
© 2021 Arm

john.Linford@arm.com
10 Feb 2022

How to Optimize for Arm
and not get Eaten by a Bear

Performance Optimization in a
World of Multiple Microarchitectures

2 © 2021 Arm

Arm Enables Diversity

NVIDIA

Ampere

AWS

Fujitsu

Huawei

Marvell /
Cavium

SiPearl

ETRI

Grace

Graviton3
Graviton2
Neoverse N1

Kunpeng 920

Graviton

eMAG
X-GeneAltra

Neoverse N1

Rhea
Neoverse V1

K-AB21
Neoverse V1

ThunderX2
ThunderX

Carmel Denver

3 © 2021 Arm

How to hunt the bear and not get eaten?
How to “optimize for Arm” without becoming tied to a specific chip?

4 © 2021 Arm

Core Instruction Set Architecture (ISA)
A CPU’s vocabulary

Armv8.0-A

Armv8.1-A

Armv8.2-A

Armv8.3 LDAPR

Armv8.4 Dot Product

Armv8.5 Security

Armv8.3 ComplexArmv8.3-A

Armv8.4-A

Armv8.6 +

Armv8.2 SVE

Arm Neoverse V1 Fujitsu A64FX Arm Neoverse N1

Armv8.5 Security Armv8.5 +

5 © 2021 Arm

ISA vs. u-arch

How the ISA is implemented

The base ISA

Theoretical Armv8.4-a chip
with ThunderX u-arch

A64FX

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1

Fujitsu A64FX

M
ic

ro
ar

ch
it

ec
tu

re
 (

-m
tu

n
e

)

v8.0
v8.1

v8.1
v8.2

Arm Neoverse V1

v8.2
v8.4

6 © 2021 Arm

How to specify ISA and u-arch?
GCC and LLVM (and LLVM-based compilers)

• For aarch64 targets, this flag
is a shortcut. It specifies
both the ISA and the u-arch

• Accepts the same parameters
as –mtune

• This flag is deprecated for
x86 targets!

-march -mtune -mcpu

• For aarch64 targets, this flag
specifies the u-arch

• See man pages for
supported u-arches

• This flag behaves differently
for x86 targets!

• For aarch64 targets, this flag
specifies the ISA

• Fine-grained control over ISA
extensions: “armv8.2-a+sve”

• This flag behaves differently
for x86 targets!

7 © 2021 Arm

Execution Limited Optimization

Execution vs. Optimization: -march=armv8.1

Binary will execute.
No optimization attempted

Binary will execute.
Optimization is limited
because u-arch unknown

Binary may not execute:
invalid instruction

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1

Fujitsu A64FX

M
ic

ro
ar

ch
it

ec
tu

re
 (

-m
tu

n
e

)

v8.0
v8.1

v8.1
v8.2

Arm Neoverse V1

v8.2
v8.4

8 © 2021 Arm

Execution Limited Optimization

Execution vs. Optimization: -mtune=a64fx

Highly portable binary

Limited optimization:
ISA is limited to v8.0

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1

Fujitsu A64FX

M
ic

ro
ar

ch
it

ec
tu

re
 (

-m
tu

n
e

)

v8.0
v8.1

v8.1
v8.2

Arm Neoverse V1

v8.2
v8.4

9 © 2021 Arm

Execution Optimization

Execution vs. Optimization: -mcpu=a64fx

Limited portability

Optimized only for A64FX

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1

Fujitsu A64FX

M
ic

ro
ar

ch
it

ec
tu

re
 (

-m
tu

n
e

)

v8.0
v8.1

v8.1
v8.2

Arm Neoverse V1

v8.2
v8.4

10 © 2021 Arm

Execution Optimization

A more realistic view of -mcpu=a64fx

Binary is expected to
only be used on A64FX.

Compiler is free to use
extensions, take
shortcuts, etc.

Architecture (-march)

v8.0 v8.1 v8.2 v8.3 v8.4

Arm Cortex-A72

Qualcomm X-Gene

Marvell ThunderX

Marvell ThunderX2

Qualcomm Falkor

Arm Neoverse N1

Fujitsu A64FX

M
ic

ro
ar

ch
it

ec
tu

re
 (

-m
tu

n
e

)

v8.0
v8.1

v8.1
v8.2

Arm Neoverse V1

v8.2
v8.4

11 © 2021 Arm

__sync_fetch_and_add(&var, num);
GCC 11.1.0 on A64FX

-march=armv8.2-a -mtune=a64fx -mcpu=a64fx

No SVE

Atomic
Add

Minimal ISA

libgcc call
Atomic

Add

Best ISA

12 © 2021 Arm

Compiler flags for tuned portable binaries
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html#aarch64-feature-modifiers

• V1-optimized, runs on A64FX
• -march=armv8.2-a+sve

-mtune=neoverse-v1

-msve-vector-bits=scalable

• Targets V1 u-arch and limits the ISA to A64FX
• Uses both SVE and NEON, and will occasionally

prefer NEON over SVE

• V1-optimized, runs on N1
• -march=armv8.2-a+nosve+dotprod

-mtune=neoverse-v1

• Targets V1 u-arch and limits the ISA to N1
• Uses only NEON (which performs well on V1)

• N1-optimized, runs on V1
• -mcpu=neoverse-n1

• V1’s features are a superset of N1’s

Armv8.0-A

Armv8.1-A

Armv8.2-A

Armv8.3 LDAPR

Armv8.4 Dot Product

Armv8.5 Security

Armv8.3 ComplexArmv8.3-A

Armv8.4-A

Armv8.6 +

Armv8.2 SVE

Arm Neoverse V1 Fujitsu A64FX Arm Neoverse N1

Armv8.5 Security Armv8.5

13 © 2021 Arm

How to hunt the bear and not get eaten
a.k.a how to get good performance without being tied to a particular chip

• Let someone else hunt the bear
• NVIDIA NGC
• wiki.arm-hpc.org

• Only hunt the bear where it is safe
• Link against portable optimized libraries
• Use autovectorizing compilers – don’t hand-tune SIMD code

• If you must hunt the bear, stay outside the cave
• Compile for a common base architecture
• If extensions are critical to your code’s performance, understand that cost

• If you enter the cave, be sure you can run out
• Build from source with the appropriate flags (e.g. Spack or EasyBuild)
• Distribute multiple binaries and dynamically load as appropriate

© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm

