRBG functionality according to

FCS_RBG_EXT.2] for its cryptographic operations.

Application Note 1: In this requirement, cryptographic operations include all cryptographic key

generation/derivation/agreement, IVs (for certain modes), as well as protocol-specific random

values.

Unless use no DRBG functionality is selected, an Entropy Analaysis Report specified in Appendix

D is required.

5.2.2. Storage of Credentials (FCS_STO)

5.2.2.1. FCS_STO_EXT.1 Storage of Credentials

FCS_STO_EXT.1.1 The application shall [selection: not store any credentials, invoke the

functionality provided by the platform to securely store [assignment: list of credentials], implement

functionality to securely store [assignment: list of credentials]] according to [selection:

FCS_COP.1/DataEncryption, FCS_CKM_EXT.1/Hash, FCS_CKM_EXT.1/KeyedHash,

FCS_CKM_EXT.1/PBKDF2] to non-volatile memory.

Application Note 2: This requirement ensures that persistent credentials (secret keys, PKI private

keys, or passwords) are stored securely.

5.3. User Data Protection (FDP)

This section defines requirements pertaining to protection of user data.

5.3.1. Network communications (FDP_NET)

5.3.1.1. FDP_NET_EXT.1 (Network Communications)

Commented [my3]: For the most sensitive cryptographic

operations, some experts recommend

using /dev/random for the highest level of assurance.

Commented [my4]: This method would be against of one
way method to passwords.

Commented [my5]: There is no requirement such this in
this PP, It should be changed to FCS_COP.1.1/HASH.

Commented [my6]: If Hash functions are used, this

requirement should be implemented.

FCS_COP.1.1/Hash The TSF shall perform cryptographic

hashing services in accordance with a specified

cryptographic algorithm [selection: SHA-1, SHA-256, SHA-

384, SHA-512] and cryptographic key sizes [assignment:

cryptographic key sizes] message digest sizes [selection:

160, 256, 384, 512] bits that meet the following: ISO/IEC

10118-3:2004.

Application Note 24: Vendors are strongly encouraged to

implement updated protocols that support the SHA-2 family;

until updated protocols are supported, this Cpp allows

support for SHA-1 implementations in compliance with SP

800-131A. In a future version of this Cpp, SHA-256 will be

the minimum requirement for all TOEs.

SHA1 has many Collisions and NIST has not recommended

it. It might be used where protocols are not updated.

FDP_NET_EXT.1.1 The TSF shall restrict network communication to: [_selection: no network

communication, user-initiated communication for [assignment: list of functions for which the user

can initiate network communication], respond to [assignment: list of remotely initiated

communication], [assignment: list of application-initiated network communication]].

Application Note 3: This requirement is intended to restrict both inbound and outbound network

communications to only those required, or to network communications that are user initiated. It

does not apply to network communications in which the application may generically access the

filesystem which may result in the platform accessing remotely mounted drives/shares.

5.4. Security Management (FMT)

Management functions in this section describe required capabilities to support a Security

Administrator role and basic set of security management functions dealing with management of

configurable aspects included in other SFRs, Default Configuration (FMT_CFG_EXT.1) and

Specification of Management Functions (FMT_SMF.1).

5.4.1. Default Configuration (FMT_CFG)

5.4.1.1. FMT_CFG_EXT.1 (Default Configuration)

FMT_CFG_EXT.1.1 Any default credentials supported by the TSF shall be changed [selection:

during installation, before application is operational].

Application Note 4: Manufacturer default credentials are credentials (e.g., passwords, keys) that

are automatically (without user interaction) loaded onto the platform during application

installation. Credentials generated during or after the installation using requirements laid out in

FCS_RBG_EXT.2 are not by definition default credentials. An application is considered

operational once initial set-up is complete or at first use.

The changing of default credentials has to be enforced by the application.

FMT_CFG_EXT.1.2 The application shall be configured by default with file permissions which

protect it and its data from unauthorized access.

Application Note 5: The precise expectations for file permissions vary per platform but the

general intention is that a trust boundary protects the application and its data.

5.4.1.2. FMT_SMF.1 (Specification of Management Functions)

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

 configuration for transmission of sensitive data [selection:

o no transmission of sensitive data,

Commented [my7]: More applications do not have
default credentials and we should not admit
requirements.
The evaluator shall check the TSS to determine if the
application requires any type of credentials
and if the application installs with default credentials. If
the TSF doesn’t support credentials, the TSS will shall
document this

Commented [my8]: If user could be enable to select to
no transmission of sensitive data, it means that there is no
sensitive data.
This is better:
The TSF shall be capable of performing the following
management functions
[selection:
no management functions,
enable/disable the transmission of any information
describing the
system's hardware, software, or configuration ,
enable/disable the transmission of any PII ,
enable/disable transmission of any application state (e.g.
crashdump)
information,
enable/disable network backup functionality to
[assignment: list of
enterprise or commercial cloud backup systems] ,
[assignment: list of other management functions to be
provided by the TSF]
] .

o enable/disable the transmission of any information describing the
system’s hardware, software, or configuration,

o enable/disable the transmission of any PII,

o configuration of user authentication,

o enable/disable transmission of any application state (e.g. crashdump)
information,

o enable/disable network backup functionality to [assignment: list of
enterprise or commercial cloud backup systems]]

 [assignment: Other management functions].

Application Note 6: This requirement stipulates that an application needs to provide the ability to

enable/disable only those functions that it actually implements. The application is not responsible

for controlling the behavior of the platform or other applications.

5.5. Protection of the TSF (FPT)

This section defines requirements for the TOE to provide trusted methods for updates to the TOE

firmware/software, support of platform APIs and implementation of anti-exploitation capabilities.

5.5.1. Anti-Exploitation Capabilities (FPT_AEX_EXT)

5.5.1.1. FPT_AEX_EXT.1 (Anti-Exploitation Capabilities)

FPT_AEX_EXT.1.1 The application shall not request to map memory at an explicit address

except for [selection:

 no exceptions,

 assignment: list of explicit exceptions].

Application Note 7: Requesting a memory mapping at an explicit address subverts address space

layout randomization (ASLR).

FPT_AEX_EXT.1.2 The application shall [selection:

 not allocate any memory region with both write and execute permissions,

 allocate memory regions with write and execute permissions for only [assignment:
list of functions performing just-in-time compilation]].

Application Note 8: Requesting a memory mapping with both write and execute permissions

subverts the platform protection provided by DEP. If the application performs no just-in-time

compiling, then the first selection must be chosen.

FPT_AEX_EXT.1.3 The application shall be compatible with security features provided by the

platform vendor except for [selection: [assignment: list of explicit exceptions], no exceptions].

Application Note 9: This requirement is designed to ensure that platform security features do not

need to be disabled in order for the application to run. The ability to provide exception in in

recognition that for certain applications disabling specific security features might be necessary (e.g.

an anti-virus application disabling platform provided virus detection features).

FPT_AEX_EXT.1.4 The application shall not write user-modifiable files to directories that

contain executable files unless explicitly directed by the user to do so.

Application Note 10: Executables and user-modifiable files may not share the same parent

directory but may share directories above the parent.

FPT_AEX_EXT.1.5 The application shall be compiled with stack-based buffer overflow

protection enabled.

Application Note 11: Any interpreted code is assumed to have met this requirement by default.

5.5.2. Integrity for Installation and Update (FPT_TUD_EXT)

5.5.2.1. FPT_TUD_EXT.1 (Integrity for Installation and Update)

FPT_TUD_EXT.1.1 The application shall [selection: provide the ability, leverage the platform] to

report the current version of the application software.

Application Note 12: Version is a unique identifier. For example, it could be a sequence of

numbers (e.g. major.minor.build.patch) or a version identifier with an explicit list of patches.

FPT_TUD_EXT.1.2 The application installation package and its updates shall be digitally signed

such that the [selection: TOE, platform] can cryptographically verify them prior to installation.

Application Note 13: The specifics of the verification of installation packages and updates

involves requirements on the platform (and not the application), so these are not fully specified

here.

5.6. Trusted Channels (FTP)

This section defines requirements for a trusted communication path between the TSF and other

trusted IT products

5.6.1. Data in Transit (FTP_DIT_EXT)

5.6.1.1. FTP_DIT_EXT.1 (Data In Transit)

Commented [my9]: This requirement would be N/A if the
Hash function was used instead of digital certificate.

FTP_DIT_EXT.1.1 The application shall [selection:

 not transmit any data,

 encrypt all transmitted [selection: sensitive data, data] with [selection: HTTPS as a
client in accordance with FCS_HTTPS_EXT.1/Client, HTTPS as a server in accordance
with FCS_HTTPS_EXT.1/Server, HTTPS as a server using mutual authentication in
accordance with FCS_HTTPS_EXT.2, TLS as a server as defined in the Functional
Package for TLS and also supports functionality for [selection: mutual
authentication, none], TLS as a client as defined in the Functional Package for TLS,
DTLS as a server as defined in the Functional Package for TLS and also supports
functionality for [selection: mutual authentication, none], DTLS as a client as defined
in the Functional Package for TLS, SSH as defined in the Functional Package for
Secure Shell,

 invoke platform-provided functionality to encrypt all transmitted [selection:
sensitive data, data] with [selection: HTTPS as as specified in FCS_HTTPS_EXT.1 in
accordance with FCS_CKM.2, TLS as specified in the [TLS Package] in accordance
with FCS_CKM.2, DTLS as specified in [TLS Package] in accordance with FCS_CKM.2,
SSH as specified in [SSH Package]] in accordance with FCS_CKM.2]

between itself and another trusted IT product.

Application Note 14: The selection ‘not transmit any data’ cannot be selected for TOEs being

evaluated against the Server or Agent modules.

6. Security Assurance Requirements
The Security Objectives for the TOE were constructed to address [threats] identified in the Security

Problem Definition. The Security Functional Requirements are a formal instantiation of

the Security Objectives. This cPP identifies the Security Assurance Requirements to frame the

extent to which the evaluator assesses the documentation applicable for the evaluation and

performs independent testing.

This section lists the set of SARs from CC part 3 that are required in evaluations against this cPP.

Individual Evaluation Activities to be performed are specified in [SD].

The general model for evaluation of TOEs against STs written to conform to this cPP is as follows:

After the ST has been approved for evaluation, the ITSEF (IT Security Evaluation Facility) will

obtain the TOE, supporting environmental IT (if required), and the administrative/user guides for

the TOE. The ITSEF is expected to perform actions mandated by the Common Evaluation

Methodology (CEM) for the ASE and ALC SARs. The ITSEF also performs the Evaluation

Activities contained within the SD, which are intended to be an interpretation of the other CEM

assurance requirements as they apply to the specific technology instantiated in the TOE. The

https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_objectives
https://appswcpp.github.io/cPP/cPP_APP_SW.html#threats
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_problem_definition
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_problem_definition
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_functional_requirements
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_security_objectives
https://appswcpp.github.io/cPP/cPP_APP_SW.html#SD

Evaluation Activities that are captured in the SD also provide clarification as to what the developer

needs to provide to demonstrate the TOE is compliant with the cPP.

Table 2. Security Assurance Requirements

Assurance Class Assurance Components

Security Target (ASE)

Conformance Claims (ASE_CCL.1)

Extended components definition (ASE_ECD.1)

ST introduction (ASE_INT.1)

Security objectives for the operational environment (ASE_OBJ.1)

Stated security requirements (ASE_REQ.1)

Security Problem Definition (ASE_SPD.1)

TOE summary specification (ASE_TSS.1)

Development (ADV) Basic functional specification (ADV_FSP.1)

Guidance documents (AGD)

Operational user guidance (AGD_OPE.1)

Preparative procedures (AGD_PRE.1)

Life cycle support (ALC)

Labeling of the TOE (ALC_CMC.1)

TOE CM coverage (ALC_CMS.1)

Flaw Remediation (ALC_FLR.3)

Tests (ATE) Independent testing – sample (ATE_IND.1)

Vulnerability assessment (AVA) Vulnerability survey (AVA_VAN.1)

6.1. ASE: Security Target

The ST is evaluated as per ASE activities defined in the [CEM]. In addition, there may be

Evaluation Activities specified within the [SD] that call for necessary descriptions to be included in

the TSS that are specific to the TOE technology type.

https://appswcpp.github.io/cPP/cPP_APP_SW.html#CEM
https://appswcpp.github.io/cPP/cPP_APP_SW.html#SD

6.2. ADV: Development

The design information about the TOE is contained in the guidance documentation available to the

end user as well as the TSS portion of the ST, and any additional information required by this cPP

that is not to be made public (e.g., Entropy Report).

6.2.1. Basic Functional Specification (ADV_FSP.1)

The functional specification describes the TOE Security Functions Interfaces (TSFIs). It is not

necessary to have a formal or complete specification of these interfaces. Additionally, because

TOEs conforming to this cPP will necessarily have interfaces to the Operational Environment that

are not directly invokable by TOE users, there is little point specifying that such interfaces be

described in and of themselves since only indirect testing of such interfaces may be possible. For

this cPP, the Evaluation Activities for this family focus on understanding the interfaces presented

in the TSS in response to the functional requirements and the interfaces presented in the AGD

documentation. No additional “functional specification” documentation is necessary to satisfy the

Evaluation Activities specified in [SD].

The Evaluation Activities in [SD] are associated with the applicable SFRs; since these are directly

associated with the SFRs, the tracing in element ADV_FSP.1.2D is implicitly already done and no

additional documentation is necessary.

6.3. AGD: Guidance Documentation

The guidance documents will be provided with the ST. Guidance must include a description of

how the IT personnel verifies that the Operational Environment can fulfill its role for the security

functionality. The documentation should be in an informal style and readable by the IT personnel.

Guidance must be provided for every operational environment that the product supports as claimed

in the ST. This guidance includes:

 instructions to successfully install the TSF in that environment; and

 instructions to manage the security of the TSF as a product and as a component of
the larger operational environment; and

 instructions to provide a protected administrative capability.

Guidance pertaining to particular security functionality must also be provided; requirements on

such guidance are contained in the Evaluation Activities specified in the [SD].

6.3.1. Operational User Guidance (AGD_OPE.1)

https://appswcpp.github.io/cPP/cPP_APP_SW.html#SD
https://appswcpp.github.io/cPP/cPP_APP_SW.html#SD
https://appswcpp.github.io/cPP/cPP_APP_SW.html#SD

The operational user guidance does not have to be contained in a single document. Guidance to

users, administrators and application developers can be spread among documents or web pages.

The developer should review the Evaluation Activities contained in the [SD] to ascertain the

specifics of the guidance that the evaluator will be checking for. This will provide the necessary

information for the preparation of acceptable guidance.

6.3.2. Preparative Procedures (AGD_PRE.1)

As with the operational guidance, the developer should look to the Evaluation Activities to

determine the required content with respect to preparative procedures.

6.4. Class ALC: Life-cycle Support

At the assurance level provided for TOEs conformant to this cPP, life-cycle support is limited to

end-user-visible aspects of the life-cycle, rather than an examination of the TOE vendor’s

development and configuration management process. This is not meant to diminish the critical role

that a developer’s practices play in contributing to the overall trustworthiness of a product; rather,

it is a reflection on the information to be made available for evaluation at this assurance level.

6.4.1. Labelling of the TOE (ALC_CMC.1)

This component is targeted at identifying the TOE such that it can be distinguished from other

products or versions from the same vendor and can be easily specified when being procured by an

end user. A label could consist of a “soft label” (e.g., electronically presented when queried).

The evaluator performs the CEM work units associated with ALC_CMC.1

6.4.2. TOE CM Coverage (ALC_CMS.1)

Given the scope of the TOE and its associated evaluation evidence requirements, the evaluator

performs the CEM work units associated with ALC_CMS.1.

6.4.3. Flaw remediation (ALC_FLR.3)

Given the scope of the TOE and its associated evaluation evidence requirements, the evaluator

performs the CEM work units associated with ALC_FLR.3.

6.5. Class ATE: Tests

Testing is specified for functional aspects of the system as well as aspects that take advantage of

design or implementation weaknesses. The former is done through the ATE_IND family, while the

latter is through the AVA_VAN family. For this cPP, testing is based on advertised functionality

https://appswcpp.github.io/cPP/cPP_APP_SW.html#SD

and interfaces with dependency on the availability of design information. One of the primary

outputs of the evaluation process is the test report as specified in the following requirements.

6.5.1. Independent Testing – Conformance (ATE_IND.1)

Testing is performed to confirm the functionality described in the TSS as well as the operational

guidance (includes “evaluated configuration” instructions). The focus of the testing is to confirm

that the requirements specified in Section 5 are being met. The Evaluation Activities in the SD

identify the specific testing activities necessary to verify compliance with the SFRs. The evaluator

produces a test report documenting the plan for and results of testing, as well as coverage

arguments focused on the platform/TOE combinations that are claiming conformance to this cPP.

6.6. Class AVA: Vulnerability Assessment

For the first generation of this cPP, the iTC is expected to survey open sources to discover what

vulnerabilities have been discovered in these types of products and provide that content into the

AVA_VAN discussion. In most cases, these vulnerabilities will require sophistication beyond that

of a basic attacker. This information will be used in the development of future protection profiles.

6.6.1. Vulnerability Survey (AVA_VAN.1)

[SD] provides a guide to the evaluator in performing a vulnerability analysis.

Appendix A: Optional Requirements
As indicated in the introduction to this cPP, the baseline requirements (those that must be

performed by the TOE) are contained in the body of this cPP. Additionally, there are two other

types of requirements specified in Appendices A and B.

The first type (in this Appendix) comprises requirements that can be included in the ST, but are not

mandatory for a TOE to claim conformance to this cPP. The second type (in Appendix B)

comprises requirements based on selections in other SFRs from the cPP: if certain selections are

made, then additional requirements in that appendix will need to be included in the body of the ST

(e.g., cryptographic protocols selected in a trusted channel requirement).

If a TOE fulfils any of the optional requirements, the vendor is encouraged to add the related

functionality to the ST. Therefore, in the application notes of this chapter the wording "This option

should be chosen…" is repeatedly used. But it also is used to emphasize that this option should

only be chosen if the TOE provides the related functionality and that it is not necessary to

implement the related functionality to be compliant to the cPP. ST authors are free to choose none,

some or all SFRs defined in this chapter. Just the fact that a product supports a certain functionality

does not mandate to add any SFR defined in this chapter.

https://appswcpp.github.io/cPP/cPP_APP_SW.html#SD

A.1. Class: Cryptographic Support (FCS)

This section defines optional cryptographic requirements that underlie other security properties of

the TOE.

A.1.1. Cryptographic Key Management (FCS_CKM)

A.1.1.1. FCS_CKM_EXT.1/Symmetric Cryptographic Key Generation

FCS_CKM_EXT.1.1/Symmetric The TSF shall generate symmetric cryptographic keys in

accordance with a specified cryptographic key generation algorithm [assignment: cryptographic

key generation algorithm] using a Random Bit Generator as specified in FCS_RBG_EXT.2 and

specified cryptographic key sizes [selection: 128 bit, 256 bit]. that meet the following:

[assignment: list of standards].

Application Note 15: Symmetric keys may be used to generate keys along the key chain.

A.2. Class: Protection of the TSF (FPT)

This section defines requirements for the TOE while using platform provided APIs as well as

transferring data between different parts of the TOE.

A.2.1. Use of Supported Services and APIs (FPT_API_EXT)

A.2.1.1. FPT_API_EXT.2 (Use of Supported Services and APIs)

FPT_API_EXT.2.1 The application [selection: shall use platform-provided libraries for parsing

[assignment: list of formats parsed that are included in the IANA MIME media types], does not

perform parsing].

Application Note 16: The IANA MIME types are listed

at http://www.iana.org/assignments/media-types and include many image, audio, video, and

content file formats. This requirement does not apply if providing parsing services is the purpose of

the application.

Appendix B: Selection-Based
Requirements
As indicated in the introduction to this PP, the baseline requirements (those that must be performed

by the TOE or its underlying platform) are contained in the body of this PP. There are additional

http://www.iana.org/assignments/media-types

requirements based on selections in the body of the PP: if certain selections are made, then

additional requirements below will need to be included.

B.1. Class: Cryptographic Support (FCS)

This section defines selection based cryptographic requirements that underlie other security

properties of the TOE.

B.1.1. Random Bit Generation (Extended – FCS_RBG_EXT)

B.1.1.1. FCS_RBG_EXT.2 Random Bit Generation

FCS_RBG_EXT.2.1 The TSF shall perform all deterministic random bit generation services in

accordance with ISO/IEC 18031:2011 using [selection: Hash_DRBG (any) in accordance with

FCS_COP.1/Hash, HMAC_DRBG (any) in accordance with FCS_COP.1/KeyedHash,

CTR_DRBG (AES) in accordance with FCS_COP.1/DataEncryption].

FCS_RBG_EXT.2.2 The deterministic RBG shall be seeded by at least one entropy sources that

accumulates entropy from [selection: [assignment: number of software-based sources] software-

based noise source(s), [assignment: number of hardware-based sources] hardware-based noise

source(s] with a minimum of [selection: 128 bits, 192 bits, 256 bits] of entropy at least equal to the

greatest security strength, according to ISO/IEC 18031:2011 Table C.1 “Security Strength Table

for Hash Functions”, of the keys and hashes that it will generate.

Application Note 17: This requirement shall be included in STs where "implement DRBG

functionality" is selected in FCS_RBG_EXT.1.1.

For the first selection in FCS_RBG_EXT.2.2, the ST author selects at least one of the types of

noise sources. If the TOE contains multiple noise sources of the same type, the ST author fills the

assignment with the appropriate number for each type of source (e.g., 2 software-based noise

sources, 1 hardware-based noise source). The documentation and tests required in the Evaluation

Activity for this element should be repeated to cover each source indicated in the ST.

ISO/IEC 18031:2011 contains three different methods of generating random numbers; each of

these, in turn, depends on underlying cryptographic primitives (hash functions/ciphers). The ST

author will select the function used and include the specific underlying cryptographic primitives

used in the requirement. While any of the identified hash functions (SHA-1, SHA-256, SHA-384,

SHA-512) are allowed for Hash_DRBG or HMAC_DRBG, only AES-based implementations for

CTR_DRBG are allowed.

If the key length for the AES implementation used here is different than that used to encrypt the

user data, then FCS_COP.1/DataEncryption may have to be adjusted or iterated to reflect the

different key length. For the selection in FCS_RBG_EXT.1.2, the ST author selects the minimum

number of bits of entropy that is used to seed the RBG, which must be equal or greater than the

security strength of any key generated by the TOE.

B.1.2. Cryptographic Key Management (FCS_CKM)

B.1.2.1. FCS_CKM_EXT.1 Cryptographic Key Generation Services

FCS_CKM_EXT.1.1 The application shall [selection: generate no asymmetric cryptographic

keys, invoke platform-provided functionality for asymmetric key generation, implement asymmetric

key generation according to FCS_CKM_EXT.1/Asymmetric].

Application Note 18: This requirement depends upon selection in [TLS Package] and [SSH

Package].

B.1.2.2. FCS_CKM_EXT.1/Asymmetric Cryptographic Key Generation
(Refinement)

FCS_CKM_EXT.1.1/Asymmetric The TSF shall generate asymmetric cryptographic keys in

accordance with a specified cryptographic key generation algorithm: [selection:

 RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the
following: FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.3;

 ECC schemes using “NIST curves” [selection: P-256, P-384, P-521] that meet the
following: FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.4;

 FFC schemes using cryptographic key sizes of 2048-bit or greater that meet the
following: FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.1

 FFC Schemes using ‘safe-prime’ groups that meet the following: “NIST Special
Publication 800-56A Revision 3, Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography” and [selection: RFC 3526, RFC
7919]]

and specified cryptographic key sizes [assignment: cryptographic key sizes] that meet the

following: [assignment: list of standards].

Application Note 19: The ST author selects all key generation schemes used for key

establishment (including generation of ephemeral keys) and device authentication. When key

generation is used for key establishment, the schemes in FCS_CKM.2.1 and selected cryptographic

protocols must match the selection. When key generation is used for device authentication, other

than SSH-RSA, ECDSA-SHA2-NISTP256, ECDSA-SHA2-NISTP384 and ECDSA-SHA2-

NISTP521, the public key is expected to be associated with an X.509v3 certificate.

If the TOE acts as a receiver in the key establishment schemes and is not configured to support

mutual authentication, the TOE does not need to implement key generation.

B.1.2.3. FCS_CKM_EXT.1.1/PBKDF2 Password Conditioning

FCS_CKM_EXT.1.1/PBKDF2 A password/passphrase shall perform [assignment: Password-

based Key Derivation Functions] in accordance with a specified cryptographic algorithm as

specified in FCS_COP.1/KeyedHash, with [assignment: positive integer of 1,000 or more]

iterations, and output cryptographic key sizes [selection: 128, 256] that meet the following [NIST

SP 800-132].

FCS_CKM_EXT.1.2/PBKDF2 The TSF shall generate salts using a RBG that meets

FCS_RGB_EXT.1 and with entropy corresponding to the security strength selected for PBKDF in

FCS_CKM_EXT.1.1/PBKDF2.

Application Note 20: This should be included if selected in FCS_STO_EXT.1

Conditioning can be performed using one of the identified hash functions or the process described

in NIST SP 800-132; the method used is selected by the ST Author. SP 800-132 requires the use of

a pseudo-random function (PRF) consisting of HMAC with an approved hash function. The ST

author selects the hash function used, also includes the appropriate requirements for HMAC and

the hash function.

Appendix A of SP 800-132 recommends setting the iteration count in order to increase the

computation needed to derive a key from a password and, therefore, increase the workload of

performing a password recovery attack. A significantly higher value is recommended to ensure

optimal security. This value is expected to increase to a minimum of 10,000 in a future iteration

based on SP 800-63.

B.1.2.4. FCS_CKM.2 Cryptographic Key Establishment (Refinement)

FCS_CKM.2.1 The TSF shall perform cryptographic key establishment in accordance with a

specified cryptographic key establishment method: [selection:

 RSA-based key establishment schemes that meet the following: RSAES-PKCS1-v1_5
as specified in Section 7.2 of RFC 3447, “Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1”;

 Elliptic curve-based key establishment schemes that meet the following: NIST Special
Publication 800-56A Revision 3, “Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography”;

 Finite field-based key establishment schemes that meet the following: NIST Special
Publication 800-56A Revision 3, “Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography”.

Application Note 21: This is a refinement of the SFR FCS_CKM.2 to deal with key establishment

rather than key distribution.

The ST author selects all key establishment schemes used for the selected cryptographic protocols.

The elliptic curves used for the key establishment scheme correlate with the curves specified in

FCS_CKM_EXT.1.1/Asymmetric The domain parameters used for the finite field-based key

establishment scheme are specified by the key generation according to

FCS_CKM_EXT.1.1/Asymmetric.

Safe-prime groups are covered in Appendix D of SP 800-56A Revision 3, “Appendix D: Approved

ECC Curves and FFC Safe-prime Groups”.

B.1.3. Cryptographic Operation (FCS_COP)

B.1.3.1. FCS_COP.1/DataEncryption Cryptographic Operation (AES Data
Encryption/ Decryption)

FCS_COP.1.1/DataEncryption The TSF shall perform encryption/decryption in accordance with

a specified cryptographic algorithm AES used in [selection: CBC, CTR, GCM] mode and

cryptographic key sizes [selection: 128 bits, 192 bits, 256 bits] that meet the following: AES as

specified in ISO 18033-3, [selection: CBC as specified in ISO 10116, CTR as specified in ISO

10116, GCM as specified in ISO 19772].

Application Note 22: For the first selection of FCS_COP.1.1/DataEncryption, the ST author

chooses the mode or modes in which AES operates. For the second selection, the ST author

chooses the key sizes that are supported by this functionality. The modes and key sizes selected

here correspond to the cipher suite selections made in the trusted channel requirements.

B.1.3.2. FCS_COP.1/SigGen Cryptographic Operation (Signature Generation
and Verification)

FCS_COP.1.1/SigGen The TSF shall perform cryptographic signature services [selection:

generation, verification] in accordance with a specified cryptographic algorithm [selection:

 RSA Digital Signature Algorithm and cryptographic key sizes (modulus)
[assignment: 2048 bits or greater],

 Elliptic Curve Digital Signature Algorithm and cryptographic key sizes [assignment:
256 bits or greater]]

that meet the following: [selection:

 For RSA schemes: FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Section 5.5,
using PKCS #1 v2.1 Signature Schemes RSASSA-PSS and/or RSASSA-PKCS1v1_5;
ISO/IEC 9796-2, Digital signature scheme 2 or Digital Signature scheme 3,

 For ECDSA schemes: FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Section 6
and Appendix D, Implementing “NIST curves” [selection: P-256, P-384, P-521];
ISO/IEC 14888-3, Section 6.4].

Application Note 23: The ST Author chooses the algorithm(s) implemented to perform digital

signatures. For the algorithm(s) chosen, the ST author makes the appropriate

assignments/selections to specify the parameters that are implemented for that algorithm. The ST

author ensures that the assignments and selections for this SFR include all the parameter values

necessary for the cipher suites selected for the protocol SFRs (see Appendix B.1.4) that are

included in the ST. The ST Author checks for consistency of selections with other FCS

requirements, especially when supporting elliptic curves.

B.1.3.3. FCS_COP.1/Hash Cryptographic Operation (Hash Algorithm)

FCS_COP.1.1/Hash The TSF shall perform cryptographic hashing services in accordance with a

specified cryptographic algorithm [selection: SHA-1, SHA-256, SHA-384, SHA-512] and

cryptographic key sizes [assignment: cryptographic key sizes] message digest sizes [selection: 160,

256, 384, 512] bits that meet the following: ISO/IEC 10118-3:2004.

Application Note 24: Vendors are strongly encouraged to implement updated protocols that

support the SHA-2 family; until updated protocols are supported, this cPP allows support for SHA-

1 implementations in compliance with SP 800-131A. In a future version of this cPP, SHA-256 will

be the minimum requirement for all TOEs.

The hash selection should be consistent with the overall strength of the algorithm used for

FCS_COP.1/DataEncryption and FCS_COP.1/SigGen (for example, SHA 256 for 128-bit keys).

B.1.3.4. FCS_COP.1/KeyedHash Cryptographic Operation (Keyed Hash
Algorithm)

FCS_COP.1.1/KeyedHash The TSF shall perform keyed-hash message authentication in

accordance with a specified cryptographic algorithm [selection: HMAC-SHA-1, HMAC-SHA-256,

HMAC-SHA-384, HMAC-SHA-512] and cryptographic key sizes [assignment: key size (in bits)

used in HMAC] and message digest sizes [selection: 160, 256, 384, 512] bits that meet the

following: ISO/IEC 9797-2:2011, Section 7 “MAC Algorithm 2”.

Application Note 25: The key size [k] in the assignment falls into a range between L1 and L2

(defined in ISO/IEC 10118 for the appropriate hash function). For example, for SHA-256, L1=512,

L2=256, where L2⇐k⇐L1.

B.1.4. Cryptographic Protocols (Extended –
FCS_HTTPS_EXT)

B.1.4.1. FCS_HTTPS_EXT HTTPS Protocol

HTTPS is not a required component of this cPP. If a TOE implements HTTPS, a corresponding

selection in FTP_DIT_EXT.1 should have been made that defines what the HTTPS protocol is

implemented to protect.

B.1.4.1.1. FCS_HTTPS_EXT.1 HTTPS Protocol

FCS_HTTPS_EXT.1.1 The TSF shall implement the HTTPS protocol that complies with RFC

2818.

Application Note 26: The ST author must provide enough detail to determine how the

implementation is complying with the standard(s) identified; this can be done by additional detail

in the TSS.

FCS_HTTPS_EXT.1.2 The TSF shall implement HTTPS using TLS.

FCS_HTTPS_EXT.1.3 If a peer certificate is presented, the TSF shall [selection: not require

client authentication, not establish the connection, request authorization to establish the

connection, [assignment: other action]] if the peer certificate is deemed invalid.

Application Note 27: If HTTPS is selected FTP_DIT_EXT.1 then validity is determined by the

identifier verification, certification path, the expiration date, and the revocation status in

accordance with RFC 5280. Certificate validity is tested in accordance with testing performed for

FIA_X509_EXT.1/Rev.

B.1.4.2. TLS Protocol

TLS is not a required component of this cPP. If a TOE implements TLS, a corresponding selection

in FTP_DIT_EXT.1 should be made to define what the TLS protocol is implemented to protect. If

the TOE implements the TLS protocol, the ST author shall include the requirements from [TLS

Package]

B.1.4.3. SSH Protocol

SSH is not a required component of this cPP. If a TOE implements SSH, a corresponding selection

in FTP_DIT_EXT.1 should have been made that defines what the SSH protocol is implemented to

protect. If the TOE acts as both a client and server and the selections are different, the ST author

should iterate using the identifiers FCS_SSH_EXT.1/Server and FCS_SSH_EXT.1/Client in the

[SSH Package].

B.1.4.3.1. FCS_HTTPS_EXT.2 HTTPS Protocol with Mutual Authentication

FCS_HTTPS_EXT.2.1 The application shall [selection: not establish the connection, establish or

not establish the connection based on an administrative or user setting]if the peer certificate is

deemed invalid.

Application Note 28: Validity is determined by the certificate path, the expiration date, and the

revocation status in accordance with RFC 5280.

B.2. Class: Identification and Authentication (FIA)

This section defines selection based Identification and Authentication requirements that underlie

other security properties of the TOE.

B.2.1. Authentication Failure (FIA_AFL)

B.2.1.1. FIA_AFL.1 Authentication Failure Management

FIA_AFL.1.1 The TSF shall detect when a configurable positive integer [assignment: range of

acceptable values less than 64 for each password-based authentication mechanism] of

unsuccessful authentication attempts occur related to last successful authentication for each

password-based authentication mechanism.

FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts has been met, the

TSF shall [selection: prevent the offending Administrator from successfully establishing a

session using the locked authentication method until [assignment: action to unlock] is taken by

an Administrator; prevent the offending Administrator from successfully establishing a session

using any authentication method until an Administrator-defined time period has elapsed].

B.2.2. External Identity Provider (FIA_EIP_EXT)

B.2.2.1. FIA_EIP_EXT.1 External Identity Provider

FIA_EIP_EXT.1.1 The TSF shall be capable of using [selection: TLS, DTLS] as specified in the

[TLS Package] to provide a communication channel between itself and an external identity

provider.

FIA_EIP_EXT.1.2 The TSF shall provide a [selection: configurable, externally-managed]

mechanism to enroll with the external identity provider.

FIA_EIP_EXT.1.3 The TSF shall establish attribute mapping with the provider for [assignment:

list of maintained attributes].

B.2.3. User Identification and Authentication (FIA_UIA_EXT)

B.2.3.1. FIA_UIA_EXT.1 User Identification and Authentication

FIA_UIA_EXT.1.1 The TSF shall allow the following actions prior to requiring the

administrative user to initiate the identification and authentication process: [selection:

 display the warning banner in accordance with FTA_TAB.1;

 [assignment: list of services, actions performed by the TSF in response to non-TOE
requests];

 no actions].

FIA_UIA_EXT.1.2 The TSF shall require each administrative user to be successfully identified

and authenticated before allowing any other TSF-mediated actions on behalf of that administrative

user.

B.2.4. Authentication Mechanism (FIA_UAU_EXT)

B.2.4.1. FIA_UAU_EXT.2 Authentication Mechanism

FIA_UAU_EXT.2.1 The TSF shall provide a [selection: password-based, SSH public key-based

as specified in the [SSH Package], certificate-based, [assignment: other authentication

mechanism]] authentication mechanism to perform administrative user authentication.

B.2.4.2. FIA_UAU_EXT.5 User Authentication Mechanisms

Start here next. Do these need to move into the base SFRs?

FIA_UAU_EXT.5.1 The TSF shall [selection: provide an authentication mechanism, integrate

with an external identity provider] to support user authentication.

FIA_UAU_EXT.5.2 The TSF shall consider [selection: password, SSH Public Key, X.509

certificate, [assignment: other authentication mechanism]] as authentication mechanisms.

Application Note 29: If the TOE implements its own authentication mechanism, “provide an

authentication mechanism” shall be selected and the following selection-based SFRs shall be

include in the ST: FIA_AFL.1, FIA_UAU_EXT.2, FIA_UAU.7, and FMT_SMR.2.

Application Note 30: If the TOE connects to an external authentication service, the selection

“integrate with an external identity provider” and the following selection-based SFRs shall be

included in the ST: FIA_EIP_EXT.1.

B.2.4.3. FIA_UAU.7 Protected Authentication Feedback

FIA_UAU.7.1 The TSF shall provide only obscured feedback to the administrative user while the

authentication is in progress.

Application Note 31: The TSF may permit user interaction to display the input data. However,

this may not be the default state and shall revert to an obfuscated state after user interaction.

B.2.5. X.509 Certificate Validation (FIA_X509_EXT)

B.2.5.1. FIA_X509_EXT.1 X.509 Certificate Validation

FIA_X509_EXT.1.1/Rev The application shall [selection: invoke platform-provided functionality,

implement functionality] to validate certificates in accordance with the following rules:

 RFC 5280 certificate validation and certification path validation supporting a
minimum path length of three certificates.

 The certification path must terminate with a trusted CA certificate designated as a
trust anchor.

 The application shall validate a certification path by ensuring that all CA
certificates in the certification path contain the basicConstraints extension with
the CA flag set to TRUE.

 ECC certificates shall conform to RFC 5480, section 2.1.1.

 The application shall validate the revocation status of the certificate using
[selection:

o the Online Certificate Status Protocol (OCSP) as specified in RFC 6960,

o a Certificate Revocation List (CRL) as specified in RFC 5280 Section 6.3,

o a Certificate Revocation List (CRL) as specified in RFC 5759 Section 5,

o an OCSP TLS Status Request Extension (i.e., OCSP stapling) as specified in
RFC 6066

o no revocation method]

 The application shall validate the extendedKeyUsage field according to the
following rules:

o Certificates used for trusted updates and executable code integrity
verification shall have the Code Signing purpose (id-kp 3 with OID
1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server
Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the
extendedKeyUsage field.

o Client certificates presented for TLS shall have the Client Authentication
purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage
field.

o S/MIME certificates presented for email encryption and signature shall
have the Email Protection purpose (id-kp 4 with OID 1.3.6.1.5.5.7.3.4) in
the extendedKeyUsage field.

o OCSP certificates presented for OCSP responses shall have the OCSP
Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the
extendedKeyUsage field.

o Server certificates presented for EST shall have the CMC Registration
Authority (RA) purpose (id-kp-cmcRA with OID 1.3.6.1.5.5.7.3.28) in the
extendedKeyUsage field.

FIA_X509_EXT.1.2/Rev The TSF shall only treat a certificate as a CA certificate if the

basicConstraints extension is present and the CA flag is set to TRUE.

Application Note 32: This requirement applies to certificates that are used and processed by the

TSF and restricts the certificates that may be added as trusted CA certificates.

B.2.5.2. FIA_X509_EXT.2 X.509 Certificate Authentication

FIA_X509_EXT.2.1 The TSF shall use X.509v3 certificates as defined by RFC 5280 to support

authentication for [selection: HTTPS, SSH as defined in the [SSH Package], TLS as defined in the

[TLS Package], DTLS as defined in the [TLS Package], code signing for system software updates,

code signing for integrity verification, [assignment: other uses]].

FIA_X509_EXT.2.2 When the TSF cannot establish a connection to determine the validity of a

certificate, the TSF shall [selection: allow the Administrator to choose whether to accept the

certificate in these cases, accept the certificate, not accept the certificate].

Application Note 33: In FIA_X509_EXT.2.1, the ST author’s selection includes TLS, or HTTPS

if these protocols are included in FTP_DIT_EXT.1.1. SSH should be included if SSH

authentication methods include X.509v3. Certificates may optionally be used for trusted updates of

system software (FPT_TUD_EXT.1.2).

Often a connection must be established to check the revocation status of a certificate - either to

download a CRL or to perform a lookup using OCSP. In FIA_X509_EXT.2.2 the selection is used

to describe the behavior in the event that such a connection cannot be established (for example, due

to a network error). If the TOE has determined the certificate is valid according to all other rules in

FIA_X509_EXT.1, the behavior indicated in the selection determines the validity. The TOE must

not accept the certificate if it fails any of the other validation rules in FIA_X509_EXT.1. If the

Administrator-configured option is selected by the ST Author, the ST Author also selects the

corresponding function in FMT_SMF.1. The selection should be consistent with the validation

requirements in [TLS Package, FCS_TLSC_EXT.1.3].

The ST author must include FIA_X509_EXT.2 in all instances except when only SSH is selected

within FTP_DIT_EXT.1 and SSH authentication methods do not include X.509v3. Additionally,

FIA_X509_EXT.2 must be included if FPT_TUD_EXT digital signatures make use of X.509

certificates and the TOE performs the verification.

B.3. (FMT) Specification of Management Functions

B.3.1. FMT_SMR.2 Restrictions on Security Roles

FMT_SMR.2.1 The TSF shall maintain the roles:

 Security Administrator.

FMT_SMR.2.2 The TSF shall be able to associate users with roles.

FMT_SMR.2.3 The TSF shall ensure that the conditions [selection:

 The Security Administrator role shall be able to administer the TOE locally,

 The Security Administrator role shall be able to administer the TOE remotely]

are satisfied.

B.4. (FTA) TOE Access

B.4.1. Default TOE Access Banner (FTA_TAB)

B.4.1.1. FTA_TAB.1 Default TOE Access Banner

FTA_TAB.1.1 Before establishing an administrative user session the TSF shall display a Security

Administrator-specified advisory notice and consent warning message regarding use of the TOE.

Application Note 34: This requirement shall be included if the selection for a warning banner is

made within FIA_UIA_EXT.1.

Appendix C: Extended Component
Definitions
This appendix contains the definitions for the extended requirements that are used in the cPP,

including those used in [Consistency Rationale] and Selection-Based Requirements .

(Note: formatting conventions for selections and assignments in this chapter are those in [CC2].)

C.1. Cryptographic Support (FCS)

C.1.1. Cryptographic Key Generation (FCS_CKM_EXT)

C.1.1.1. Family Behaviour

Defined in [CC2].

C.1.1.2. Component levelling

https://appswcpp.github.io/cPP/cPP_APP_SW.html#Consistency%20Rationale
https://appswcpp.github.io/cPP/cPP_APP_SW.html#_selection_based_requirements
https://appswcpp.github.io/cPP/cPP_APP_SW.html#CC2
https://appswcpp.github.io/cPP/cPP_APP_SW.html#CC2

Figure 3. Component levelling

FCS_CKM_EXT.1 defines whether asymmetric keys are generated and if so whether the TOE or

the platform generates the asymmetric cryptographic keys.

C.1.1.3. Management: FCS_CKM_EXT.1

The following actions could be considered for the management functions in FMT:

a. None

C.1.1.4. Audit: FCS_CKM_EXT.1

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.1.1.5. FCS_CKM_EXT.1 Cryptographic Key Generation Services

Hierarchical to: No other components

Dependencies: No dependencies

FCS_CKM_EXT.1.1 The application shall [selection: generate no asymmetric cryptographic

keys, invoke platform-provided functionality for asymmetric key generation, implement asymmetric

key generation according to FCS_CKM_EXT.1/Asymmetric].

FCS_CKM_EXT.1/Asymmetric

The TSF shall generate asymmetric cryptographic keys in accordance with a specified

cryptographic key generation algorithm: [selection:

 RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the
following: FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.3;

 ECC schemes using “NIST curves” [selection: P-256, P-384, P-521] that meet the
following: FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.4;

 FFC schemes using cryptographic key sizes of 2048-bit or greater that meet the
following: FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.1

 FFC Schemes using ‘safe-prime’ groups that meet the following: “NIST Special
Publication 800-56A Revision 3, Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography” and [selection: RFC 3526, RFC
7919]]

and specified cryptographic key sizes [assignment: cryptographic key sizes] that meet the

following: [assignment: list of standards].

FCS_CKM_EXT.1.1/Symmetric The TSF shall generate symmetric cryptographic keys in

accordance with a specified cryptographic key generation algorithm [assignment: cryptographic

key generation algorithm] using a Random Bit Generator as specified in FCS_RBG_EXT.2 and

specified cryptographic key sizes [selection: 128 bit, 256 bit]. that meet the following:

[assignment: list of standards].

FCS_CKM_EXT.1.1/PBKDF2 A password/passphrase shall perform [assignment: Password-

based Key Derivation Functions] in accordance with a specified cryptographic algorithm as

specified in FCS_COP.1/KeyedHash, with [assignment: positive integer of 1,000 or more]

iterations, and output cryptographic key sizes [selection: 128, 256] that meet the following [NIST

SP 800-132].

FCS_CKM_EXT.1.2/PBKDF2 The TSF shall generate salts using a RBG that meets

FCS_RGB_EXT.1 and with entropy corresponding to the security strength selected for PBKDF in

FCS_CKM_EXT.1.1/PBKDF2.

C.1.2. Cryptographic Protocols (FCS_HTTPS_EXT)

C.1.2.1. Family Behaviour

Components in this family define the requirements for protecting remote management sessions

between the TOE and a Security Administrator. This family describes how HTTPS will be

implemented. This is a new family defined for the FCS Class.

C.1.2.2. Component levelling

Figure 4. Component levelling

FCS_HTTPS_EXT.1 HTTPS requires that HTTPS be implemented according to RFC 2818 and

supports TLS.

C.1.2.3. Management: FCS_HTTPS_EXT.1

The following actions could be considered for the management functions in FMT:

a. There are no management activities foreseen.

C.1.2.4. Audit: FCS_HTTPS_EXT.1

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. There are no auditable events foreseen

C.1.2.5. FCS_HTTPS_EXT.1 HTTPS Protocol

Hierarchical to: No other components

Dependencies: No dependencies

FCS_HTTPS_EXT.1.1 The TSF shall implement the HTTPS protocol that complies with RFC

2818.

FCS_HTTPS_EXT.1.2 The TSF shall implement HTTPS using TLS.

FCS_HTTPS_EXT.1.3 If a peer certificate is presented, the TSF shall [selection: not require

client authentication, not establish the connection, request authorization to establish the

connection, [assignment: other action]] if the peer certificate is deemed invalid.

C.1.3. Random Bit Generation (FCS_RBG_EXT)

C.1.3.1. Family Behaviour

Components in this family address the requirements for random bit/number generation. This is a

new family defined for the FCS class.

C.1.3.2. Component levelling

Figure 5. Component levelling

FCS_RBG_EXT.1 Random Bit Generation requires random bit generation to be performed in

accordance with selected standards and seeded by an entropy source.

C.1.3.3. Management: FCS_RBG_EXT.1, FCS_RBG_EXT.2

The following actions could be considered for the management functions in FMT:

a. There are no management activities foreseen

C.1.3.4. Audit: FCS_RBG_EXT.1, FCS_RBG_EXT.2

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. Minimal: failure of the randomization process

C.1.3.5. FCS_RBG_EXT.2 Random Bit Generation

Hierarchical to: No other components

Dependencies: No dependencies

FCS_RBG_EXT.2.1 The TSF shall perform all deterministic random bit generation services in

accordance with ISO/IEC 18031:2011 using [selection: Hash_DRBG (any), HMAC_DRBG (any),

CTR_DRBG (AES)].

FCS_RBG_EXT.2.2 The deterministic RBG shall be seeded by at least one entropy source that

accumulates entropy from [selection: [assignment: number of software-based sources] software-

based noise source, [assignment: number of hardware-based sources] hardware-based noise

source] with a minimum of [selection: 128 bits, 192 bits, 256 bits] of entropy at least equal to the

greatest security strength, according to ISO/IEC 18031:2011 Table C.1 “Security Strength Table

for Hash Functions”, of the keys and hashes that it will generate.

C.1.3.6. FCS_RBG_EXT.2 Random Bit Generation Services

Hierarchical to: No other components

Dependencies: No dependencies

FCS_RBG_EXT.2.1 The application shall [selection: use no DRBG functionality, invoke

platform-provided DRBG functionality, implement DRBG functionality] for its cryptographic

operations.

C.1.4. Storage of Credentials (FCS_STO_EXT)

C.1.4.1. Family Behaviour

Components in this family address the requirements for storage of credentials such as secret keys,

PKI private keys, or passwords. This is a new family defined for the FCS class.

C.1.4.2. Component levelling

Figure 6. Component levelling

FCS_STO_EXT.1 identifies whether the TOE stores credentials and if so how to store them

securely.

C.1.4.3. Management: FCS_STO_EXT.1

The following actions could be considered for the management functions in FMT:

a. There are no management activities foreseen

C.1.4.4. Audit: FCS_STO_EXT.1

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.1.4.5. FCS_STO_EXT.1 Storage of Credentials

Hierarchical to: No other components

Dependencies: No dependencies

FCS_STO_EXT.1.1 The application shall [selection: not store any credentials, invoke the

functionality provided by the platform to securely store [assignment: list of credentials], implement

functionality to securely store [assignment: list of credentials]] according to [selection:

FCS_COP.1/DataEncryption, FCS_CKM_EXT.1/Hash, FCS_CKM_EXT.1/KeyedHash,

FCS_CKM_EXT.1/PBKDF2] to non-volatile memory.

C.2. Data Protection (FDP)

C.2.1. Network Communications (FDP_NET_EXT)

C.2.1.1. Family Behaviour

Components in this family address restrictions to network communications. This is a new family

defined for the FDP class.

C.2.1.2. Component levelling

Figure 7. Component levelling

FDP_NET_EXT.1 identifies whether the TOE has outbound or inbound connections.

C.2.1.3. Management: FDP_NET_EXT.1

The following actions could be considered for the management functions in FMT:

a. There are no management activities foreseen

C.2.1.4. Audit: FDP_NET_EXT.1

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.2.1.5. FDP_NET_EXT.1 Network Communications

Hierarchical to: No other components

Dependencies: No other components

FDP_NET_EXT.1.1 The TSF shall restrict network communication to: [selection: no network

communication, outbound connections, in-bound connections].

C.3. Identification and Authentication (FIA)

C.3.1. External Identity Provider (FIA_EIP_EXT)

Family Behaviour

Provides for an external identity provider for authentication to the TOE.

Component levelling

Figure 8. Component levelling

FIA_EIP_EXT.1 The remote authentication service provides administrative users a managed

service to allow for access to TSF mediated actions.

Management: FIA_EIP_EXT

The following actions could be considered for the management functions in FMT:

a. None.

Audit: FIA_EIP_EXT

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.3.1.1. FIA_EIP_EXT.1 External Identity Provider

Hierarchical to: No other components.

Dependencies: FIA_UAU_EXT.5.

FIA_EIP_EXT.1.1 The TSF shall be capable of using [selection: TLS, DTLS] to provide a

communication channel between itself and an external identity provider.

FIA_EIP_EXT.1.2 The TSF shall provide a [selection: configurable, externally-managed]

mechanism to enroll with the external identity provider.

FIA_EIP_EXT.1.3 The TSF shall establish attribute mapping with the provider for [assignment:

list of maintained attributes].

C.3.2. User Identification and Authentication (FIA_UIA_EXT)

C.3.2.1. Family Behaviour

The TSF allows certain specified actions before the non-TOE entity goes through the identification

and authentication process.

C.3.2.2. Component levelling

Figure 9. Component levelling

FIA_UIA_EXT.1 User Identification and Authentication requires Administrators (including

remote Administrators) to be identified and authenticated by the TOE, providing assurance for that

end of the communication path. It also ensures that every user is identified and authenticated

before the TOE performs any mediated functions

C.3.2.3. Management: FIA_UIA_EXT.1

The following actions could be considered for the management functions in FMT:

a. Ability to configure the list of TOE services available before an entity is identified
and authenticated

C.3.2.4. Audit: FIA_UIA_EXT.1

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.3.2.5. FIA_UIA_EXT.1 User Identification and Authentication

Hierarchical to: No other components.

Dependencies: FTA_TAB.1 Default TOE Access Banners

FIA_UIA_EXT.1.1 The TSF shall allow the following actions prior to requiring the

administrative user to initiate the identification and authentication process: [selection:

 display the warning banner in accordance with FTA_TAB.1;

 [assignment: list of services, actions performed by the TSF in response to non-TOE
requests];

 no actions].

FIA_UIA_EXT.1.2 The TSF shall require each administrative user to be successfully identified

and authenticated before allowing any other TSF-mediated actions on behalf of that administrative

user.

C.3.3. User authentication (FIA_UAU_EXT)

Family Behaviour

Provides for a locally based administrative user authentication mechanism

Component levelling

Figure 10. Component levelling

FIA_UAU_EXT.2 The password-based authentication mechanism provides administrative users

an authentication mechanism for access to TSF mediated functionality.

FIA_UAU_EXT.5 The TSF provides administrative users a local or external authentication

mechanism.

Management: FIA_UAU_EXT.2, FIA_UAU_EXT.5

The following actions could be considered for the management functions in FMT:

a. configuration of user authentication

Audit: FIA_UAU_EXT.2, FIA_UAU_EXT.5

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.3.3.1. FIA_UAU_EXT.2 User Authentication

FIA_UAU_EXT.2 User Authentication

Hierarchical to: No other components.

Dependencies: No other components.

FIA_UAU_EXT.2.1 The TSF shall provide a [selection: password-based, SSH public key-based,

certificate-based, [assignment: other authentication mechanism]] authentication mechanism to

perform administrative user authentication.

C.3.3.2. FIA_UAU_EXT.5 User Authentication Mechanisms

FIA_UAU_EXT.5 User Authentication Mechanisms

Hierarchical to: No other components.

Dependencies: FIA_UAU_EXT.2 User Authentication.

FIA_UAU_EXT.5.1 The TSF shall [selection: provide an authentication mechanism, integrate

with an external identity provider] to support user authentication.

FIA_UAU_EXT.5.2 The TSF shall consider [selection: password, SSH Public Key, X.509

certificate, [assignment: other authentication mechanism]] as authentication mechanisms.

C.3.4. Authentication using X.509 certificates
(FIA_X509_EXT)

C.3.4.1. Family Behaviour

This family defines the behaviour, management, and use of X.509 certificates for functions to be

performed by the TSF. Components in this family require validation of certificates according to a

specified set of rules, use of certificates for authentication for protocols and integrity verification,

and the generation of certificate requests.

C.3.4.2. Component levelling

Figure 11. Component levelling

FIA_X509_EXT.1 X509 Certificate Validation, requires the TSF to check and validate certificates

in accordance with the RFCs and rules specified in the component.

FIA_X509_EXT.2 X509 Certificate Authentication, requires the TSF to use certificates to

authenticate peers in protocols that support certificates, as well as for integrity verification and

potentially other functions that require certificates.

C.3.4.3. Management: FIA_X509_EXT.1, FIA_X509_EXT.2

The following actions could be considered for the management functions in FMT:

a. Remove imported X.509v3 certificates

b. Approve import and removal of X.509v3 certificates

C.3.4.4. Audit: FIA_X509_EXT.1, FIA_X509_EXT.2

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.3.4.5. FIA_X509_EXT.1 Certificate Validation

C.3.4.6. FIA_X509_EXT.1 X.509 Certificate Validation

Hierarchical to: No other components

Dependencies: FIA_X509_EXT.2 X.509 Certificate Authentication

FIA_X509_EXT.1.1/Rev The application shall [selection: invoke platform-provided functionality,

implement functionality] to validate certificates in accordance with the following rules:

 RFC 5280 certificate validation and certification path validation supporting a
minimum path length of three certificates.

 The certification path must terminate with a trusted CA certificate designated as a
trust anchor.

 The application shall validate a certification path by ensuring that all CA
certificates in the certification path contain the basicConstraints extension with
the CA flag set to TRUE.

 ECC certificates shall conform to RFC 5480, section 2.1.1.

 The application shall validate the revocation status of the certificate using
[selection:

o the Online Certificate Status Protocol (OCSP) as specified in RFC 6960,

o a Certificate Revocation List (CRL) as specified in RFC 5280 Section 6.3,

o a Certificate Revocation List (CRL) as specified in RFC 5759 Section 5,

o an OCSP TLS Status Request Extension (i.e., OCSP stapling) as specified in
RFC 6066

o no revocation method]

 The application shall validate the extendedKeyUsage field according to the
following rules:

o Certificates used for trusted updates and executable code integrity
verification shall have the Code Signing purpose (id-kp 3 with OID
1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server
Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the
extendedKeyUsage field.

o Client certificates presented for TLS shall have the Client Authentication
purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage
field.

o S/MIME certificates presented for email encryption and signature shall
have the Email Protection purpose (id-kp 4 with OID 1.3.6.1.5.5.7.3.4) in
the extendedKeyUsage field.

o OCSP certificates presented for OCSP responses shall have the OCSP
Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the
extendedKeyUsage field.

o Server certificates presented for EST shall have the CMC Registration
Authority (RA) purpose (id-kp-cmcRA with OID 1.3.6.1.5.5.7.3.28) in the
extendedKeyUsage field.

FIA_X509_EXT.1.2 The TSF shall only treat a certificate as a CA certificate if the

basicConstraints extension is present and the CA flag is set to TRUE.

C.3.4.7. FIA_X509_EXT.2 X.509 Certificate Validation

Hierarchical to: No other components

Dependencies: FIA_X509_EXT.1 X.509 Certificate Authentication

FIA_X509_EXT.2.1 The TSF shall use X.509v3 certificates as defined by RFC 5280 to support

authentication for [selection: HTTPS, SSH, TLS, DTLS], and [selection: code signing for system

software updates, code signing for integrity verification, [assignment: other uses], no additional

uses].

FIA_X509_EXT.2.2 When the TSF cannot establish a connection to determine the validity of a

certificate, the TSF shall [selection: allow the Administrator to choose whether to accept the

certificate in these cases, accept the certificate, not accept the certificate].

C.4. Security Management (FMT)

C.4.1. Default Configuration (FMT_CFG_EXT)

C.4.1.1. Family Behaviour

Components in this family address requirements for secure default configuration. This is a new

family defined for the FMT class.

C.4.1.2. Component levelling

Figure 12. Component levelling

FMT_CFG_EXT.1 identifies whether the TOE has default credentials and if so the default

credentials can be changed.

C.4.1.3. Management: FMT_CFG_EXT.1

The following actions could be considered for the management functions in FMT:

Audit: FMT_CFG_EXT.1

Changing of default credentials

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.4.1.4. FMT_CFG_EXT.1 Default Configuration

Hierarchical to: No other components

Dependencies: No other components

FMT_CFG_EXT.1.1 Any default credentials supported by the TSF shall be changed [selection:

during installation, before application is operational].

FMT_CFG_EXT.1.2 The application shall be configured by default with file permissions which

protect it and its data from unauthorized access.

C.5. Protection of the TSF (FPT)

C.5.1. Anti-Exploitation Capabilities (FPT_AEX_EXT)

C.5.1.1. Family Behaviour

Components in this family address requirements to ensure the TOE is not susceptible to commonly

used exploitation methods. Additionally, it ensures that the application doesn’t circumvent security

functionality provided by the platform. This is a new family defined for the FPT class.

C.5.1.2. Component levelling

Figure 13. Component levelling

FPT_AEX_EXT.1 ensures the TOE is not susceptible to commonly used exploitation methods and

that it doesn’t circumvent security functionality provided by the platform.

C.5.1.3. Management: FPT_AEX_EXT.1

The following actions could be considered for the management functions in FPT:

a. There are no management activities foreseen

C.5.1.4. Audit: FPT_AEX_EXT.1

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.5.1.5. FPT_AEX_EXT.1 Anti-Exploitation Capabilities

Hierarchical to: No other components

Dependencies: No other components

FPT_AEX_EXT.1.1 The application shall not request to map memory at an explicit address

except for [selection:

 no exceptions, assignment: list of explicit exceptions].

FPT_AEX_EXT.1.2 The application shall [selection:

 not allocate any memory region with both write and execute permissions,

 allocate memory regions with write and execute permissions for only [assignment:
list of functions performing just-in-time compilation]].

FPT_AEX_EXT.1.3 The application shall be compatible with security features provided by the

platform vendor except for [selection: [assignment: list of explicit exceptions], no exceptions].

FPT_AEX_EXT.1.4 The application shall not write user-modifiable files to directories that

contain executable files unless explicitly directed by the user to do so.

FPT_AEX_EXT.1.5 The application shall be compiled with stack-based buffer overflow

protection enabled.

C.5.2. Use of Supported Services and APIs (FPT_API_EXT)

C.5.2.1. Family Behaviour

Components in this family address requirements to ensure the TOE uses platform services and

APIs that are supported by the platform vendor.

C.5.2.2. Component levelling

Figure 14. Component levelling

FPT_API_EXT.2 ensures the TOE is not dependent on services and APIs that are not supported by

the platform vendor and would be difficult to maintain as the underlying platform is

upgraded/changed.

C.5.2.3. Management: FPT_API_EXT.2

The following actions could be considered for the management functions in FPT:

a. There are no management activities foreseen

C.5.2.4. Audit: FPT_API_EXT.2

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.5.2.5. FPT_API_EXT.2 Use of Supported Services and APIs

Hierarchical to: No other components

Dependencies: No other components

FPT_API_EXT.2.1 The application [selection: shall use platform-provided libraries for parsing

[assignment: list of formats parsed that are included in the IANA MIME media types], does not

perform parsing].

C.5.3. Integrity for Installation and Update (FPT_TUD_EXT)

C.5.3.1. Family Behaviour

Components in this family address the requirements for updating the TOE software.

C.5.3.2. Component levelling

Figure 15. Component levelling

FPT_TUD_EXT.1 ensures that there are tools available to view the version of the TOE and update

the TOE either using the TOE itself or the platform.

C.5.3.3. Management: FPT_TUD_EXT.1

The following actions could be considered for the management functions in FPT:

a. Ability to update the TOE and to verify the updates using the digital signature
capability

C.5.3.4. Audit: FPT_TUD_EXT.1

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. Initiation of the update process.

b. Any failure to verify the integrity of the update

C.5.3.5. FPT_TUD_EXT.1 Integrity of Installation and Upgrade

C.5.3.5.1. FPT_TUD_EXT.1 Integrity of Installation and Upgrade

Hierarchical to: No other components

Dependencies: No other components

FPT_TUD_EXT.1.1 The application shall [selection: provide the ability, leverage the platform] to

report the current version of the application software.

FPT_TUD_EXT.1.2 The application installation package and its updates shall be digitally signed

such that the [selection: TOE, platform] can cryptographically verify them prior to installation.

C.6. Trust Path/Channel (FTP)

C.6.1. Data in Transit (FTP_DIT_EXT)

C.6.1.1. Family Behaviour

Components in this family address requirements to ensure the TOE either doesn’t transmit data or

if it does transmit sensitive data such data is transmitted in a secure tunnel.

C.6.1.2. Component levelling

Figure 16. Component levelling

FTP_DIT_EXT.1 ensures that if the TOE transmits sensitive data it is done so inside of a secure

tunnel protected by HTTPs, TLS, DTLS or SSH.

C.6.1.3. Management: FTP_DIT_EXT.2

The following actions could be considered for the management functions in FPT:

a. There are no management activities foreseen

C.6.1.4. Audit: FTP_DIT_EXT.2

The following actions should be auditable if FAU_GEN Security audit data generation is included

in the PP/ST:

a. No audit necessary

C.6.2. FTP_DIT_EXT.1 Data in Transit

C.6.2.1. FTP_DIT_EXT.1 Data in Transit

Hierarchical to: No other components Dependencies: No other components

FTP_DIT_EXT.1.1 The application shall [selection:

 not transmit any data,

 encrypt all transmitted [selection: sensitive data, data] with [selection: HTTPS as a
client in accordance with FCS_HTTPS_EXT.1/Client, HTTPS as a server in accordance
with FCS_HTTPS_EXT.1/Server, HTTPS as a server using mutual authentication in
accordance with FCS_HTTPS_EXT.2, TLS as a server as defined in the Functional
Package for TLS and also supports functionality for [selection: mutual
authentication, none], TLS as a client as defined in the Functional Package for TLS,
DTLS as a server as defined in the Functional Package for TLS and also supports
functionality for [selection: mutual authentication, none], DTLS as a client as defined
in the Functional Package for TLS, SSH as defined in the Functional Package for
Secure Shell,

 invoke platform-provided functionality to encrypt all transmitted [selection:
sensitive data, data] with [selection: HTTPS as as specified in FCS_HTTPS_EXT.1 in
accordance with FCS_CKM.2, TLS as specified in the [TLS Package] in accordance
with FCS_CKM.2, DTLS as specified in [TLS Package] in accordance with FCS_CKM.2,
SSH as specified in [SSH Package]] in accordance with FCS_CKM.2]

between itself and another trusted IT product.

Appendix D: Entropy Documentation
and Assessment
This appendix describes the required supplementary information for each entropy source used by

the TOE.

The documentation of the entropy source(s) should be detailed enough that, after reading, the

evaluator will thoroughly understand the entropy source and why it can be relied upon to provide

sufficient entropy. This documentation should include multiple detailed sections: design

description, entropy justification, operating conditions, and health testing. This documentation is

not required to be part of the TSS.

D.1. Design Description

Documentation shall include the design of each entropy source as a whole, including the

interaction of all entropy source components. Any information that can be shared regarding the

design should also be included for any third-party entropy sources that are included in the product.

The documentation will describe the operation of the entropy source to include how entropy is

produced, and how unprocessed (raw) data can be obtained from within the entropy source for

testing purposes. The documentation should walk through the entropy source design indicating

where the entropy comes from, where the entropy output is passed next, any post-processing of the

raw outputs (hash, XOR, etc.), if/where it is stored, and finally, how it is output from the entropy

source. Any conditions placed on the process (e.g., blocking) should also be describedin the

entropy source design. Diagrams and examples are encouraged.

This design must also include a description of the content of the security boundary of the entropy

source and a description of how the security boundary ensures that an adversary outside the

boundary cannot affect the entropy rate.

If implemented, the design description shall include a description of how third-party applications

can add entropy to the RBG. A description of any RBG state saving between power-off and power-

on shall be included.

D.2. Entropy Justification

There should be a technical argument for where the unpredictability in the source comes from and

why there is confidence in the entropy source delivering sufficient entropy for the uses made of the

RBG output (by this particular TOE). This argument will include a description of the expected

min-entropy rate (i.e. the minimum entropy (in bits) per bit or byte of source data) and explain that

sufficient entropy is going into the TOE randomizer seeding process. This discussion will be part

of a justification for why the entropy source can be relied upon to produce bits with entropy.

The amount of information necessary to justify the expected min-entropy rate depends on the type

of entropy source included in the product.

For developer-provided entropy sources, in order to justify the min-entropy rate, it is expected that

a large number of raw source bits will be collected, statistical tests will be performed, and the min-

entropy rate determined from the statistical tests. While no particular statistical tests are required at

this time, it is expected that some testing is necessary in order to determine the amount of min-

entropy in each output.

For third-party provided entropy sources, in which the TOE vendor has limited access to the design

and raw entropy data of the source, the documentation will indicate an estimate of the amount of

min-entropy obtained from this third-party source. It is acceptable for the vendor to “assume” an

amount of min-entropy, however, this assumption must be clearly stated in the documentation

provided. In particular, the min-entropy estimate must be specified and the assumption included in

the ST.

Regardless of the type of entropy source, the justification will also include how the DRBG is

initialized with the entropy stated in the ST, for example by verifying that the min-entropy rate is

multiplied by the amount of source data used to seed the DRBG or that the rate of entropy

expected based on the amount of source data is explicitly stated and compared to the statistical rate.

If the amount of source data used to seed the DRBG is not clear or the calculated rate is not

explicitly related to the seed, the documentation will not be considered complete.

The entropy justification shall not include any data added from any third-party application or from

any state saving between restarts.

D.3. Operating Conditions

The entropy rate may be affected by conditions outside the control of the entropy source itself. For

example, voltage, frequency, temperature, and elapsed time after power-on are just a few of the

factors that may affect the operation of the entropy source. As such, documentation will also

include the range of operating conditions under which the entropy source is expected to generate

random data. Similarly, documentation shall describe the conditions under which the entropy

source is no longer guaranteed to provide sufficient entropy. Methods used to detect failure or

degradation of the source shall be included.

D.4. Health Testing

More specifically, all entropy source health tests and their rationale will be documented. This will

include a description of the health tests, the rate and conditions under which each health test is

performed (e.g., at start up, continuously, or on-demand), the expected results for each health test,

TOE behaviour upon entropy source failure, and rationale indicating why each test is believed to

be appropriate for detecting one or more failures in the entropy source.

Appendix E: Application Software
Equivalency Guidelines
The documentation of the product’s encryption key management should be detailed enough that,

after reading, the evaluator will thoroughly understand the product’s key management and how it

meets the requirements to ensure the keys are adequately protected. This documentation should

include an essay and diagram(s). This documentation is not required to be part of the TSS - it can

be submitted as a separate document and marked as developer proprietary.

E.1. Introduction

The purpose of equivalence in cPP-based evaluations is to find a balance between evaluation rigor

and commercial practicability—to ensure that evaluations meet customer expectations while

recognizing that there is little to be gained from requiring that every variation in a product or

platform be fully tested. If a product is found to be compliant with a cPP on one platform, then all

equivalent products on equivalent platforms are also considered to be compliant with the cPP.

A Vendor can make a claim of equivalence if the Vendor believes that a particular instance of their

Product implements cPP-specified security functionality in a way equivalent to the implementation

of the same functionality on another instance of their Product on which the functionality was

tested. The Product instances can differ in version number or feature level (model), or the instances

may run on different platforms. Equivalency can be used to reduce the testing required across

claimed evaluated configurations. It can also be used during Assurance Continuity to reduce testing

needed to add more evaluated configurations to a certification.

These equivalency guidelines do not replace Assurance Continuity requirements or per scheme

equivalency guidelines. Nor may equivalency be used to leverage evaluations with expired

certifications.

These Equivalency Guidelines represent a shift from complete testing of all product instances to

more of a risk-based approach. Rather than require that every combination of product and platform

be tested, these guidelines support an approach that recognizes that products are being used in a

variety of environments—and often in cloud environments over where the vendor (and sometimes

the customer) have little or no control over the underlying hardware. Developers should be

responsible for the security functionality of their applications on the platforms they are developed

for—whether that is an operating system, a virtual machine, or a software-based execution

environment such as a container. But those platforms may themselves run within other

environments—virtual machines or operating systems—that completely abstract away the

underlying hardware from the application. The developer should not be held accountable for

security functionality that is implemented by platform layers that are abstracted away. The

implication is that not all security functionality will necessarily be tested for all platform layers

down to the hardware for all evaluated configurations—especially for applications developed for

software-based execution environments such as containers. For these cases, the balancing of

evaluation rigor and commercial practicability tips in favor of practicability.

Equivalency has two aspects:

 Product Equivalence: Products may be considered equivalent if there are no
differences between Product Models and Product Versions with respect to cPP-
specified security functionality.

 Platform Equivalence: Platforms may be considered equivalent if there are no
significant differences in the services they provide to the Product—or in the way
the platforms provide those services—with respect to cPP-specified security
functionality.

The equivalency determination is made in accordance with these guidelines by the Certifier and

Scheme using information provided by the Evaluator/Vendor.

E.2. Approach to Equivalency Analysis

There are two scenarios for performing equivalency analysis. One is when a product has been

certified and the vendor wants to show that a later product should be considered certified due to

equivalence with the earlier product. The other is when multiple product variants are going though

evaluation together and the vendor would like to reduce the amount of testing that must be done.

The basic rules for determining equivalence are the same in both cases. But there is one additional

consideration that applies to equivalence with previously certified products. That is, the product

with which equivalence is being claimed must have a valid certification in accordance with scheme

rules and the Assurance Continuity process must be followed. If a product’s certification has

expired, then equivalence cannot be claimed with that product.

When performing equivalency analysis, the Evaluator/Vendor should first use the factors and

guidelines for Product Model equivalence to determine the set of Product Models to be evaluated.

In general, Product Models that do not differ in cPP-specified security functionality are considered

equivalent for purposes of evaluation against the cPP.

If multiple revision levels of Product Models are to be evaluated—or to determine whether a

revision of an evaluated product needs re-evaluation—the Evaluator/Vendor and Certifier should

use the factors and guidelines for Product Version equivalence to analyze whether Product

Versions are equivalent.

Having determined the set of Product Models and Versions to be evaluated, the next step is to

determine the set of Platforms that the Products must be tested on.

Each non-equivalent Product for which compliance is claimed must be fully tested on each non-

equivalent platform for which compliance is claimed. For non-equivalent Products on equivalent

platforms, only the differences that affect cPP-specified security functionality must be tested for

each product.

“Differences in PP-Specified Security Functionality” Defined If cPP-specified security

functionality is implemented by the TOE, then differences in the actual implementation between

versions or product models break equivalence for that feature. Likewise, if the TOE implements

the functionality in one version or model and the functionality is implemented by the platform in

another version or model, then equivalence is broken. If the functionality is implemented by the

platform in multiple models or versions on equivalent platforms, then the functionality is

considered different if the product invokes the platform differently to perform the function.

E.3. Specific Guidance for Determining Product
Model Equivalence

Product Model equivalence attempts to determine whether different feature levels of the same

product across a product line are equivalent for purposes of cPP testing. For example, if a product

has a “basic” edition and an “enterprise” edition, is it necessary to test both models? Or does

testing one model provide sufficient assurance that both models are compliant?

Product models are considered equivalent if there are no differences that affect PP-specified

security functionality—as indicated in Table 4.

Table 3. Determining Product Model Equivalence

Factor Same/Different Guidance

PP-Specified

Functionality

Same If the differences between Models affect only non-cPP-specified functionality, then the Models are equivalent.

Different

If cPP-specified security functionality is affected by the differences between Models, then the Models are not

equivalent and must be tested separately. It is necessary only to test the functionality affected by the software

differences. If only differences are tested, then the differences must be enumerated, and for each difference the

Vendor must provide an explanation of why each difference does or does not affect cPP-specified

functionality. If the Product Models are separately tested fully, then there is no need to document the

differences.

E.4. Specific Guidance for Determining Product
Version Equivalence

In cases of version equivalence, differences are expressed in terms of changes implemented in

revisions of an evaluated Product. In general, versions are equivalent if the changes have no effect

on any security-relevant claims about the TOE or assurance evidence. Non-security-relevant

changes to TOE functionality or the addition of non-security-relevant functionality does not affect

equivalence.

Table 4. Factors for Determining Product Version Equivalence

Factor Same/Different Guidance

Product Models Different
Versions of different Product Models are not equivalent unless the Models are equivalent as defined in

previous section.

PP-Specified

Functionality

Same If the differences affect only non-cPP-specified functionality, then the Versions are equivalent.

Different

If cPP-specified security functionality is affected by the differences, then the Versions are not considered

equivalent and must be tested separately. It is necessary only to test the functionality affected by the changes.

If only the differences are tested, then for each difference the Vendor must provide an explanation of why the

difference does or does not affect cPP-specified functionality. If the Product Versions are separately tested

fully, then there is no need to document the differences.

E.5. Specific Guidance for Determining Platform
Equivalence

Platform equivalence is used to determine the platforms that equivalent versions of a Product must

be tested on. Platform equivalence analysis done for one software application cannot be applied to

another software application. Platform equivalence is not general—it is with respect to a particular

application.

Product Equivalency analysis must already have been done and Products have been determined to

be equivalent.

The platform can be hardware or virtual hardware, an operating system or similar entity, or a

software execution environment such as a container. For purposes of determining equivalence for

software applications, we address each type of platform separately. In general, platform

equivalence is based on differences in the interfaces between the TOE and Platform that are

relevant to the implementation of cPP-specified security functionality.

E.6. Platform Equivalence—Hardware/Virtual
Hardware Platforms

If an Application runs directly on hardware without an operating system—or directly on virtualized

hardware without an operating system—then platform equivalence is based on processor

architecture and instruction sets. In the case of virtualized hardware, it is the virtualized processor

and architecture that are presented to the application that matters—not the physical hardware.

Platforms with different processor architectures and instruction sets are not equivalent. This is not

likely to be an issue for equivalency analysis for applications since there is likely to be a different

version of the application for different hardware environments. Equivalency analysis becomes

important when comparing processors with the same architecture. Processors with the same

architecture that have instruction sets that are subsets or supersets of each other are not disqualified

from being equivalent for purposes of an App evaluation. If the application takes the same code

paths when executing cPP-specified security functionality on different processors of the same

family, then the processors can be considered equivalent with respect to that application. For

example, if an application follows one code path on platforms that support the AES-NI instruction

and another on platforms that do not, then those two platforms are not equivalent with respect to

that application functionality. But if the application follows the same code path whether or not the

platform supports AES-NI, then the platforms are equivalent with respect to that functionality.

The platforms are equivalent with respect to the application if the platforms are equivalent with

respect to all cPP-specified security functionality.

Table 5. Factors for Determining Hardware/Virtual Hardware Platform Equivalence

Factor Same/Different Guidance

Platform

Architectures
Different

Platforms that present different processor architectures and instruction sets to the application are not

equivalent.

PP-Specified

Functionality
Same

For platforms with the same processor architecture, the platforms are equivalent with respect to the

application if execution of all cPP-specified security functionality follows the same code path on both

platforms.

E.7. Platform Equivalence—OS Platforms

For traditional applications that are built for and run on operating systems, platform equivalence is

determined by the interfaces between the application and the operating system that are relevant to

cPP-specified security functionality. Generally, these are the processor interface, device interfaces,

and OS APIs. The following factors applied in order:

Table 6. Factors for Determining OS/VS Platform Equivalence

Factor Same/Different Guidance

Platform

Architectures
Different Platforms that present different processor architectures and instruction sets to the application are not equivalent.

Platform

Vendors
Different Platforms from different vendors are not equivalent.

Platform

Versions
Different Platforms from the same vendor with different major version numbers are not equivalent.

Platform

Interfaces
Different

Platforms from the same vendor and major version are not equivalent if there are differences in device

interfaces and OS APIs that are relevant to the way the platform provides cPP-specified security functionality

to the application.

Platform

Interfaces
Same

Platforms from the same vendor and major version are equivalent if there are no differences in device

interfaces and OS APIs that are relevant to the way the platform provides cPP-specified security functionality

to the application, or if the Platform does not provide such functionality to the application.

E.8. Software-based Execution Environment
Platform Equivalence

If an Application is built for and runs in a non-OS software-based execution environment, such as

a Container or Java Runtime, then the below criteria must be used to determine platform

equivalence. The key point is that the underlying hardware (virtual or physical) and OS is not

relevant to platform equivalence. This allows applications to be tested and run on software-based

execution environments on any hardware.

Table 7. Factors for Software-based Execution Environment Platform Equivalence

Factor Same/Different Guidance

Platform

Type/Vendor
Different

Software-based execution environments that are substantially different or come from different vendors

are not equivalent. For example, a java virtual machine is not the same as a container. A Docker

container is not the same as a CoreOS container.

Platform Versions Different
Execution environments that are otherwise equivalent are not equivalent if they have different major

version numbers.

cPP-Specified

Security Functionality
Same

All other things being equal, execution environments are equivalent if there is no significant difference in

the interfaces through which the environments provide cPP-specified security functionality to

applications.

E.9. Level of Specificity for Tested Configurations
and Claimed Equivalent Configurations

In order to make equivalency determinations, the vendor and evaluator must agree on the

equivalency claims. They must then provide the scheme with sufficient information about the TOE

instances and platforms that were evaluated, and the TOE instances and platforms that are claimed

to be equivalent.

The ST must describe all configurations evaluated down to processor manufacturer, model

number, and microarchitecture version.

The information regarding claimed equivalent configurations depends on the platform that the

application was developed for and runs on.

E.9.1. Traditional Applications

For applications that run with an operating system as their immediate platform, the claimed

configuration must describe the platform down to the specific operating system version. If the

platform is a virtualization system, then the claimed configuration must describe the platform down

to the specific virtualization system version. The Vendor must describe the differences in the TOE

with respect to cPP-specified security functionality and how the TOE functions differently to

leverage platform differences in the tested configuration versus the claimed equivalent

configuration. Relevant platform differences could include instruction sets, device interfaces, and

OS APIs invoked by the TOE to implement cPP-specified security

E.9.2. Software Based Execution Environments

For applications that run in a software-based execution environment such as a Java virtual machine

or a Container, then the claimed configuration must describe the platform down to the specific

version of the software execution environment. The Vendor must describe the differences in the

TOE with respect to cPP-specified security functionality and how the TOE functions differently to

leverage platform differences in the tested configuration versus the claimed equivalent

configuration.

Appendix F: Rationales

F.1. SFR Dependencies Analysis

The dependencies between SFRs implemented by the TOE are addressed as follows.

Table 8. SFR Dependencies Rationale for Mandatory SFRs

SFR Dependencies Rationale Statement

FCS_RBG_EXT.1 None

FCS_STO_EXT.1 None

FDP_NET_EXT.1 None

FMT_CFG_EXT.1 None

FMT_SMF.1 None

FPT_API_EXT.1 None

FPT_AEX_EXT.1 None

FPT_TUD_EXT.1 None

FTP_DIT_EXT.1 None

Table 9. SFR Dependencies Rationale for Optional SFRs

SFR Dependencies Rationale Statement

FCS_CKM_EXT.1/Symmetric
[FCS_CKM.2 or

FCS_COP.1] FCS_CKM.4

FCS_CKM.2 is met

FCS_COP.1 is met

FCS_CKM.4 Cryptographic Key Destruction isn’t included since software

applications rely on underlying platform for memory and storage management

FCS_API_EXT.2 None

Table 10. SFR Dependencies Rationale for Selection-Based SFRs

SFR Dependencies Rationale Statement

FCS_CKM_EXT.1/PBKDF2 None

FCS_CKM_EXT.1 None

FCS_CKM_EXT.1/Asymmetric

[FCS_CKM.2 or FCS_COP.1]

FCS_CKM.4

FCS_CKM.2 is met

FCS_COP.1 is met

FCS_CKM.4 Cryptographic Key Destruction isn’t included since

software applications rely on underlying platform for memory and

storage management

FCS_CKM.2

[FDP_ITC.1, or FDP_ITC.2, or

FCS_CKM_EXT.1/Asymmetric]

FCS_CKM.4

FCS_CKM_EXT.1/Asymmetric met

FCS_CKM.4 Cryptographic Key Destruction isn’t included since

software applications rely on underlying platform for memory and

storage management

FCS_COP.1/DataEncryption

[FDP_ITC.1, or FDP_ITC.2, or

FCS_CKM_EXT.1/Asymmetric]

FCS_CKM.4

FCS_CKM_EXT.1/Asymmetric met

FCS_CKM.4 Cryptographic Key Destruction isn’t included since

software applications rely on underlying platform for memory and

storage management

FCS_COP.1/SigGen

FCS_COP.1/Hash

FCS_COP.1/KeyedHash

FCS_HTTPS_EXT.1 None

Table 10. SFR Dependencies Rationale for Selection-Based SFRs

SFR Dependencies Rationale Statement

FCS_RBG_EXT.2 None

FIA_EIP_EXT.1 None

FIA_UAU_EXT.2 None

FIA_UAU_EXT.5 FIA_UAU_EXT.2
FIA_UAU_EXT.2 ensures valid implementation of the

authentication mechanism.

FIA_UIA_EXT.1 None

FIA_X509_EXT.1/Rev FIA_X509_EXT.2 Met

FIA_X509_EXT.2 FIA_X509_EXT.1 Met

Appendix G: Glossary
For the purpose of this cPP, the following terms and definitions given in some specific

references apply. If the same terms and definitions are given in those references, terms and

definitions that fit the context of this cPP take precedence.

Address Space Layout Randomization (ASLR)

An anti-exploitation feature which loads memory mappings into unpredictable
locations. ASLR makes it more difficult for an attacker to redirect control to code that
they have introduced into the address space of an application process.

Application

Software that runs on a platform and performs tasks on behalf of the user or owner of
the platform, as well as its supporting documentation. The terms TOE and application
are interchangeable in this document.

Component

Component is a discreet executable. A software application can be composed of a
single or multiple components.

Connection

The SSH transport layer between a client and a server. Within a connection there can
be multiple sessions.

Credential

Data that establishes the identity of a user, e.g. a cryptographic key or password.

Data Execution Prevention

DEP is a set of hardware and software technologies that perform additional checks on
memory to help protect against malicious code exploits.

Operating System

Software that manages hardware resources and provides services for applications.

Personally Identifiable Information (PII)

Any information about an individual maintained by an agency, including, but not
limited to, education, financial transactions, medical history, and criminal or
employment history and information which can be used to distinguish or trace an
individual’s identity, such as their name, social security number, date and place of
birth, mother’s maiden name, biometric records, etc., including any other personal
information which is linked or linkable to an individual.

Platform

The environment in which application software runs. The platform can be an
operating system, an execution environment which runs atop an operating system, or
some combination of these.

Rekey

Where the connection renegotiates the shared secret and each session subsequently
derives a new encryption key.

Sensitive Data

Sensitive data may include all user or enterprise data or may be specific application
data such as emails, messaging, documents, calendar items, and contacts. Sensitive
data must minimally include PII, credentials, and keys. Sensitive data shall be
identified in the application’s TSS by the ST author.

Session

A discrete stream of data within a connection.

Appendix H: Acronyms
Table 11. Acronyms

Acronym Meaning

AES Advanced Encryption Standard

ANSI American National Standards Institute

API Application Programming Interface

ASLR Address Space Layout Randomization

CMC Certificate Management over CMS

CN Common Names

CRL Certificate Revocation List

DHE Diffie-Hellman Ephemeral

DRBG Deterministic Random Bit Generator

DSS Digital Signature Standard

DTLS Datagram Transport Layer Security

ECDHE Elliptic Curve Diffie-Hellman Ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

EST Enrollment over Secure Transport

FIPS Federal Information Processing Standards

HMAC Hash-based Message Authentication Code

HTTP Hypertext Transfer Protocol

HTTPs Hypertext Transfer Protocol Secure

IANA Internet Assigned Number Authority

Table 11. Acronyms

Acronym Meaning

IEC International Electrotechnical Commission

IP Internet Protocol

ISO International Organization for Standardization

IT Information Technology

ITSEF IT Security Evaluation Facility

MIME Multi-purpose Internet Mail Extensions

NIST National Institute of Standards and Technology

OCSP Online Certificate Status Protocol

OID Object Identifier

OS Operating System

PII Personally Identifiable Information

PP Protection Profile

RBG Random Bit Generator

RFC Request for Comment

RNG Random Number Generator

SAN Subject Alternative Name

SAR Security Assurance Requirment

SFR Security Functional Requirement

SHA Secure Hash Algorithm

S/MIME Secure/Multi-purpose Internet Mail Extensions

Table 11. Acronyms

Acronym Meaning

SP Special Publication

SSH Secure Shell

TLS Transport Layer Security

XOR Exclusive Or

Version 1.1

Last updated 2023-08-16 13:51:16 -0500

