

Self-Supervised Deep Learning Reconstruction for Highly Accelerated Diffusion Imaging

Ismail Arda Vurankaya¹, Yohan Jun^{2,3}, Jaejin Cho^{2,3}, Berkin Bilgic^{2,3,4}

¹ Bogazici University, Istanbul, Turkey

- ² Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- ³ Department of Radiology, Harvard Medical School, Boston, MA, United States
- ⁴ Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States

Motivation

• Multi-shot EPI allows us mitigating T_2 and T_2^* blurring and minimizing B_0 -related distortion

- Combining the multiple shots can be challenging due to shot-to-shot phase variation.
- Advanced image reconstruction method is needed at high acceleration factor.

Multishot EPI

Approach

 The recent zero-shot self-supervised learning (ZS-SSL) technique reconstructs images using scan-specific neural networks trained without additional training datasets.

• We employ ZS-SSL approach for joint reconstruction of accelerated multi-shot diffusion MRI.

Approach

Unrolled network employed in our work

Approach

- We train one network across all diffusion directions instead of training multiple networks individually.
- We use magnitude constraint (MC) of two shot assuming the two shots have similar signal intensity.

$$\left(\frac{||u-v||_1}{||v||_1} + \frac{||u-v||_2}{||v||_2}\right) + \gamma ||s_1| - |s_2||$$

k-space loss Magnitude constraint

NRMSE:

24.60 %

15.53 %

14.41 %

13.42 %

Summary

- We introduced a ZS-SSL method for multishot diffusion MRI reconstruction.
- Our method can yield better reconstruction than state-of-the-art LORAKS reconstruction.
- Proposed model can be trained for all directions at once, with an additional benefit of reduced training time. (2.5-fold)
- The magnitude constraint improves reconstruction performance.