SM2135

Feature

－stand by $\mathrm{I}_{2} \mathrm{C}$ protocol；
－Rd constant current control；
－Inter－chip current deviation $< \pm 5 \%$ ；
－Efficiency：＞90\％；
－PF＞0．5（Plus input electrolytic capacitor）

PF＞ 0.9 （Without input electrolytic capacitor）
－Integrated high－voltage power supply is started；
－Single－channel independent 256 Gradation current regulation stage

Applications

－led Bulb；
－led Ceiling；

Outline

SM2135 It is a five－channel intelligent dimmer led Constant current driver chips for driving

Low－power move led Lamps．

SM2135 have 5 Independent output ports，integrated chip I_{2} C Enter Agreement

Port may receive MCU An output current control output signal generated by each port 256 Continuously variable

And each output port of the driver led Blinking light to achieve a smart dimmer．

Pin map

ESOP8

A schematic circuit diagram of a typical

Pin Description

Pin	Pin Function
VIN	Chip Power Input
OUT1	Constant current output port 1 （Default red／green／blue）
OUT2	Constant current output port 2 （Default red／green／blue）
OUT3	Constant current output port 3（Default red／green／blue）
OUT4	Constant current output port 4（Default yellow／white）
OUT5	Constant current output port 5（Default yellow／white）
CLK	Dimming clock input
DATA	Dimming data input
GND	Chip ground

Limit parameters

Unless otherwise specified，the ambient temperature is $27^{\circ} \mathrm{C}$ ．

Parameters	symbol	range
Operating temperature	TOPT	$-20^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$
storage temperature	TSTG	$-50^{\circ} \mathrm{C} \sim+150^{\circ} \mathrm{C}$
ESD Pressure	VESD	＞ 2000 V
OUT Pressure port	VOUT	＜450V
VIN Pressure port	VIN	＜450V
OUT Port output current limit	IOUT	$<100 \mathrm{~mA}$
CLK／DATA Pressure port	K／VDATA	$<8 \mathrm{~V}$

Electrical operating parameters

Unless otherwise specified，the ambient temperature is $27^{\circ} \mathrm{C}$ ．

parameter	symbol	condition	Min Typ Max Units	Units		
VIN Port input voltage	Vin		9			V
OUT Input voltage	V out	I out $=30 \mathrm{~mA}$	2			V
OUT1／OUT2／OUT3 Output current	I Iout1／I оut2／I out		10	20	45	mA
OUT4／OUT5 Output current	Iouta／louts		10	30	60	mA
OUT Output current dimming range	ladjust	256 Gradation current level	1／255		1	Time
IOUT Accuracy	dl out	I out $=10 \mathrm{~mA} \sim 40 \mathrm{~mA}$			± 5	\％
Negative temperature compensation threshold	Tc			100		${ }^{\circ} \mathrm{C}$
Standby Power	Pstandby			0.15		W

Thermal Resistance Parameters

symbol	Explanation	ESOP8	unit
R thJA	Thermal resistance（1）	85	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note（ 1 ）：With a chip to be soldered 200 mm 2 Copper heat PCB Plate，copper foil thickness $\mathbf{3 5 u m}$ ．

Functional Description

SM2135 It is a five－channel intelligent dimmer led Constant current driver chips，may be parallel red／green／blue led Lights and white／yellow dichroic led Lamp，by

MCU Control is realized red／green／blue or white／yellow dichroic smart dimmer／tone color temperature．

SM2135 have 5 Independent output ports，integrated chip class IIC Input port protocol，may be received MCU Each input control signal output port

The current generated 256 Level changes and the red／green／blue trichromatic led Lamp or white／yellow dichroic led Lamp to achieve a smart dimmer switch

Intelligent dimming specific implementations

one type IIC Protocol Overview

by MCU Dimming signal transmission intelligent dimming control，the chip type IIC The two－wire communication protocol module receives the digital MCU Send tone

Optical signal into the clock signal CLK And data signals DATA The specific protocol rules are as follows：

CLK Port receives a clock signal，DATA Port receiving the data．

1）when CLK It is high，DATA High to low transition indicates the start of transmission；when CLK It is high，DATA From low to high indicating the end of transmission．

2）When transmitting data，adopting the serial transmission，each 8 Bit 1 Set of data，when CLK It is high，DATA Must remain the same，when CLK for

Low level，DATA To change．when CLK，Data is written from low to high（rising edge clock）．Each completed 8 Bit data transmission，i．e．， 8

After the clock，the first 9 Clock，chip internally generated response signal ACK will DATA Pin low（ 8byte＋1ack ）．

3）Each time data transmission，the first 1 group 8 Signal for the address data，selecting subsequent data writing position；the first 2 Start switch current set of signal data，

Intelligent light control chip；first 3 The first group to 7 group 8 Bit control signals R／G／B／W／Y ，respectively 256 Changes in levels of gray．

Note： 1 ：Byte0～Byte7 Data 8bits data．
2 ：Byte0 Address instruction．0xC0～0xC6 Choose to Byte1～Byte7 Address bit write data，address initialization，which Byte1 The maximum current control command，Byte2 for R／G／
B or W／Y Output selection instruction，Byte3～Byte7 for R／G／B／W／Y Gradation data of the lamp．
3 ：Byte1 Maximum current control command．The first 1bit（MSB）vacancy need not（write recommendation 0 ）The first $2 \sim 4$ bits It is controlled R／ G / B of 8 Maximum current level，
the first $5 \sim 8$ bits control W / Y of 16 Current maximum level．
4 ：Byte2 Yes R／G／B（0）or W／Y（1）Select the command．The first 1bit（ The default is the highest level 0）for 0 ，select 3 road R／G／B Output；the first 1 bit（ MSB）is 1 ，select 2 road W／Y Outp The first $2 \sim 8$ bits Vacant do（write recommendation 0 ）．

Address instruction（ Byte0）

B［2：0］：Address selection
000 ：The maximum current control address
001 ：select 3 Road or 2 Road Address
010 ：R Light gray data address
011 ：G Light gray data address
100 ：B Light gray data address
101 ：W Light gray data address
110 ：Y Light gray data address
Default：B［ 2：0＝］ 000

The maximum current control（Byte1）

R／G／B or W／Y select

B［7：0］：Select gray
00000000：0／256 Gray
00000001：1／256 Gray
00000010：2／256 Gray．．．

10 million ：128／256 Gray．．．

11111110：254／256 Gray 11111111：255／256 Gray Default： 00000000

Second，the application instance

1）select 3 road R／G／B Output，the maximum current $40 \mathrm{~mA}, R$ Light gray $2 / 255$ ，G Light gray 50／255，B Light gray 128／255 ：

START ： 11 million（Select Address byte1）

01，100，100（Write byte1 Data set R／G／B The maximum current 40 mA ）

00000000 （Write byte2 Data set R／G／B Output，W／Y shut down）

00000010 （Write byte3 Data set R Light gray level 2／255 ）

00，110，010（Write byte4 Data set G Light gray level 50／255 ）

10000000 （Write byte5 Data set B Light gray level 128／255 ）

STOP．

2）select 3 road R／G／B Output，the maximum current 40 mA ，R Light gray $7 / 255$ ，G Light gray $77 / 255$ ，B Light gray $88 / 255$ ；1ms Rear R

Light gray $5 / 255$ ，G Light gray $55 / 255$ ，B Light gray $155 / 255$ ，Procedure is as follows：

The foregoing protocol rules，MCU Enter the program as follows：

START1 ： 11 million（Select Address byte1）

01，100，100（Write byte1 Data set R／G／B The maximum current 40 mA ）

00000000 （Write byte2 Data set R／G／B Output，W／Y shut down）
00，000，111（Write byte3 Data set R Light gray level 7／255 ）

01，001，101（Write byte4 Data set G Light gray level 77／255 ）

01，011，000（Write byte5 Data set B Light gray level 88／255 ）

STOP1；

START2 ：11，000，010（Select Address byte3）

00，000，101（Write byte3 Data set R Light gray level $5 / 255$ ）

00，110，111（Write byte4 Data set G Light gray level 55／255 ）

10，011，011（Write byte5 Data set B Light gray level 155／255 ）

STOP2

3）select 2 road W / Y Output，the maximum current 50 mA ，W Light gray $2 / 255$ ，Y Light gray $7 / 255$ ；1ms Rear W Light gray $\mathbf{4 8 / 2 5 5 , Y \text { light }}$

START1： 11 million（Select Address byte1）

$00,101,000$（Write byte1 Data set W / Y The maximum current 50 mA ）

10000000 （Write byte2 Data set R／G／B shut down，W／Y Output）

STOP1；

START2 ：11，000，101（Select Address byte6 ）

00000010 （Write byte6 Data set W Light gray level 2／255 ）

00，000，111（Write byte7 Data set Y Light gray level 7／255 ）
STOP2 ；

START3 ：11，000，101（Select Address byte6）

00，110，000（Write byte6 Data set W Light gray level 48／255 ）

00，010，110（Write byte7 Data set Y Light gray level 22／255 ）

STOP3 ．

Third，the constant power settings

Maximum current chip I toal Chip set the maximum current Iou When，the constant power setting rules are as follows：

1 ： 3 road R／G／B Output，R Light gray data＋G Light gray data＋B Light gray data ≤ 255＊（ $I_{\text {total }}$ I out）．

2 ： 2 road W／Y Output，W Light gray data＋Y Light gray data $\leq 255^{*}$（ $I_{\text {totale }}$ lout $)$ ．

For example as follows：

Consider the definition of power chip 8 Watts，the voltage 250V，The maximum current chip I total $=30 \mathrm{~mA}$ Better．SM2135 Chip Set R／G／B Maximum current Iour＝20mA ， then R Light gray data $+G$ Light gray data $+B$ Light gray data $\leq 255^{*}(1$ man I out $)=255^{*}(30 / 20)=382$ ．Such as R Light gradation data $=100, G$ Light gradation data $=111$ ， It can only set B Light gray data $\leq \mathbf{3 8 2 - 1 0 0 - 1 1 1}=\mathbf{1 7 1}, 1 \mathrm{~ms}$ Rear R Light gradation data $\mathbf{= 1 1 0 , G \text { Light gradation data } = 9 1 \text { You can only set B Light gray Number }}$

According $\leq 382-110-91=181$.

Consider the definition of power chip 8 Watts，the voltage 250 V ，The maximum current chip I total＝30mA Better．SM2135 Chip Set W／Y Maximum current Iour＝40mA ， then W Light gray data＋Y Light gray data $\leq 255^{*}\left(I_{\text {toank }} I\right.$ out $)=255^{*}(30 / 40)=191$ ．Such as W Light gradation data $=100$ You can only set Y Light gray data \leq
$191-100=91,1 \mathrm{~ms}$ Rear W Light gradation data $=50$ You can only set Y Light gray data $\leq 191-50=141$.

Fourth，the typical performance curve

Input voltage－power meter

Map 2．Input voltage and input power curve

Power－temperature diagram

ESOP8 Package thermal $\mathrm{P}_{\mathrm{o}}(\mathrm{W})$ And the ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$ is performed as follows：

Map 3．Package thermal P_{D} And the ambient temperature Ta Relationship lines

Typical application examples chip

Map 4．SM2135 Typical application circuit

Attached AC－DC Application of a circuit diagram of the power supply module

SM2135 chip OUT1～OUT5 Ports are series of red／green／blue／white／yellow colored led Light，wherein the red／green／blue as a group led Lights，white／yellow another set of led Light，two groups led Light by MCU Alternate control work，can not work simultaneously．

RGB led The default maximum current output lamp 20 mA ，accessible MCU tweak to $10 \mathrm{~mA} \sim 45 \mathrm{~mA}$ ；White／yellow led The default maximum lamp current 40 mA ，
accessible MCU tweak to $10 \mathrm{~mA} \sim 60 \mathrm{~mA}$

Each output port connected to led Lamps have an independent 256 Gray－level data，by MCU Brightness adjustment．In order to ensure the application of the chip

[^0]
Package

ESOP8

[^0]: Reliability，has been set constant output power，and a constant specific dimming output power setting supra．

