
1 © 2019 All rights reserved.

YugabyteDB
Karthik Ranganathan,

Co-founder/CTO

Extending PostgreSQL to

Google Spanner Architecture

2© 2019 All rights reserved.

Introduction to YugabyteDB

3 © 2019 All rights reserved.

What is Distributed SQL?

SQL &
Transactions

SQL

Massive
Scalability

Geo
DistributionUltra Resilience

A Revolutionary Database Architecture

4 © 2019 All rights reserved.

= distributed SQL database

+ high performance (low Latency)

+ cloud native (run on Kubernetes, VMs, bare metal)

+ open source (Apache 2.0)

5 © 2019 All rights reserved.

Fastest Growing Distributed SQL Project!

Growth in 1 Year

Clusters

▲ 12x
Slack

▲ 12x
GitHub Stars

▲ 7x We 💛 stars! Give us one:
github.com/YugaByte/yugabyte-db

Join our community:
yugabyte.com/slack

https://github.com/YugaByte/yugabyte-db
https://www.yugabyte.com/slack

6© 2019 All rights reserved.

Architecture

7© 2019 All rights reserved.

SQL Design Goals
• PostgreSQL compatible

• Re-uses PostgreSQL query layer
• New changes do not break existing PostgreSQL functionality

• Enable migrating to newer PostgreSQL versions
• New features are implemented in a modular fashion
• Integrate with new PostgreSQL features as they are available
• E.g. Moved from PostgreSQL 10.4 → 11.2 in 2 weeks!

• Cloud native architecture
• Fully decentralized to enable scaling to 1000s of nodes
• Tolerate rack/zone and datacenter/region failures automatically
• Run natively in containers and Kubernetes
• Zero-downtime rolling software upgrades and machine reconfig

8 © 2019 All rights reserved.

Spanner design + Aurora-like Compatibility

Feature Amazon Aurora Google Spanner

Horizontal Write
Scalability ❌ ✓ ✓

Fault Tolerance with HA ✓ ✓ ✓

Globally Consistent
Writes ❌ ✓ ✓

Scalable Consistent
Reads ❌ ✓ ✓

SQL Support ✓ ❌ ✓

9 © 2019 All rights reserved.

Layered Architecture

DocDB
Spanner-Inspired Distributed Document Store

Cloud Neutral: No Specialized Hardware Needed

YugaByte SQL (YSQL)
PostgreSQL-Compatible Distributed SQL API

10© 2019 All rights reserved.

Single-Node PostgreSQL

11© 2019 All rights reserved.

Phase #1 - Extend to Distributed SQL

12© 2019 All rights reserved.

Phase #2: Perform More SQL Pushdowns

13© 2019 All rights reserved.

Phase #3: Enhance Optimizer

• Table statistics based hints
• Piggyback on current PostgreSQL optimizer that uses table statistics

• Geographic location based hints
• Based on “network” cost
• Factors in network latency between nodes and tablet placement

• Rewriting query plan for distributed SQL
• Extend PostgreSQL “plan nodes” for distributed execution

14© 2019 All rights reserved.

We’ll focus only on phase #1

First look at storage layer (DocDB)

Then look at the query layer (YSQL)

15© 2019 All rights reserved.

DocDB Architecture

16© 2019 All rights reserved.

DocDB :
Sharding

17© 2019 All rights reserved.

Every Table is Automatically Sharded

tablet 1’

… … …
… … …

… … …

… … …

… … …

SHARDING = AUTOMATIC PARTITIONING OF TABLES

18© 2019 All rights reserved.

● Hash Sharding

○ Ideal for massively scalable workloads

○ Distributes data evenly across all the nodes in the cluster

● Range Sharding

○ Efficiently query a range of rows by the primary key values

○ Example: look up all keys between a lower and an upper bound

Supports multiple sharding strategies

19© 2019 All rights reserved.

Hash Sharding

20© 2019 All rights reserved.

Hash Sharding Examples

21© 2019 All rights reserved.

Range Sharding

tablet 1’

22© 2019 All rights reserved.

Range Sharding Examples

23© 2019 All rights reserved.

DocDB :
Replication

24© 2019 All rights reserved.

DocDB uses Raft consensus

to replicate data

https://raft.github.io/

https://raft.github.io/

25© 2019 All rights reserved.

Raft vs Paxos

Easier to understand than Paxos

Dynamic membership changes (eg: change machine types)

Heidi Howard will talk about “Raft vs Paxos”

26© 2019 All rights reserved.

Dynamic Membership Changes

tablet 1’

Raft Leader

On adding a node, it gets
added to the Raft group

27© 2019 All rights reserved.

Dynamic Membership Changes

tablet 1’

Raft Leader

Replication factor of the
tablet temporarily goes to 4

28© 2019 All rights reserved.

Dynamic Membership Changes

tablet 1’

Raft Leader

Data gets replicated to the
newly added node

29© 2019 All rights reserved.

Dynamic Membership Changes

tablet 1’

Raft Leader

An existing node is removed
from the Raft group

𝗫

30© 2019 All rights reserved.

Dynamic Membership Changes

tablet 1’

Raft Leader

Data is now stored on three
different nodes, no downtime

31© 2019 All rights reserved.

Many other performance

enhancements needed!

32© 2019 All rights reserved.

Multi-region Raft reads are slow!

Each read requires a round-trip to majority

Round trip in multi-region = high latency

33© 2019 All rights reserved.

Leader Leases to the Rescue!

34© 2019 All rights reserved.

Monotonic Clocks

From Jepsen Testing Report:

35© 2019 All rights reserved.

Group Commits

36© 2019 All rights reserved.

DocDB :
Storage

37© 2019 All rights reserved.

Uses a heavily modified RocksDB

Key to document store

WAL log of RocksDB is not used (Raft log)

MVCC performed at a higher layer

38© 2019 All rights reserved.

Logical Encoding of a Document

39© 2019 All rights reserved.

Encoding of DocDB data

40© 2019 All rights reserved.

Many Performance Enhancements

41© 2019 All rights reserved.

DocDB:
Deployment and Failover

42© 2019 All rights reserved.

Multi-Zone Deployment

● Multi-region is similar

● 6 tablets in table

● Replication = 3

● 1 replica per zone

43© 2019 All rights reserved.

Balancing across zones and regions

Tablet leaders balanced across:

● Zones

● Nodes in a zone

● Per-table balancing

44© 2019 All rights reserved.

Tolerating Zone Outage

● New tablet leaders

re-elected (~3 sec)

● No impact on tablet follower

outage

● DB unavailable during

re-election window

● Follower reads ok

45© 2019 All rights reserved.

Automatic rebalancing

● New leaders evenly

rebalanced

● After 15 mins, data is

re-replicated (if possible)

● On failed node recovery,

automatically catch up

46© 2019 All rights reserved.

How long to failover in multi-zone setup?

47© 2019 All rights reserved.

DocDB:
Distributed Transactions

48© 2019 All rights reserved.

Google Percolator

49© 2019 All rights reserved.

Percolator = Single Timestamp Oracle

Not scalable

Does not work for multi-region deployments

50© 2019 All rights reserved.

Google Spanner

51© 2019 All rights reserved.

Spanner = Distributed Time Synchronization

Scalable

Low-latency, multi-region deployments

2-phase commit

52© 2019 All rights reserved.

We picked Google Spanner like design for

distributed transactions in YugabyteDB

53© 2019 All rights reserved.

YugabyteDB distributed transactions:

Based on 2-phase commit

Uses hybrid logical clocks

54© 2019 All rights reserved.

Fully Decentralized Architecture

• No single point of failure or bottleneck
• Any node can act as a Transaction Manager

• Transaction status table distributed across multiple nodes
• Tracks state of active transactions

• Transactions have 3 states
• Pending
• Committed
• Aborted

• Reads served only for Committed Transactions
• Clients never see inconsistent data

55© 2019 All rights reserved.

Isolation Levels

• Serializable Isolation
• Read-write conflicts get auto-detected
• Both reads and writes in read-write txns need provisional records
• Maps to SERIALIZABLE in PostgreSQL

• Snapshot Isolation
• Write-write conflicts get auto-detected
• Only writes in read-write txns need provisional records
• Maps to REPEATABLE READ, READ COMMITTED & READ UNCOMMITTED in PostgreSQL

• Read-only Transactions
• Lock free

56© 2019 All rights reserved.

Distributed Transactions - Write Path

57© 2019 All rights reserved.

Distributed Transactions - Write Path

58© 2019 All rights reserved.

Distributed Transactions - Write Path

59© 2019 All rights reserved.

Distributed Transactions - Write Path

60© 2019 All rights reserved.

Distributed Transactions - Write Path

61© 2019 All rights reserved.

Distributed Transactions - Write Path

62© 2019 All rights reserved.

DocDB:
Software Defined Atomic Clocks

63© 2019 All rights reserved.

Distributed (aka Multi-Shard) Transactions

tablet 1’

k1 and k2 may belong to different shards

BEGIN TXN
 UPDATE k1
 UPDATE k2
COMMIT

Belong to different Raft groups on completely different nodes

64© 2019 All rights reserved.

What do Distributed Transactions need?

tablet 1’

Updates should get written at the same time

Raft Leader Raft Leader

BEGIN TXN
 UPDATE k1
 UPDATE k2
COMMIT

But how will nodes agree on time?

65© 2019 All rights reserved.

Atomic Clocks

tablet 1’

You would need an Atomic Clock or two lying around

Atomic Clocks:
highly available, globally synchronized clocks, tight error bounds

Most of my physical clocks are never synchronized

Jeez! I’m fresh out of those.

66© 2019 All rights reserved.

Use a Physical Clock

tablet 1’

You would need an Atomic Clock or two lying around

Atomic Clocks are highly available,
globally synchronized clocks with tight error bounds

Most of my physical clocks are never synchronized

Jeez! I’m fresh out of those.

67© 2019 All rights reserved.

Hybrid Logical Clock (HLC)

tablet 1’

Combine coarsely-synchronized physical clocks with Lamport
Clocks to track causal relationships

(physical component, logical component)

synchronized using NTP a monotonic counter

Nodes update HLC on each Raft exchange for things like
heartbeats, leader election and data replication

68© 2019 All rights reserved.

YSQL Architecture

69© 2019 All rights reserved.

Existing PostgreSQL Architecture

SQL APP Postmaster
(Authentication, authorization)

Rewriter Planner

OptimizerExecutor

WAL Writer BG Writer…

DISK

Reuse
PostgreSQL
Query Layer

70© 2019 All rights reserved.

DocDB as Storage Engine

SQL APP Postmaster
(Authentication, authorization)

Rewriter Planner

OptimizerExecutor

YugaByte DB
Node

YugaByte DB
Node …… YugaByte DB

Node

Replace
table storage
with DocDB

71© 2019 All rights reserved.

Make PostgreSQL Run on Distributed Store

SQL APP Postmaster
(Authentication, authorization)

Rewriter Planner

OptimizerExecutor

YugaByte DB
Node

YugaByte DB
Node …… YugaByte DB

Node

Enhance
planner,

optimizer, and
executor for

distributed DB

72© 2019 All rights reserved.

All Nodes are Identical

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL APP Can connect to ANY node
Add/remove nodes anytime

YugaByte DB Node YugaByte DB Node YugaByte DB Node

73© 2019 All rights reserved.

Self-Healing Against Failures

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL APP
Not affected by

node failures

Fault tolerant
can survive node

failures

Stateless tier
connect to any

live node

YugaByte DB Node YugaByte DB Node YugaByte DB Node

74© 2019 All rights reserved.

YSQL:
Create Table

75© 2019 All rights reserved.

YSQL Tables

• Tables
• Each table maps to one DocDB table
• Each DocDB table is sharded into multiple tablets

• System tables
• PostgreSQL system catalog tables map to special DocDB tables
• All such special DocDB tables use a single tablet

• (Internal) DocDB tables
• Have same key → document format
• Schema enforcement using the table schema metadata

System Catalog Tables are Special Tables

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT
One tablet of DocDB

System Catalog

77© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

1) CREATE TABLE

78© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

2) RECORD SCHEMA

79© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

3) RAFT REPLICATE

80© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
4) CREATE TABLETS

t1 t2 t3 t1 t2 t3 t1 t2 t3

81© 2019 All rights reserved.

YSQL:
Insert Data

82© 2019 All rights reserved.

Insert Data into Tables

• Primary keys
• The primary key column(s) map to a single document key
• Each row maps to one document in DocDB
• Tables without primary key use an internal ID (logically a row-id)

• Secondary indexes
• Each index maps to a separate distributed DocDB table
• DML implemented using DocDB distributed transactions
• E.g: insert into table with one index will perform the following:

BEGIN DOCDB DISTRIBUTED TRANSACTION
 insert into index values (…)
 insert into table values (…)
COMMIT

83© 2019 All rights reserved.

Insert Data

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT ROW

t2 t2 t2

84© 2019 All rights reserved.

Insert Data

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT INTO t2 TABLET LEADER

t2 t2 t2

85© 2019 All rights reserved.

Insert Data

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

RAFT REPLICATE DATA

t2 t2 t2

86© 2019 All rights reserved.

Conclusion

87© 2019 All rights reserved.

Most Advanced Open Source Distributed SQL

Google Spanner
Query Layer Storage Layer

World’s Most Advanced
Open Source SQL Engine

World’s Most Advanced
Distributed OLTP Architecture

88© 2019 All rights reserved.

Read more at
blog.yugabyte.com

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-storage-layer
Storage Layer

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-layer
Query Layer

https://blog.yugabyte.com/
https://docs.yugabyte.com/quick-start/
https://blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-layer/

89© 2019 All rights reserved.

Questions?

Download
download.yugabyte.com

Join Slack Discussions
yugabyte.com/slack

Star on GitHub
github.com/YugaByte/yugabyte-db

https://download.yugabyte.com
https://www.yugabyte.com/slack
https://github.com/YugaByte/yugabyte-db

90© 2019 All rights reserved.

Thanks!

91© 2019 All rights reserved.

Summary

