Skip to content
No description, website, or topics provided.
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
Books add deep learning Dec 20, 2017
Ref
.DS_Store
README.md

README.md

myBooks

.
├── C
│   └── Stephen G. Kochan Programming in C.epub
├── C++
├── DataScience
│   ├── (Advances in Intelligent Systems and Computing 456) Maria Brigida Ferraro, Paolo Giordani, Barbara Vantaggi, Marek Gagolewski, María Ángeles Gil, Przemysław Grzegorzewski, Olgierd Hryniewicz (eds.)-So.pdf
│   ├── Allen B. Downey-Think Stats, 2nd Edition_ Exploratory Data Analysis-O'Reilly Media (2014).pdf
│   ├── Brian Steele, John Chandler, Swarna Reddy-Algorithms for Data Science-Springer (2017).pdf
│   ├── Jeroen Janssens Data Science at the Command Line Facing the Future with Time-Tested Tools.pdf
│   ├── Modern Data Science with R.pdf
│   ├── Ted Dunning, Ellen Friedman-Time Series Databases_ New Ways to Store and Access Data-O'Reilly Media (2014).pdf
│   └── Torgo, Luís Data Mining with R Learning with Case Studies, Second Edition.pdf
├── HFT
│   ├── High_Frequency_Trading_and_Modeling_in_Finance.pdf
│   ├── High-frequency trading - a practical guide to algorithmic strategies and trading systems.pdf
│   ├── High-frequency Trading.pdf
│   └── [Zhaodong_Wang,_Weian_Zheng]_High-Frequency_Tradining_and_Probability_Theory.pdf
├── MySQL
├── Python
│   ├── Automate the Boring Stuff with Python.pdf
│   ├── Daniel Y. Chen-Pandas for Everyone.  Python Data Analysis-Addison-Wesley Professional (2017).pdf
│   ├── Data Science Essentials in Python Collect - Organize - Explore - Predict - Value.pdf
│   ├── Fluent Python - Clear, Concise, and Effective Programming.pdf
│   ├── [Giancarlo_Zaccone]_Python_Parallel_Programming_Co(b-ok.org).pdf
│   ├── HighPerformancePythonfromTrainingatEuroPython2011_v0.2.pdf
│   ├── High Performance Python.pdf
│   ├── Luciano Ramalho-Fluent Python-O'Reilly Media (2015).pdf
│   ├── Michael Heydt-Learning pandas_ Get to grips with pandas - a versatile and high-performance Python library for data manipulation, analysis, and discovery-Packt Publishing (2015).pdf
│   ├── Michael Heydt-Mastering Pandas for Finance-Packt Publishing (2015).pdf
│   ├── [Micha_Gorelick,_Ian_Ozsvald]_High_Performance_Pyt(b-ok.org).pdf
│   ├── Micha Gorelick, Ian Ozsvald-High Performance Python_ Practical Performant Programming for Humans-O'Reilly Media (2014).pdf
│   ├── Python High Performance Programming - Lanaro, Gabriele.pdf
│   ├── Python Programming Advanced.djvu
│   ├── Steven F. Lott-Mastering Object-oriented Python-Packt Publishing (2014).pdf
│   ├── Violent Python.pdf
│   └── Web Scraping with Python Collecting Data from the Modern Web.pdf
├── Quant
│   ├── Algorithmic Trading and DMA.pdf
│   ├── Applied Quantitative Methods for Trading and Investment.pdf
│   ├── Automated Trading with R.pdf
│   ├── Empirical Market Microstructure.pdf
│   ├── Financial Econometrics and Empirical Market Microstructure.pdf
│   ├── Financial Markets and Trading.pdf
│   ├── High-Frequency Trading  A Practical Guide to Algorithmic Strategies and Trading Systems.pdf
│   ├── Howard B. Bandy-Quantitative Trading Systems_ Practical Methods for Design, Testing, and Validation-Blue Owl Press (2007).pdf
│   ├── [Madhavan_A.]_Market_microstructure_A_practitioner_guide.pdf
│   ├── Michael Halls Moore-Advanced Algorithmic Trading (2017).pdf
│   ├── (New Developments in Quantitative Trading and Investment) Christian L. Dunis, Peter W. Middleton, Andreas Karathanasopolous, Konstantinos Theofilatos (eds.)-Artificial Intelligence in Financial Market.pdf
│   ├── Pairs Trading Quantitative Methods and Analysis.pdf
│   ├── Quantitative Analysis of Market Data (1).pdf
│   ├── Quantitative Analysis of Market Data.pdf
│   ├── Quantitative Investment Analysis.pdf
│   ├── Quantitative Investment Analysis, Workbook.pdf
│   ├── Quantitative Methods for Investment Analysis.pdf
│   ├── Statistics and Data Analysis for Financial Engineering
│   │   ├── bonds.R
│   │   ├── bugsfiles.zip
│   │   ├── datasets
│   │   │   ├── AirPassengers.csv
│   │   │   ├── AlphaBeta.csv
│   │   │   ├── berndtInvest.csv
│   │   │   ├── bmw.csv
│   │   │   ├── bmwRet.csv
│   │   │   ├── bondprices.txt
│   │   │   ├── capm2.csv
│   │   │   ├── Capm.csv
│   │   │   ├── CokePepsi.csv
│   │   │   ├── countries.txt
│   │   │   ├── CPI.csv
│   │   │   ├── CPI.dat.csv
│   │   │   ├── CPS1988.csv
│   │   │   ├── CreditCard.csv
│   │   │   ├── cree.csv
│   │   │   ├── CRSPday.csv
│   │   │   ├── CRSPmon.csv
│   │   │   ├── DefaultData.txt
│   │   │   ├── DowJones30.csv
│   │   │   ├── Earnings.csv
│   │   │   ├── equityFunds.csv
│   │   │   ├── EuStockMarket.csv
│   │   │   ├── EuStockMarkets.csv
│   │   │   ├── FamaFrenchDaily.txt
│   │   │   ├── FamaFrench_mon_69_98.txt
│   │   │   ├── FlowData.csv
│   │   │   ├── ford.csv
│   │   │   ├── FourStocks_Daily2013.csv
│   │   │   ├── FrozenJuice.csv
│   │   │   ├── Garch.csv
│   │   │   ├── GPRO.csv
│   │   │   ├── HousePrices.csv
│   │   │   ├── Hstarts.csv
│   │   │   ├── IBM_SP500_04_14_daily_netRtns.csv
│   │   │   ├── Icecream.csv
│   │   │   ├── IncomeUK.csv
│   │   │   ├── IP.csv
│   │   │   ├── IP.dat.csv
│   │   │   ├── Irates.csv
│   │   │   ├── KelvinFlowData.csv
│   │   │   ├── MacroVars.csv
│   │   │   ├── MCD_PriceDaily.csv
│   │   │   ├── midcapD.csv
│   │   │   ├── midcapD.ts.csv
│   │   │   ├── Mishkin.csv
│   │   │   ├── mk.maturity.csv
│   │   │   ├── mk.zero2.csv
│   │   │   ├── msft.csv
│   │   │   ├── nelsonplosser.csv
│   │   │   ├── prog.R
│   │   │   ├── RecentFord.csv
│   │   │   ├── siemens.csv
│   │   │   ├── S&P500.csv
│   │   │   ├── SP500.csv
│   │   │   ├── S&P500_new.csv
│   │   │   ├── Stock_Bond_2004_to_2006.csv
│   │   │   ├── Stock_Bond.csv
│   │   │   ├── Stock_FX_Bond_2004_to_2005.csv
│   │   │   ├── Stock_FX_Bond_2004_to_2006.csv
│   │   │   ├── Stock_FX_Bond.csv
│   │   │   ├── strips_dec95.txt
│   │   │   ├── TbGdpPi.csv
│   │   │   ├── Tbrate.csv
│   │   │   ├── treasury_yields.txt
│   │   │   ├── USMacroG.csv
│   │   │   ├── WeekInt.txt
│   │   │   ├── WeeklyInterest.txt
│   │   │   ├── yields.txt
│   │   │   └── ZeroPrices.txt
│   │   ├── datasets.zip
│   │   ├── EDA.R
│   │   ├── my.R
│   │   ├── returns.R
│   │   ├── R scripts for Statistics and Data Analysis for Financial Engineering with R Examples, 2nd ed..html
│   │   ├── SDAFE2.R
│   │   └── Solutions to Selected R Lab Problems and Exercises Statistics and Data Analysis for Financial Engineering with R Examples, 2nd ed..html
│   ├── Statistics and Data Analysis for Financial Engineering.pdf
│   ├── Statistics and Finance An Introduction.pdf
│   ├── The art and science of technical analysis.pdf
│   ├── Tim Leung, Xin Li-Optimal Mean Reversion Trading_ Mathematical Analysis and Practical Applications-World Scientific Publishing Company (2016).pdf.crdownload
│   ├── Trading and Exchanges Market Microstructure for Practitioners .pdf
│   ├── (Wiley Finance) Wesley R. Gray, Jack R. Vogel-Quantitative Momentum_ A Practitioner’s Guide to Building a Momentum-Based Stock Selection System-Wiley (2016).pdf
│   └── (Wiley Trading) Ernest P. Chan-Machine Trading_ Deploying Computer Algorithms to Conquer the Markets-Wiley (2017).pdf
├── R
│   ├── Data Analysis with R.pdf
│   ├── efficient-master.zip
│   ├── Efficient_R_Programming_A_Practical_Guide_to_Smarter_Programming.pdf
│   ├── Efficient R Programming.pdf
│   ├── [Hadley_Wickham_(auth.)]_ggplot2_Elegant_Graphics(b-ok.org).pdf
│   ├── Hadley Wickham, Garrett Grolemund-R for Data Science_ Import, Tidy, Transform, Visualize, and Model Data-O’Reilly Media (2017).pdf
│   ├── Learning_R_Programming_-_Become_an_efficient_data_scientist_with_R.pdf
│   ├── N.D Lewis-Deep Learning Made Easy with R_ A Gentle Introduction For Data Science-CreateSpace Independent Publishing Platform (2016).pdf
│   ├── Raja B. Koushik, Sharan Kumar Ravindran-R Data Science Essentials-Packt (2016).pdf
│   ├── Thomas Mailund (auth.)-Advanced Object-Oriented Programming in R_ Statistical Programming for Data Science, Analysis and Finance-Apress (2017).pdf
│   ├── Thomas Mailund (auth.)-Metaprogramming in R_ Advanced Statistical Programming for Data Science, Analysis and Finance-Apress (2017).pdf
│   ├── Thomas Mailund-Beginning Data Science in R_ Data Analysis, Visualization, and Modelling for the Data Scientist-Apress (2017).pdf
│   └── Thomas Mailund-Functional Programming in R. Advanced Statistical Programming for Data Science, Analysis and Finance-Apress (2017).pdf
├── Social
│   └── 万历十五年.mobi
├── Stat
│   ├── Advanced Linear Modeling.pdf
│   ├── All Figures.zip
│   ├── All Labs.txt
│   ├── An Elementary Introduction to Statistical Learning Theory.pdf
│   ├── An Introduction to Statistical Learning.pdf
│   ├── An Introduction to Statistical Learning with Applications in R.pdf
│   ├── Applying Regression and Correlation.pdf
│   ├── (Chapman & Hall_CRC Texts in Statistical Science) Norman Matloff-Statistical Regression and Classification_ From Linear Models to Machine Learning-Chapman and Hall_CRC (2017).pdf
│   ├── Elements of Statistics for the Life and Social Sciences.pdf
│   ├── Foundations of Statistical Algorithms.pdf
│   ├── Introduction to Statistical Machine Learning.pdf
│   ├── Plane Answers to Complex Questions The Theory of Linear Models.pdf
│   ├── Statistical Analysis and Data Display.pdf
│   └── Statistics_for_Finance.pdf
└── Unix
    ├── Anoop Chaturvedi, B.L. Rai-Unix and Shell Programming-Laxmi Publications (2017).pdf
    ├── B. Kernighan, R. Pike UNIX - Programming Environment .pdf
    ├── (Developer’s Library) Stephen G. Kochan, Patrick Wood-Shell Programming in Unix, Linux and OS X-Addison-Wesley Professional (2016).pdf
    ├── W. Richard Stevens, Stephen A. Rago Advanced Programming in the UNIX Environment.pdf
    └── W. Richard Stevens, Stephen A. Rago Advanced Programming in the UNIX R Environment.pdf
You can’t perform that action at this time.