
Friday, January 8, 2016

ZeroAccess 3 Analysis

After the takedown attempt in December 2013, the current status of ZeroAccess (alias
Sirefef) has been much disputed. Initially the botmaster had released a command to the
remaining infrastructure which contained nothing but the message "White Flag", signaling
they may had given up on the botnet; but between March 21st 2014 and July 2nd 2014,
SecureWorks had reported the ZeroAccess infrastructure resumed distributing commands.

Ever since the takedown ZeroAccess has not attempted to infect new hosts, instead it simply
uses the large number of remaining infections to perform tasks—until now, that is. On
January 3rd R136a1 came across a previously unseen sample, which FireF0X confirmed to
be a variant of ZeroAccess. It's uncertain how long this sample has been in the wild, but it
certainly points towards the botnet being a little less dead than was previously claimed.

The first thing I noticed was the dropper has a resource file which contains a 61 KB PNG.

The image may look corrupted, which is because the developer decided to store the
encrypted PE file in a valid PNG format. Rather than using stenography to hide the code in
an existing image, the image is the code.

The dropper uses the native Ldr API to find and acquire the resource
(LdrFindResource_U, LdrAccessResource) followed by the GdiPlus API to convert the
PNG to a bitmap (GdipCreateBitmapFromStream), get the size of the code
(GdipGetImageWidth × GdipGetImageHeight × 4), then decrypts it by xor'ing it with
the key 'wDT:'.

Dropper

http://kryptoslogic.blogspot.in/
http://www.secureworks.com/resources/blog/zeroaccess-botnet-resumes-click-fraud-activity-after-six-month-break/
https://twitter.com/TheEnergyStory/status/683616653800828928
https://twitter.com/hFireF0X
http://i.imgur.com/ZGXNh1y.png
http://3.bp.blogspot.com/-qA4jvck5IEg/Vo-5I7mYnYI/AAAAAAAAAGA/mylx0vKA0Mw/s1600/resource.png

Execution is then passed to some shellcode which is pointed to by the e_res field of the
decrypted PE's header. The shellcode resides directly after the .reloc section but is not
part of the PE and therefore will not be present if the executable is later dumped after it's
loaded.

A unique and interesting thing about this shellcode is the way in which it handles resolving
strings. Due to the fact shellcode is designed to be executed at whatever address it's
allocated, it can't have the address of the strings hardcoded in; instead, it has to find their
absolute address somehow. In this shellcode the author places a relative call directly before
the string which makes a relative call to a stub after it, the stub then pops the return address
into the eax and returns to the shellcode. As a result when string_ZwMapViewOfSection
is called, the return address of call loc_22E (the first byte of the string
'ZwMapViewOfSection') ends up in the eax register.

http://2.bp.blogspot.com/-il37FgP6Oj8/Vo-5F-axP0I/AAAAAAAAAGc/xb8grmvbFzM/s1600/EntryPoint.png
http://1.bp.blogspot.com/-NKrk94CqSTM/Vo-5GFf7vkI/AAAAAAAAAGE/k3m8ylgHNkc/s1600/ExecuteShellcode.png
http://2.bp.blogspot.com/-dQSW7kl3Kzg/Vo-5HyevAKI/AAAAAAAAAF8/y5_mZ7ef-Z4/s1600/ShellcodeStrings.png

The shellcode itself seems pretty mundane: it simply sets a hardware breakpoint on
ZwMapViewOfSection using ZwSetContextThread with flag set to
CONTEXT_DEBUG_REGISTERS, then loads shellstyle.dll (a legitimate system DLL). What
actually happens though is when the PE loader tries to map shellstyle into memory, the
breakpoint is hit and the shellcode's exception handler is called. The exception handler then
modifies the return address of ZwMapViewOfSection to point to a function which replaces
the module with the one we saw decrypted earlier, as a result loading the malicious DLL in
the place of shellstyle.dll.

Once the shellcode has replaced shellstyle.dll, execution is returned to the dropper which
then uses LdrGetProcedureAddress to resolve and call the payload's entrypoint.

http://4.bp.blogspot.com/-OOVjuQjzTsI/Vo-5HjWwQUI/AAAAAAAAAGY/TMYtI0-UWHs/s1600/Shellcode.png
http://1.bp.blogspot.com/-dTuqiPIyZJs/Vo-5GA-8rhI/AAAAAAAAAGg/uMDl5Rgc0nQ/s1600/CallPayload.png

The payload consists of a DLL file with an embedded Microsoft Cabinet file (.cab), which can
be found by searching the binary for the string 'MSCF'. The cabinet contains 6 files: 3 for 32-
bit and 3 for 64-bit.

File Description

s32 Boostrap list containing IPs and ports for 32-bit nodes

s64 Boostrap list containing IPs and ports for 64-bit nodes

k32 32-bit final stage payload

k32 64-bit final stage payload

l32 Shellcode used to load k32

l32 Shellcode used to load k64

Next the payload checks a couple of events to see if the system is already infected, if not it
create the event \BaseNamedObjects\Restricted\{12E9D947-EDF5-4191-AADB-
F51815F004D8}. A semi-unique identifier for the bot is created by MD5 hashing the volume
creation time of \SystemRoot, then formatting it as a 32-bit GUID (just like with older
versions of the bot).

This version of ZeroAccess stores itself in a folder named #., which is contained within the
directory %localappdata%\Google\Desktop\Install\<BotGUID>. The folder name
#. is special because it makes use of a difference in operation between the NativeAPI (ntdll)
and Windows API (kernel32). Using native API functions a folder with a dot at the end of the
name is entirely valid and
functional; however, under the Windows API it is not; the result is a usable folder that the
malware can freely use to store and execute its components, but that cannot be accessed or
modified by explorer or any application not using the Native API. For further protection, the
folder is set as an NTFS Reparse Point which redirects to nowhere, preventing access by
any means that is susceptible to NTFS re-parsing.

The payload extracts the bootstrap list (s32 or s64 depending on architecture) from the
cabinet file, then decrypts and stores it inside the install directory in a file named @. The
dropper is also moved to the same directory with the name GoogleUpdate.exe.

First Stage Payload

http://1.bp.blogspot.com/-2lsJEkVWwdE/Vo-5GQyR-WI/AAAAAAAAAGk/TMIb3G-wO8k/s1600/FolderAccessError.png

GoogleUpdate.exe is added to autostart by creating a key under
HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce with the the bot's
GUID as its name; the key name is prefixed with a null byte and written as Unicode,
preventing Regedit from displaying it.

Throughout its installation process the bot sends status updates to a C&C via UDP on port
53 (DNS) with geolocation information obtained from the freegeoip.net api and an affiliate id
stored in the bot (ZeroAccess uses an affiliate scheme in which people can sign up to be
paid a small amount of money for each computer they infect with the malware). All status
update communication is encrypted with the key 0x4C4F4E47 ('LONG'), which is the same
key as in previous versions.

http://3.bp.blogspot.com/-JOEMfWZn8cI/Vo-5Istqs1I/AAAAAAAAAF4/InDU5EwUcaE/s1600/WriteComponents.png
http://3.bp.blogspot.com/-uukBMz2E8nY/Vo-5HdUaVbI/AAAAAAAAAGM/Fzs7VB-v42s/s1600/RegistryError.png

Finally the main payloads l32 and k32 or l64 and k64 are extracted from the cabinet (my
hypothesis is 'l' stands for 'Loader' and k stands for 'Kernel'). The ZeroAccess kernel is a DLL
containing the main code for communicating with the peer-to-peer network and the loader is
used to load the DLL in the same way the dropper loaded shellstyle.dll, except this
time the DLL loaded and replaced is comres.dll.

If the process is UAC elevated it injects into svchost.exe, otherwise it will attempt to inject
into explorer and bypass UAC using the same method as previous version (detailed in
FireF0X's UACMe), before finally injecting into svchost.exe.

http://2.bp.blogspot.com/-HBgFOHAMpXs/Vo-5HJYj4HI/AAAAAAAAAGU/F4LDcykvkgs/s1600/InfectionCallback.png
https://github.com/hfiref0x/UACME/blob/4c6592725e8a805b80aed94c315092480de6b5f5/Source/Akagi/hybrids.c#L398

The injection methods works by writing the kernel, followed by the loader, to the remote
process using ZwAllocateVirtualMemory and ZwWriteVirtualMemory, then
executing the loader by calling ZwQueueApcThread. In the case of 64-bit, the payload will
use Heaven's Gate to switch into 64-bit mode before calling the injection routine, allowing it
to inject 64-bit processes from WOW64.

The new ZeroAccess variant largely preserves the communication protocol of its previous
versions, with some notable changes. For completeness, the UDP packet format for C&C
communication has a common header of the form

Peer to Peer Communications

http://1.bp.blogspot.com/-Xryimq132fU/Vo-5HP2D_NI/AAAAAAAAAGQ/MLB3YAaZ0w4/s1600/InjectPayload.png
http://1.bp.blogspot.com/-5Pgoo20n3oY/Vo-5HQxeEPI/AAAAAAAAAF0/SCaJ-F60jcU/s1600/InjectionRoutine.png

struct zeroaccess_packet {
 uint32_t crc32;
 uint32_t type;
 uint32_t id;
 uint32_t length : 16;
 uint32_t reply : 1;
 uint32_t packet_number : 15;
};

The packet_number field appears to be new. It is used to ensure incoming packets match
earlier requests, possibly to prevent 'retL' flooding by takedown attempts. The type field
can be one of 'getL' and 'retL' —the 'newL' field of some earlier versions is now gone.
id is a 32-bit bot session id, generated at startup and used to identify sessions. The reply
field indicates whether the receiving node should reply with a getL of its own.

Every packet is encrypted—as before—with a very simple rolling-xor algorithm:

void zeroaccess_encrypt(unsigned char * message, size_t bytes) {
 uint32_t k = 0x31323334UL;
 assert(bytes % 4 == 0);
 for(size_t i = 0; i < bytes; i += 4) {
 store_le32(m + i, load_le32(m + i) ^ k);
 k = (k << 1) | (k >> 31);
 }
}

Note the new key, '1234', instead of the old one 'ftp2'. This same algorithm is used with the
'LONG' key mentioned above.

The getL packet is empty and consists only of the above header. The retL packet format is
slightly changed due to one of the most noteworthy changes in the protocol—UDP ports are
now randomly-generated, and thus the retL packets must include port information. The
retL packet is of the form

struct peer_entry {
 uint32_t ip;
 uint32_t port : 14;
 uint32_t timestamp : 18;
};

struct file_entry {
 uint32_t id;
 uint32_t timestamp;
 uint32_t length;
 uint8_t signature[128];
};

struct retL {
 peer_entry peers[16];
 file_entry files[/*variable*/];
};

On 32-bit Windows hosts, the port number is computed as peers[i].port + 16384,
whereas on 64-bit Windows, it is computed as peers[i].port + 32768. It is therefore
simple to figure out an individual node's platform by its UDP port number. The timestamp is
computed as (GetTime() - 0x41000000) / 3600, where GetTime() is

ULONG GetTime() {
 FILETIME time;
 ULONG stamp;
 GetSystemTimeAsFileTime(&time);
 RtlTimeToSecondsSince1980((LARGE_INTEGER *)&time, &stamp);

 return stamp;
}

We can see that the base timestamp 0x41000000, i.e., July 22 2014, lower-bounds the age
of this variant. The file list format remains unchanged (modulo timestamp format), albeit with
a distinct RSA-1024 verification key compared to the previous botnets.

The bot must also remember what its port number is. This information is stored in the
Extended Attributes of the @ file. The list of known peers is stored in this file, as remarked
above.

We have some early crawling numbers for this variant. But first, is may be useful to compare
with the previous ZeroAccess 2 botnet. We see for ZeroAccess 2 daily distribution seemed
rather consistent. The total confirmed connections were approximately 715,000 for the
month.

Looking deeper into a sub aggregation of country and unique IPs counted we can see a high
level in US on Comcast, although this could be explained by IP churning due to DHCP for the
cable provider. Nonetheless, this is a high number of uniques compared to any other ISP.

Finally, we see a rather healthy distribution of nodes and countries with a heavy weight in
Japan and US. Additionally, we observe an unusual high amount of unique IPs the day after
Christmas.

Statistics

http://1.bp.blogspot.com/-IPO0yfMBbQ4/VpAGjva1V8I/AAAAAAAAAG4/tILE25r0wmU/s1600/za3.png
http://3.bp.blogspot.com/-VNO-wxTIaV4/VpAGjmPl2gI/AAAAAAAAAHQ/UsOmVBZw2FI/s1600/totaluniques.png

In comparison, the latest Zero Access 3 variant, we see the IP distribution is primarily
focused in Russia. Whether this team is preparing the infrastructure for a larger planned
botnet or it is focusing its efforts in the area is still unknown.

We can potentially hypothesize that this botnet has been retooled to allow botnet subgroups
using the generation of new encryption keys and RSA binary signing keys. The result of this
would mean multiple actors could use the same malware, similarly to trends that have been
observed with other seed-based malware, like Tiny Banker (aka Tinba). This would make
takedowns more difficult in that there is no one central peer to peer network, but rather a
cluster of peer to peer networks. Another plausible hypothesis is that the ZeroAccess code
base has been sold (or stolen) to a third party, one who is more interested in targeting
Eastern Europe.

These types of networks are becoming more and more resilient to takedowns, as observed
with Dridex, and even ZeroAccess itself is still maintaining its presence. With multiple authors
and actors involved, the difficulty of takedown attempts by technical means is also
compounded by the difficulty of prosecuting multiple authors (and actors) in multiple
geopolitically diverse jurisdictions.

We would like to thank MalwareTech for his invaluable contributions to this research.

http://1.bp.blogspot.com/-tLQgt_gnCOk/VpAGjuMTQYI/AAAAAAAAAHc/M5EmGqNIqdY/s1600/dailydistribution.png
http://4.bp.blogspot.com/-Fkp5tVy7tdo/VpAGkcSfd2I/AAAAAAAAAHU/vaS2YIywHBw/s1600/za3_distrobuion.png
http://www.malwaretech.com/

