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How to Optimize for Arm 
and not get Eaten by a Bear

Performance Optimization in a 
World of Multiple Microarchitectures
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Arm Enables Diversity
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How to hunt the bear and not get eaten?
How to “optimize for Arm” without becoming tied to a specific chip?
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Core Instruction Set Architecture (ISA) 
A CPU’s vocabulary

Armv8.0-A

Armv8.1-A

Armv8.2-A

Armv8.3 LDAPR

Armv8.4 Dot Product

Armv8.5 Security

Armv8.3 ComplexArmv8.3-A

Armv8.4-A

Armv8.6 +

Armv8.2 SVE

Arm Neoverse V1 Fujitsu A64FX Arm Neoverse N1

Armv8.5 Security Armv8.5 +
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ISA vs. u-arch

How the ISA is implemented

The base ISA

Theoretical Armv8.4-a chip 
with ThunderX u-arch

A64FX

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1

Fujitsu A64FX
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How to specify ISA and u-arch?
GCC and LLVM (and LLVM-based compilers)

• For aarch64 targets, this flag 
is a shortcut.  It specifies 
both the ISA and the u-arch

• Accepts the same parameters 
as –mtune

• This flag is deprecated for 
x86 targets!

-march -mtune -mcpu

• For aarch64 targets, this flag 
specifies the u-arch

• See man pages for 
supported u-arches

• This flag behaves differently 
for x86 targets!

• For aarch64 targets, this flag 
specifies the ISA

• Fine-grained control over ISA 
extensions: “armv8.2-a+sve”

• This flag behaves differently 
for x86 targets!
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Execution Limited Optimization

Execution vs. Optimization: -march=armv8.1

Binary will execute.
No optimization attempted

Binary will execute. 
Optimization is limited 
because u-arch unknown

Binary may not execute: 
invalid instruction

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1

Fujitsu A64FX
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Execution Limited Optimization

Execution vs. Optimization: -mtune=a64fx

Highly portable binary

Limited optimization:
ISA is limited to v8.0

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1

Fujitsu A64FX
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v8.2
v8.4
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Execution Optimization

Execution vs. Optimization: -mcpu=a64fx

Limited portability

Optimized only for A64FX

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1
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Execution Optimization

A more realistic view of -mcpu=a64fx

Binary is expected to 
only be used on A64FX.

Compiler is free to use 
extensions, take 
shortcuts, etc.

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1
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v8.2
v8.4
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__sync_fetch_and_add(&var, num);
GCC 11.1.0 on A64FX

-march=armv8.2-a -mtune=a64fx -mcpu=a64fx

No SVE

Atomic
Add

Minimal ISA

libgcc call
Atomic

Add

Best ISA
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Compiler flags for tuned portable binaries
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html#aarch64-feature-modifiers

• V1-optimized, runs on A64FX
• -march=armv8.2-a+sve

-mtune=neoverse-v1

-msve-vector-bits=scalable

• Targets V1 u-arch and limits the ISA to A64FX
• Uses both SVE and NEON, and will occasionally 

prefer NEON over SVE

• V1-optimized, runs on N1
• -march=armv8.2-a+nosve+dotprod 

-mtune=neoverse-v1

• Targets V1 u-arch and limits the ISA to N1
• Uses only NEON (which performs well on V1)

• N1-optimized, runs on V1
• -mcpu=neoverse-n1

• V1’s features are a superset of N1’s

Armv8.0-A

Armv8.1-A

Armv8.2-A

Armv8.3 LDAPR

Armv8.4 Dot Product

Armv8.5 Security

Armv8.3 ComplexArmv8.3-A

Armv8.4-A

Armv8.6 +

Armv8.2 SVE

Arm Neoverse V1 Fujitsu A64FX Arm Neoverse N1

Armv8.5 Security Armv8.5
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How to hunt the bear and not get eaten
a.k.a how to get good performance without being tied to a particular chip

• Let someone else hunt the bear
• NVIDIA NGC
• wiki.arm-hpc.org

• Only hunt the bear where it is safe
• Link against portable optimized libraries
• Use autovectorizing compilers – don’t hand-tune SIMD code

• If you must hunt the bear, stay outside the cave
• Compile for a common base architecture
• If extensions are critical to your code’s performance, understand that cost

• If you enter the cave, be sure you can run out
• Build from source with the appropriate flags (e.g. Spack or EasyBuild)
• Distribute multiple binaries and dynamically load as appropriate
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Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה
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