From b581985f620ba6b3f439c13892c4283499af00b2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Christopher=20M=C3=A9ndez?= <49886387+mcmchris@users.noreply.github.com> Date: Fri, 28 Nov 2025 11:55:25 -0400 Subject: [PATCH] Ernesto Structure and Review --- .../vibration-anomaly-detection/README.md | 190 ++++++++++-------- 1 file changed, 106 insertions(+), 84 deletions(-) diff --git a/examples/vibration-anomaly-detection/README.md b/examples/vibration-anomaly-detection/README.md index 51f786b..227a1f2 100644 --- a/examples/vibration-anomaly-detection/README.md +++ b/examples/vibration-anomaly-detection/README.md @@ -1,14 +1,14 @@ -# Fan Vibration Monitoring +# Vibration Anomaly Detection -The **Fan Vibration Monitoring** example creates a smart vibration detector that monitors a fan (or any vibrating machinery) for anomalies. It visualizes raw accelerometer data in real-time and allows users to dynamically adjust the anomaly detection sensitivity through a web dashboard. +The **Vibration Anomaly Detection** example creates a smart vibration detector that monitors a fan (or any vibrating machinery) for anomalies. It visualizes raw accelerometer data in real-time and allows users to dynamically adjust the anomaly detection sensitivity through a web dashboard. -![Fan Vibration Monitoring](assets/docs_assets/vibration-anomaly.png) +![Vibration Monitoring](assets/docs_assets/vibration-anomaly.png) ## Description Monitor the physical status of a fan in real-time. This example uses a Modulino Movement to capture acceleration data and a dedicated Brick to detect vibration anomalies. -Unlike simple threshold detectors, this app provides: +Unlike simple threshold detectors, this App provides: * **Live Data Visualization:** A real-time scrolling plot of X, Y, and Z acceleration. * **Dynamic Sensitivity:** A slider to adjust the anomaly scoring threshold on the fly. * **History:** A log of the most recent detected anomalies with timestamps. @@ -33,22 +33,46 @@ The example uses the following Bricks: - Arduino App Lab -**Note:** You can run this example using your Arduino UNO Q as a Single Board Computer (SBC) using a [USB-C hub](https://store.arduino.cc/products/usb-c-to-hdmi-multiport-adapter-with-ethernet-and-usb-hub) with a mouse, keyboard, and monitor attached. +**Note:** You can also run this example using your Arduino UNO Q as a Single Board Computer (SBC) using a [USB-C hub](https://store.arduino.cc/products/usb-c-to-hdmi-multiport-adapter-with-ethernet-and-usb-hub) with a mouse, keyboard, and monitor attached. ## How to Use the Example -1. Connect the Modulino Movement sensor to the Arduino UNO Q via the Qwiic connector. -2. Run the App. -3. Open the App on your browser. -4. Observe the **Accelerometer Data** chart to see the live vibration waveforms. -5. Use the **Set anomaly score** slider to adjust how sensitive the detector is. Lower values make it more sensitive; higher values require stronger vibrations to trigger an alert. -6. Shake the sensor or attach it to a fan to simulate an anomaly. The "Feedback" section will show a warning, and the event will be logged in "Recent Anomalies". +1. **Hardware Setup** + Connect the Modulino Movement sensor to the Arduino UNO Q via the Qwiic connector. + +2. **Run the App** + Launch the App from Arduino App Lab. + +3. **Access the Web Interface** + Open the App in your browser at `:7000`. + +4. **Monitor Vibrations** + Observe the **Accelerometer Data** chart to see the live vibration waveforms. + +5. **Adjust Sensitivity** + Use the **Set anomaly score** slider to adjust how sensitive the detector is. + - **Lower values (1):** High sensitivity (small vibrations trigger alerts). + - **Higher values (10):** Low sensitivity (requires strong, irregular vibrations to trigger). + +6. **Trigger an Anomaly** + Shake the sensor or attach it to a fan to simulate an anomaly. The "Feedback" section will show a warning, and the event will be logged in "Recent Anomalies". ## How it Works -Here is a brief explanation of the full-stack application: +Once the App is running, it performs the following operations: + +- **Acquisition**: The sketch reads the sensor every 16ms and sends data to Python via Bridge. +- **Processing**: The backend converts units, feeds the detection Brick, and streams data to the UI. +- **Detection**: The Brick analyzes vibration patterns and triggers an event if the threshold is exceeded. +- **Tuning**: Slider adjustments in the web interface instantly update the detection sensitivity. -### 🔧 Backend (main.py) +## Understanding the Code + +Here is a brief explanation of the App components: + +### 🔧 Backend (`main.py`) + +The Python backend serves as the central hub. It performs the following tasks: - Initializes the `vibration_anomaly_detection` Brick. - Receives raw sensor data via `Bridge`, converts it from gravity units ($g$) to acceleration ($m/s^2$), and forwards it to the UI for plotting. @@ -56,83 +80,81 @@ Here is a brief explanation of the full-stack application: - Listens for threshold overrides from the UI to update the detection sensitivity in real-time. - Broadcasts anomaly alerts containing the anomaly score and timestamp. -### 💻 Frontend (index.html + app.js) +**Data Processing Logic:** + +The `record_sensor_movement` function receives the raw data, converts the units, feeds the detector, and simultaneously pushes the data to the frontend for the live plot. + +```python +def record_sensor_movement(x: float, y: float, z: float): + # Convert g -> m/s^2 for the detector + x_ms2 = x * 9.81 + y_ms2 = y * 9.81 + z_ms2 = z * 9.81 + + # Forward raw data to UI for plotting + ui.send_message('sample', {'x': x_ms2, 'y': y_ms2, 'z': z_ms2}) + + # Forward samples to the vibration_detection brick + vibration_detection.accumulate_samples((x_ms2, y_ms2, z_ms2)) +``` + +**Dynamic Thresholds:** + +When you move the slider in the browser, the frontend emits an event. The backend updates the detection brick's sensitivity immediately. + +```python +def on_override_th(value: float): + logger.info(f"Setting new anomaly threshold: {value}") + vibration_detection.anomaly_detection_threshold = value +``` + +### 💻 Frontend (`index.html` + `app.js`) + +The web interface handles visualization and user input: - **Real-time Plotting:** Uses an HTML5 Canvas to draw the live X, Y, Z acceleration waveforms. - **Interactive Controls:** Sends slider values to the backend to tune the algorithm parameters. -- **Alert System:** visualizes anomalies with status icons and maintains a chronological list of recent detections. +- **Alert System:** Visualizes anomalies with status icons and maintains a chronological list of recent detections. -## Understanding the Code +**Visualizing the Data:** + +The frontend receives the `sample` event and pushes it into an array. The `drawPlot` function clears the canvas and redraws the lines for X, Y, and Z to create the scrolling chart effect. + +```javascript +function drawPlot() { + if (!hasDataFromBackend) return; + + // Clear the canvas before drawing the new frame + ctx.clearRect(0, 0, currentWidth, currentHeight); + + // ... grid drawing code ... + + // Draw series (X, Y, Z) + drawSeries('x','#0068C9'); + drawSeries('y','#FF9900'); + drawSeries('z','#FF2B2B'); +} +``` -Once the application is running, you can access it from your web browser. At that point, the device begins performing the following: +### 🔧 Arduino Component (`sketch.ino`) -- **Reading sensor data on the MCU (Arduino sketch).** +The firmware reads the Modulino Movement sensor every 16ms. It sends the X, Y, and Z values to the Python backend using `Bridge.notify`. - The firmware reads the Modulino Movement sensor every 16ms. It sends the X, Y, and Z values to the Python backend using `Bridge.notify`. +```cpp +void loop() { + // ... timing logic (16ms interval) ... + + // Read new movement data from the sensor + has_movement = movement.update(); - ```cpp - void loop() { - // ... timing logic (16ms interval) ... - - // Read new movement data from the sensor - has_movement = movement.update(); + if(has_movement == 1) { + // Get acceleration values + x_accel = movement.getX(); + y_accel = movement.getY(); + z_accel = movement.getZ(); - if(has_movement == 1) { - // Get acceleration values - x_accel = movement.getX(); - y_accel = movement.getY(); - z_accel = movement.getZ(); - - // Send data to Python - Bridge.notify("record_sensor_movement", x_accel, y_accel, z_accel); - } - } - ``` - -- **Processing data and updating the UI (Python).** - - The backend serves as the central hub. It receives the raw data, converts the units for the algorithm, feeds the detector, and simultaneously pushes the data to the frontend for the live plot. - - ```python - def record_sensor_movement(x: float, y: float, z: float): - # Convert g -> m/s^2 for the detector - x_ms2 = x * 9.81 - y_ms2 = y * 9.81 - z_ms2 = z * 9.81 - - # Forward raw data to UI for plotting - ui.send_message('sample', {'x': x_ms2, 'y': y_ms2, 'z': z_ms2}) - - # Forward samples to the vibration_detection brick - vibration_detection.accumulate_samples((x_ms2, y_ms2, z_ms2)) - ``` - -- **Handling Dynamic Thresholds.** - - When you move the slider in the browser, the frontend emits an event. The backend updates the detection brick's sensitivity immediately. - - ```python - def on_override_th(value: float): - logger.info(f"Setting new anomaly threshold: {value}") - vibration_detection.anomaly_detection_threshold = value - ``` - -- **Visualizing the Data (JavaScript).** - - The frontend receives the `sample` event and pushes it into an array. The `drawPlot` function clears the canvas and redraws the lines for X, Y, and Z to create the scrolling chart effect. - - ```javascript - function drawPlot() { - if (!hasDataFromBackend) return; - - // Clear the canvas before drawing the new frame - ctx.clearRect(0, 0, currentWidth, currentHeight); - - // ... grid drawing code ... - - // Draw series (X, Y, Z) - drawSeries('x','#0068C9'); - drawSeries('y','#FF9900'); - drawSeries('z','#FF2B2B'); - } - ``` \ No newline at end of file + // Send data to Python + Bridge.notify("record_sensor_movement", x_accel, y_accel, z_accel); + } +} +``` \ No newline at end of file