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Introduction to YugabyteDB
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What is Distributed SQL?

SQL & 
Transactions

SQL

Massive 
Scalability

Geo 
DistributionUltra Resilience

A Revolutionary Database Architecture
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=        distributed SQL database

+   high performance (low Latency)

+   cloud native (run on Kubernetes, VMs, bare metal)

+   open source (Apache 2.0)
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Fastest Growing Distributed SQL Project!

Growth in 1 Year

Clusters 

▲ 12x
Slack 

▲ 12x
GitHub Stars 

▲ 7x We 💛 stars! Give us one:
github.com/YugaByte/yugabyte-db

Join our community: 
yugabyte.com/slack

https://github.com/YugaByte/yugabyte-db
https://www.yugabyte.com/slack
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Architecture
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SQL Design Goals
• PostgreSQL compatible

• Re-uses PostgreSQL query layer
• New changes do not break existing PostgreSQL functionality

• Enable migrating to newer PostgreSQL versions
• New features are implemented in a modular fashion
• Integrate with new PostgreSQL features as they are available
• E.g. Moved from PostgreSQL 10.4 → 11.2 in 2 weeks!

• Cloud native architecture
• Fully decentralized to enable scaling to 1000s of nodes 
• Tolerate rack/zone and datacenter/region failures automatically
• Run natively in containers and Kubernetes
• Zero-downtime rolling software upgrades and machine reconfig
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Spanner design + Aurora-like Compatibility

Feature Amazon Aurora Google Spanner

Horizontal Write 
Scalability ❌ ✓ ✓

Fault Tolerance with HA ✓ ✓ ✓

Globally Consistent 
Writes ❌ ✓ ✓

Scalable Consistent 
Reads ❌ ✓ ✓

SQL Support ✓ ❌ ✓
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Layered Architecture

DocDB 
Spanner-Inspired Distributed Document Store

Cloud Neutral: No Specialized Hardware Needed

YugaByte SQL (YSQL)
PostgreSQL-Compatible Distributed SQL API
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Single-Node PostgreSQL
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Phase #1 - Extend to Distributed SQL
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Phase #2: Perform More SQL Pushdowns
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Phase #3: Enhance Optimizer

• Table statistics based hints
• Piggyback on current PostgreSQL optimizer that uses table statistics

• Geographic location based hints
• Based on “network” cost
• Factors in network latency between nodes and tablet placement

• Rewriting query plan for distributed SQL
• Extend PostgreSQL “plan nodes” for distributed execution
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We’ll focus only on phase #1

First look at storage layer (DocDB)

Then look at the query layer (YSQL)
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DocDB Architecture
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DocDB :
Sharding
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Every Table is Automatically Sharded

tablet 1’

… … …
… … …

… … …

… … …

… … …

SHARDING = AUTOMATIC PARTITIONING OF TABLES
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● Hash Sharding

○ Ideal for massively scalable workloads

○ Distributes data evenly across all the nodes in the cluster

● Range Sharding

○ Efficiently query a range of rows by the primary key values

○ Example: look up all keys between a lower and an upper bound

Supports multiple sharding strategies
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Hash Sharding
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Hash Sharding Examples
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Range Sharding

tablet 1’
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Range Sharding Examples
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DocDB :
Replication
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DocDB uses Raft consensus

to replicate data

https://raft.github.io/

https://raft.github.io/
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Raft vs Paxos

Easier to understand than Paxos

Dynamic membership changes (eg: change machine types)

Heidi Howard will talk about “Raft vs Paxos”
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Dynamic Membership Changes 

tablet 1’

Raft Leader

On adding a node, it gets 
added to the Raft group
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Dynamic Membership Changes 

tablet 1’

Raft Leader

Replication factor of the 
tablet temporarily goes to 4
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Dynamic Membership Changes 

tablet 1’

Raft Leader

Data gets replicated to the 
newly added node
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Dynamic Membership Changes 

tablet 1’

Raft Leader

An existing node is removed 
from the Raft group

𝗫
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Dynamic Membership Changes 

tablet 1’

Raft Leader

Data is now stored on three 
different nodes, no downtime
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Many other performance

enhancements needed!
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Multi-region Raft reads are slow!

Each read requires a round-trip to majority

Round trip in multi-region = high latency



33© 2019 All rights reserved.

Leader Leases to the Rescue!
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Monotonic Clocks

From Jepsen Testing Report:
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Group Commits
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DocDB :
Storage
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Uses a heavily modified RocksDB

Key to document store

WAL log of RocksDB is not used (Raft log)

MVCC performed at a higher layer
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Logical Encoding of a Document
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Encoding of DocDB data
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Many Performance Enhancements
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DocDB:
Deployment and Failover
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Multi-Zone Deployment

● Multi-region is similar

● 6 tablets in table

● Replication = 3

● 1 replica per zone
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Balancing across zones and regions

Tablet leaders balanced across:

● Zones

● Nodes in a zone

● Per-table balancing
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Tolerating Zone Outage

● New tablet leaders 

re-elected (~3 sec)

● No impact on tablet follower 

outage

● DB unavailable during 

re-election window

● Follower reads ok
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Automatic rebalancing

● New leaders evenly 

rebalanced

● After 15 mins, data is 

re-replicated (if possible)

● On failed node recovery, 

automatically catch up



46© 2019 All rights reserved.

How long to failover in multi-zone setup?
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DocDB:
Distributed Transactions
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Google Percolator
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Percolator = Single Timestamp Oracle

Not scalable

Does not work for multi-region deployments
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Google Spanner
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Spanner = Distributed Time Synchronization

Scalable

Low-latency, multi-region deployments

2-phase commit
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We picked Google Spanner like design for 

distributed transactions in YugabyteDB
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YugabyteDB distributed transactions:

Based on 2-phase commit

Uses hybrid logical clocks
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Fully Decentralized Architecture

• No single point of failure or bottleneck
• Any node can act as a Transaction Manager

• Transaction status table distributed across multiple nodes
• Tracks state of active transactions

• Transactions have 3 states    
• Pending
• Committed
• Aborted

• Reads served only for Committed Transactions
• Clients never see inconsistent data
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Isolation Levels

• Serializable Isolation
• Read-write conflicts get auto-detected
• Both reads and writes in read-write txns need provisional records
• Maps to SERIALIZABLE in PostgreSQL

• Snapshot Isolation
• Write-write conflicts get auto-detected
• Only writes in read-write txns need provisional records
• Maps to REPEATABLE READ, READ COMMITTED & READ UNCOMMITTED in PostgreSQL

• Read-only Transactions 
• Lock free
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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DocDB:
Software Defined Atomic Clocks



63© 2019 All rights reserved.

Distributed (aka Multi-Shard) Transactions

tablet 1’

k1 and k2 may belong to different shards

BEGIN TXN
  UPDATE k1
  UPDATE k2
COMMIT

Belong to different Raft groups on completely different nodes
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What do Distributed Transactions need?

tablet 1’

Updates should get written at the same time

Raft Leader Raft Leader

BEGIN TXN
  UPDATE k1
  UPDATE k2
COMMIT

But how will nodes agree on time?
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Atomic Clocks

tablet 1’

You would need an Atomic Clock or two lying around

Atomic Clocks:
highly available, globally synchronized clocks, tight error bounds

Most of my physical clocks are never synchronized

Jeez! I’m fresh out of those.



66© 2019 All rights reserved.

Use a Physical Clock

tablet 1’

You would need an Atomic Clock or two lying around

Atomic Clocks are highly available,
globally synchronized clocks with tight error bounds

Most of my physical clocks are never synchronized

Jeez! I’m fresh out of those.
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Hybrid Logical Clock (HLC)

tablet 1’

Combine coarsely-synchronized physical clocks with Lamport 
Clocks to track causal relationships

(physical component, logical component)

synchronized using NTP a monotonic counter

Nodes update HLC on each Raft exchange for things like 
heartbeats, leader election and data replication
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YSQL Architecture
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Existing PostgreSQL Architecture

SQL APP Postmaster
(Authentication, authorization)

Rewriter Planner

OptimizerExecutor

WAL Writer BG Writer…

DISK

Reuse
PostgreSQL 
Query Layer
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DocDB as Storage Engine

SQL APP Postmaster
(Authentication, authorization)

Rewriter Planner

OptimizerExecutor

YugaByte DB 
Node

YugaByte DB 
Node …… YugaByte DB 

Node

Replace 
table storage 
with DocDB
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Make PostgreSQL Run on Distributed Store

SQL APP Postmaster
(Authentication, authorization)

Rewriter Planner

OptimizerExecutor

YugaByte DB 
Node

YugaByte DB 
Node …… YugaByte DB 

Node

Enhance 
planner, 

optimizer, and 
executor for 

distributed DB



72© 2019 All rights reserved.

All Nodes are Identical

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL APP Can connect to ANY node
Add/remove nodes anytime

YugaByte DB  Node YugaByte DB  Node YugaByte DB  Node
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Self-Healing Against Failures

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL APP
Not affected by

node failures

Fault tolerant
can survive node 

failures

Stateless tier
connect to any 

live node

YugaByte DB  Node YugaByte DB  Node YugaByte DB  Node
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YSQL:
Create Table
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YSQL Tables

• Tables
• Each table maps to one DocDB table
• Each DocDB table is sharded into multiple tablets

• System tables
• PostgreSQL system catalog tables map to special DocDB tables
• All such special DocDB tables use a single tablet

• (Internal) DocDB tables
• Have same key → document format
• Schema enforcement using the table schema metadata



System Catalog Tables are Special Tables

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT
One tablet of DocDB 

System Catalog
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Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

1) CREATE TABLE
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Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

2) RECORD SCHEMA
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Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

3) RAFT REPLICATE
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Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
4) CREATE TABLETS

t1 t2 t3 t1 t2 t3 t1 t2 t3
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YSQL:
Insert Data



82© 2019 All rights reserved.

Insert Data into Tables

• Primary keys
• The primary key column(s) map to a single document key
• Each row maps to one document in DocDB
• Tables without primary key use an internal ID (logically a row-id)

• Secondary indexes
• Each index maps to a separate distributed DocDB table
• DML implemented using DocDB distributed transactions
• E.g: insert into table with one index will perform the following:

BEGIN DOCDB DISTRIBUTED TRANSACTION
    insert into index values (…)
    insert into table values (…)
COMMIT
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Insert Data 

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT ROW

t2 t2 t2
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Insert Data 

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT INTO t2 TABLET LEADER

t2 t2 t2
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Insert Data 

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

RAFT REPLICATE DATA

t2 t2 t2
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Conclusion
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Most Advanced Open Source Distributed SQL 

Google Spanner
Query Layer Storage Layer

World’s Most Advanced 
Open Source SQL Engine 

World’s Most Advanced 
Distributed OLTP Architecture
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Read more at
blog.yugabyte.com

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-storage-layer
Storage Layer

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-layer
Query Layer

https://blog.yugabyte.com/
https://docs.yugabyte.com/quick-start/
https://blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-layer/


89© 2019 All rights reserved.

Questions?

Download 
download.yugabyte.com

Join Slack Discussions 
yugabyte.com/slack

Star on GitHub
github.com/YugaByte/yugabyte-db

https://download.yugabyte.com
https://www.yugabyte.com/slack
https://github.com/YugaByte/yugabyte-db
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Thanks!
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Summary


