New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Learning Deep Representations for Graph Clustering (AAAI2014) #577

Open
hurutoriya opened this Issue Dec 23, 2017 · 0 comments

Comments

2 participants
@hurutoriya
Contributor

hurutoriya commented Dec 23, 2017

一言でいうと

自己符号化器とSpectral Clusteingの関連性を示した論文。
固有値計算とグラフエンコーダの計算量や精度を比較した。
自己符号化器
2014年当時、分類問題などの問題に焦点が当てられクラスタリングとDeepLeaningの関係性は論じられていたなかった。

論文リンク

https://www.microsoft.com/en-us/research/publication/learning-deep-representations-for-graph-clustering/?from=http%3A%2F%2Fresearch.microsoft.com%2Fpubs%2F226627%2F%255baaai2014%255d%2520dnn%2520for%2520graph%2520cut.pdf

著者/所属機関

Fei Tian∗
University of Science
and Technology of China

Bin Gao
Microsoft Research

Qing Cui∗
Tsinghua University

Enhong Chen
University of Science
and Technology of China

Tie-Yan Liu
Microsoft Research

投稿日付(yyyy/MM/dd)

概要

以下のBlog記事にまとめました。
https://medium.com/moonshot/learning-deep-representations-for-graph-clustering-aaai2014-%E3%82%92%E8%AA%AD%E3%82%93%E3%81%A0-646097b0eaf6

新規性・差分

手法

結果

コメント

@icoxfog417 icoxfog417 added this to 2014 in AAAI Dec 24, 2017

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment