
Benchmark of Cyclus Fuel Cycle Simulation Tool in
Transition Scenario

Jin Whan Bae1, Joshua L. Peterson-Droogh2, Kathryn Huff1

1Dept. of Nuclear, Plasma, and Radiological Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL

2Oak Ridge National Laboratory, Oak Ridge, TN

Abstract

Numerous nuclear fuel cycle system modeling codes have been developed to
perform fuel cycle transition analyses from a once-through cycle to an advanced
fuel cycle. Verification studies compare different fuel cycle analysis tools against
each other to test agreement and identify sources of difference. This paper
benchmarks Cyclus, the agent-based, open-source fuel cycle simulation code,
against a verification study [1] for DYMOND [2], VISION [3], ORION [4], and
MARKAL [5]. The study reveals that Cyclus’ results match the spreadsheet
results closely, with minor differences caused by reactor module behavior.

1. Introduction

Fuel cycle simulators act as an crucial tool to aid decision in policy and fuel
cycle strategies. To meet this need from various institutions, a multitude of fuel
cycle simulators were developed, using different methods and different structures
to simulate the material flow in the nuclear fuel cycle. The difference in the
algorithm of fuel cycle analysis codes combined with a small user community
make validation studies necessary to gain confidence of the capability of the
code as well as its agreement with other analysis codes.

This study benchmarks Cyclus’ results against that of other well-known
codes, such as DYMOND [2], VISION [3], ORION [4], and MARKAL [5]. We
take the input parameters and results from a validation study [1] already done
for the mentioned tools for a transition scenario from an open fuel cycle to
an advanced fuel cycle with reprocessing. In the benchmark [1], the ‘model
solutions’ generated from an excel worksheet are compared to each code results,
and the results show excellent agreement.

1.1. Cyclus

Cyclus is an agent-based fuel cycle simulation framework [6], which means
that each reactor, reprocessing plant, and fuel fabrication plant is modeled as an
agent. A Cyclus simulation contains prototypes, which are fuel cycle facilities
with pre-defined parameters, that are deployed in the simulation as facility

Preprint submitted to Annals of Nuclear Energy July 3, 2018



agents. Encapsulating the facility agents are the institution and region.
A region agent holds a set of institutions. An institution agent can de-
ploy or decommission facility agents. The institution agent is part of a
region agent, which can contain multiple institution agents. Several ver-
sions of Institution and region exist, varying in complexity and functions
[7]. DeployInst is used as the institution archetype for this work, where the
institution deploys agents at user-defined timesteps.

At each timestep (one month), agents make requests for materials or bid to
supply them and exchange with one another. A market-like mechanism called
the dynamic resource exchange [8] governs the exchanges. Each material re-
source has a quantity, composition, name, and a unique identifier for output
analysis. The timestep execution in Cyclus follows Build, Tick, dynamic
resource exchange (DRE), Tock, and Decommission, as illustrated in figure 1.
The Tick, and Tock phases are for each agent to perform actions, such as trans-
mutation, separation, or generation of materials before and after the market
exchange phase.

Build (kernel)

Tick (agent)

Dynamic Resource Exchange (kernel)

Tock (agent)

Decommission (kernel)

Figure 1: Cyclus timestep execution steps.

The modularity of Cyclus allows a low barrier of entry for developers, since
developers can create an archetype (e.g. Reactor module, Reprocessing module)
without extensive knowledge of the Cyclus framework.

2. Methodology

The benchmark paper [1] has comprehensive simulation parameters that al-
low reproduction of the transition scenario in Cyclus. In this study, we used the
Cycamore [6] archetype library to model all fuel cycle facilities. Cycamore
libraries contain simple fuel cycle facility models. For example, the Reactor
module does depletion calculations through user-defined recipes.

Cyclus outputs files in either .sqlite or .h5 format. In this study, we
used the .sqlite format and analyzed the output file using a python script.

2



After post-processing of the output data, we overlap the results with the bench-
mark’s solutions for comparison.The input file and analysis procedures are all
in [zenodo].

The analysis and benchmark is performed iteratively, where the we improve
the original result by communicating with the authors of the benchmark. From
the original result, the reasons for the differences were analyzed and small edits
in the source code were made accordingly. Major differences in the source code
are not edited but simply explained in detail as to how they contribute to the
difference.

3. Fundamental Code Differences in Cyclus

Cyclus has fundamental code differences than some fuel cycle analysis codes
used in the benchmark [1].

Cyclus has a default timestep of a month. In order to take this into account,
we calculate the annual value (i.e. average value for inventory values and sum
of 12 months for throughput values) for each result. The timestep in Cyclus
can be changed into a year without changing the source code, but Cyclus’
timestep execution (figure 1) causes a delay in the material flow. Thus, having
the timestep be 12 months allows the lessening of the impact of the delay due
to the Cyclus timestep execution.

Similarly, Cyclus has discrete execution steps per timestep that might cause
delays or contort the results from other simulators. For example, decommission-
ing of facilities occur at the end of a timestep, while building of facilities occur
at the beginning of a timestep.

The Cycamore recipe reactor depletes half of its core when decommis-
sioned, whereas the codes in the benchmark [1] deplete all its fuel when decom-
missioned. This causes a major discrepancy for transuranic elements (TRU)
inventory. For this study, we changed the Cycamore source code to deplete
all its assemblies to the depleted recipe. Also, the Cycamore recipe reactor
treats each batch (and assembly) as a discrete material, while some codes have
continuous fuel discharge. This produces differences in the results because the
batches in the benchmark [1] are in fractions. In this study, the Light Water Re-
actor (LWR) batch size and cycle time is increased, while decreasing the batch
number to keep the core size constant. We simply round up the Sodium-Cooled
Fast Reactor (SFR) batch number, while the batch size and cycle time are kept
constant. This increases the core size by 1.08%, which is negligible, but will be
discussed in the results section. We list the differences in table 1.

Note that all the differences could have been mediated by changing the
archetype source codes. However, the only change made was the reactor deple-
tion behavior at decommission due to its large impact. Note that the goal of
this study is to show current Cyclus agreement with other codes and identify
differences, not to alter Cyclus to match the other codes.

3



Table 1: Difference in Batch number and core size

Category Benchmark [1] This study
LWR Batches 4.5 3
LWR Batch size [tHM] 19.91 29.86
LWR Core size [tHM] 89.59 89.59
LWR Cycle time 1 year 1.5 years
SFR Batches 3.96 4
SFR Batch size [tHM] 3.95 3.95
SFR Core size [tHM] 15.63 15.8

4. Results

We represent each Cyclus result as a solid line, and the benchmark solution
as a dotted line for visualization. The results are simply a reproduction of
the plots displayed in the benchmark. We obtained the benchmark solutions
through personal contact with benchmark paper’s author Bo Feng at Argonne
National Laboratory.

Figure 2 shows the deployed reactor capacity, and figure 3 shows the LWR
retirement and SFR deployment timeseries. The two plots show exact agreement
with the benchmark solutions.

Figure 2: Deployed reactor capacities at the end of each year.

Figure 4 shows the annual fuel loading rate. The initial fuel loading for 100
LWR reactors were edited to match the plot in the verification study results.
Note the oscillations for the LWR fuel loading is caused by the refueling period
being 18-month refuel cycle for all LWR reactors aggregated into 12-month
groups. Note also that the total values are equal for both plots.

Although indistinguishable in figure 4, there is a small difference with SFR
fuel loading proportional to the core mass difference, as mentioned in the pre-
vious section. Figure 5 shows the differences normalized by the core mass dif-

4



Figure 3: LWRs retired and SFRs started up each year.

ferences, overlapped with the SFR deployment. This shows that the differences
only occur during deployment due to the difference in core mass.

Figure 4: Annual fresh fuel loading rates (first cores and reload fuel).

Figure 6 shows the inventory of discharged Used Nuclear Fuel (UNF) in
mandatory cooling stage. It also oscillates between the benchmarks solution,and
converges, caused by the influx and the outflux of UNF into and out of the
storage facility. Note that for most plots the SFR inventory and fuel loading
exactly matches the benchmark solutions, minus the small difference due to core
size.

Figure 7 shows similar results for the inventory of cooled UNF waiting for
reprocessing. Unlike the previous plot, however, the oscillation peaks meet with
the benchmark solution. This is because the cooled UNF inventory is measured
by the cumulative sum of UNF that has been cooled subtracted by the UNF
reprocessed at that timestep. Thus, the peaks in the oscillation correspond
to the cooled inventory in the storage facility before it sends its inventory to

5



Figure 5: Difference of annual fresh SFR fuel loading rates (Cyclus - Benchmark) normalized
by the core mass difference of an SFR due to fractional batch size.

reprocessing.

Figure 6: Inventory of discharged UNF in mandatory cooling storage.

Figure 8 shows the reprocessing throughput, which also oscillates between
the benchmark solution. Note that no oscillation exists in the beginning because
the LWR UNF reprocessing plant throughput is maximized at 2,000 tons per
year.

Figure 9 shows the inventory of unused TRU recovered from UNF. The Cy-
clus results follows the benchmark solutions closely. However, the difference in
core size causes Cyclus results to be smaller, since more TRU is used to start up
the newly deployed SFRs. The difference decreases as the SFRs decommission,
discharging more UNF (thus TRU) than the benchmark.

6



Figure 7: Inventory of discharged and cooled UNF waiting for reprocessing.

Figure 8: Annual reprocessing throughputs.

Figure 9: Inventory of unused TRU recovered from UNF.

7



5. Discussion

We benchmarked Cyclus, the agent-based fuel cycle simulator with results
from another verification study and saw good agreement in a transition scenario.

Throughout this work, two major differences were identified that led to the
deviation of Cyclus results to that of the excel sheet. First, the Cycamore
reactor depletes only half of its core when decommissioned. Second, Cyclus,
unlike other codes examined in the benchmark (except ORION), only has dis-
crete batches for fuel discharge. We change the first issue by changing one line
in the source code. However, we did not change the second issue intentionally
to show that the final results still match the benchmark solutions.

This study proves Cyclus as a capable tool for modeling fuel cycle transition
scenarios, and shows promise for expansion and future development.

6. Acknowledgments

The work done was funded through the Nuclear Engineering Science Labo-
ratory Synthesis (NESLS) program. We thank Eva Davidson from Oak Ridge
National Laboratory (ORNL) and Bo Feng from Argonne National Laboratory
(ANL) for their aid in providing benchmark solutions and insight for this work.

References

[1] B. Feng, B. Dixon, E. Sunny, A. Cuadra, J. Jacobson, N. R. Brown,
J. Powers, A. Worrall, S. Passerini, R. Gregg, Standardized verification of
fuel cycle modeling 94 300–312. doi:10.1016/j.anucene.2016.03.002.
URL http://www.sciencedirect.com/science/article/pii/S0306454916301098

[2] A. M. Yacout, J. J. Jacobson, G. E. Matthern, S. J. Piet, A. Moisseytsev,
Modeling the nuclear fuel cycle, in: The 23rd International Conference of
the System Dynamics Society,” Boston, Citeseer.

[3] J. J. Jacobson, A. M. Yacout, G. E. Matthern, S. J. Piet, D. E. Shropshire,
R. F. Jeffers, T. Schweitzer, Verifiable fuel cycle simulation model (VISION):
a tool for analyzing nuclear fuel cycle futures 172 (2) 157–178.

[4] R. Gregg, C. Grove, Analysis of the UK nuclear fission roadmap using the
ORION fuel cycle modelling code, in: Proc of the IChemE nuclear fuel cycle
conference, Manchester, United Kingdom.

[5] C. Shay, J. DeCarolis, D. Loughlin, C. Gage, S. Yeh, S. Vijay, E. L. Wright,
EPA US national MARKAL database: database documentation.

[6] K. D. Huff, M. J. Gidden, R. W. Carlsen, R. R. Flanagan, M. B. McGarry,
A. C. Opotowsky, E. A. Schneider, A. M. Scopatz, P. P. H. Wilson,
Fundamental concepts in the cyclus nuclear fuel cycle simulation framework
94 46–59. doi:10.1016/j.advengsoft.2016.01.014.
URL http://www.sciencedirect.com/science/article/pii/S0965997816300229

8



[7] K. Huff, M. Fratoni, H. Greenberg, Extensions to the cyclus ecosystem in
support of market-driven transition capability, Tech. rep., Lawrence Liver-
more National Laboratory (LLNL), Livermore, CA (2014).

[8] M. J. Gidden, An agent-based modeling framework and application for
the generic nuclear fuel cycle, Ph.D. thesis, The University of Wisconsin-
Madison (2015).

9


