diff --git a/examples/vibration-anomaly-detection/README.md b/examples/vibration-anomaly-detection/README.md new file mode 100644 index 0000000..51f786b --- /dev/null +++ b/examples/vibration-anomaly-detection/README.md @@ -0,0 +1,138 @@ +# Fan Vibration Monitoring + +The **Fan Vibration Monitoring** example creates a smart vibration detector that monitors a fan (or any vibrating machinery) for anomalies. It visualizes raw accelerometer data in real-time and allows users to dynamically adjust the anomaly detection sensitivity through a web dashboard. + +![Fan Vibration Monitoring](assets/docs_assets/vibration-anomaly.png) + +## Description + +Monitor the physical status of a fan in real-time. This example uses a Modulino Movement to capture acceleration data and a dedicated Brick to detect vibration anomalies. + +Unlike simple threshold detectors, this app provides: +* **Live Data Visualization:** A real-time scrolling plot of X, Y, and Z acceleration. +* **Dynamic Sensitivity:** A slider to adjust the anomaly scoring threshold on the fly. +* **History:** A log of the most recent detected anomalies with timestamps. + +## Bricks Used + +The example uses the following Bricks: + +- `web_ui`: Brick to create a web interface to display the dashboard. +- `vibration_anomaly_detection`: Brick that processes accelerometer data to detect irregular vibration patterns. + +## Hardware and Software Requirements + +### Hardware + +- Arduino UNO Q (x1) +- Modulino Movement (LSM6DSOX) (x1) +- Qwiic Cable (x1) +- USB-C® to USB-A Cable (x1) + +### Software + +- Arduino App Lab + +**Note:** You can run this example using your Arduino UNO Q as a Single Board Computer (SBC) using a [USB-C hub](https://store.arduino.cc/products/usb-c-to-hdmi-multiport-adapter-with-ethernet-and-usb-hub) with a mouse, keyboard, and monitor attached. + +## How to Use the Example + +1. Connect the Modulino Movement sensor to the Arduino UNO Q via the Qwiic connector. +2. Run the App. +3. Open the App on your browser. +4. Observe the **Accelerometer Data** chart to see the live vibration waveforms. +5. Use the **Set anomaly score** slider to adjust how sensitive the detector is. Lower values make it more sensitive; higher values require stronger vibrations to trigger an alert. +6. Shake the sensor or attach it to a fan to simulate an anomaly. The "Feedback" section will show a warning, and the event will be logged in "Recent Anomalies". + +## How it Works + +Here is a brief explanation of the full-stack application: + +### 🔧 Backend (main.py) + +- Initializes the `vibration_anomaly_detection` Brick. +- Receives raw sensor data via `Bridge`, converts it from gravity units ($g$) to acceleration ($m/s^2$), and forwards it to the UI for plotting. +- Accumulates samples in the detection Brick. +- Listens for threshold overrides from the UI to update the detection sensitivity in real-time. +- Broadcasts anomaly alerts containing the anomaly score and timestamp. + +### 💻 Frontend (index.html + app.js) + +- **Real-time Plotting:** Uses an HTML5 Canvas to draw the live X, Y, Z acceleration waveforms. +- **Interactive Controls:** Sends slider values to the backend to tune the algorithm parameters. +- **Alert System:** visualizes anomalies with status icons and maintains a chronological list of recent detections. + +## Understanding the Code + +Once the application is running, you can access it from your web browser. At that point, the device begins performing the following: + +- **Reading sensor data on the MCU (Arduino sketch).** + + The firmware reads the Modulino Movement sensor every 16ms. It sends the X, Y, and Z values to the Python backend using `Bridge.notify`. + + ```cpp + void loop() { + // ... timing logic (16ms interval) ... + + // Read new movement data from the sensor + has_movement = movement.update(); + + if(has_movement == 1) { + // Get acceleration values + x_accel = movement.getX(); + y_accel = movement.getY(); + z_accel = movement.getZ(); + + // Send data to Python + Bridge.notify("record_sensor_movement", x_accel, y_accel, z_accel); + } + } + ``` + +- **Processing data and updating the UI (Python).** + + The backend serves as the central hub. It receives the raw data, converts the units for the algorithm, feeds the detector, and simultaneously pushes the data to the frontend for the live plot. + + ```python + def record_sensor_movement(x: float, y: float, z: float): + # Convert g -> m/s^2 for the detector + x_ms2 = x * 9.81 + y_ms2 = y * 9.81 + z_ms2 = z * 9.81 + + # Forward raw data to UI for plotting + ui.send_message('sample', {'x': x_ms2, 'y': y_ms2, 'z': z_ms2}) + + # Forward samples to the vibration_detection brick + vibration_detection.accumulate_samples((x_ms2, y_ms2, z_ms2)) + ``` + +- **Handling Dynamic Thresholds.** + + When you move the slider in the browser, the frontend emits an event. The backend updates the detection brick's sensitivity immediately. + + ```python + def on_override_th(value: float): + logger.info(f"Setting new anomaly threshold: {value}") + vibration_detection.anomaly_detection_threshold = value + ``` + +- **Visualizing the Data (JavaScript).** + + The frontend receives the `sample` event and pushes it into an array. The `drawPlot` function clears the canvas and redraws the lines for X, Y, and Z to create the scrolling chart effect. + + ```javascript + function drawPlot() { + if (!hasDataFromBackend) return; + + // Clear the canvas before drawing the new frame + ctx.clearRect(0, 0, currentWidth, currentHeight); + + // ... grid drawing code ... + + // Draw series (X, Y, Z) + drawSeries('x','#0068C9'); + drawSeries('y','#FF9900'); + drawSeries('z','#FF2B2B'); + } + ``` \ No newline at end of file diff --git a/examples/vibration-anomaly-detection/assets/docs_assets/vibration-anomaly.png b/examples/vibration-anomaly-detection/assets/docs_assets/vibration-anomaly.png new file mode 100644 index 0000000..7269e56 Binary files /dev/null and b/examples/vibration-anomaly-detection/assets/docs_assets/vibration-anomaly.png differ