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INTRODUCTION

For many fuel cycle simulators, it is currently up to the
user to define a deployment scheme of supporting facilities to
ensure that there is no gap in the supply chain. To ease setting
up nuclear fuel cycle simulations, Nuclear Fuel Cycle (NFC)
simulators should bring demand responsive deployment de-
cisions into the dynamics of the simulation logic [1]. Thus,
a next generation NFC simulator should predictively and au-
tomatically deploy fuel cycle facilities to meet user defined
power demand.

Cyclus is an agent-based nuclear fuel cycle simulation
framework [2]. In Cyclus, each entity (i.e. Region, Institution,
or Facility) in the fuel cycle is an agent. Region agents repre-
sent geographical or political areas that institution and facility
agents can be grouped into. Institution agents control the de-
ployment and decommission of facility agents and represents
legal operating organizations such as a utility, government,
etc [2]. Facility agents represent nuclear fuel cycle facilities.
Cycamore [3] provides agents to represent process physics of
various components in the nuclear fuel cycle (e.g. mine, fuel
enrichment facility, reactor).

The Demand-Driven Cycamore Archetypes project
(NEUP-FY16-10512) aims to develop Cyclus’s demand-
driven deployment capabilities. This capability is added as
a Cyclus Institution agent that deploys facilities to meet the
front-end and back-end fuel cycle demands based on a user-
defined commodity demand. This demand-driven deployment
capability is called d3ploy.

In this paper, we explain the capabilities of d3ploy,
demonstrate how d3ploy minimizes undersupply of all com-
modities in a simulation while meeting key simulation con-
straints. Constant, linearly increasing, and sinusoidal power
demand transition scenarios are demonstrated. Insights are
discussed to inform parameter input decisions for future work
in setting up larger transition scenarios that include many
facilities.

D3PLOY CAPABILITIES

At each time step, d3ploy predicts demand and supply of
each commodity for the next time step. Then, d3ploy deploys
facilities to meet predicted demand. D3ploy’s primary objec-
tive is minimizing the number of time steps of undersupply of
any commodity. Figure 1 shows the flow of d3ploy’s logic at
every time step.

When there exists a predicted undersupply of a commod-
ity, d3ploy will deploy the fewest number of available facili-
ties to meet the predicted undersupply.

Basic User-Defined Input Variables

The user inputs specific variables to customize their sim-
ulation. Descriptions of each input variable is found in the
README of the d3ploy github repository [4].

Essentially, the user must define the facilities for the insti-
tution to control and their corresponding capacities. The user
must also define the driving commodity, its demand equation
and what method the institution predicts demand and supply
with. For example, the user can define a demand equation for
power of 1000t and d3ploy will deploy available reactor and
supporting facilities to meet the defined power demand.

The user can also provide a time dependent equation
that governs preference for that facility compared to other
facilities that provide the same commodity. For example, the
user can define a Light Water Reactor (LWR) and a Sodium-
Cooled Fast Reactor (SFR) to have preferences of 101 − t and
t respectively. The LWR will have a larger preference than the
SFR up to time step 50. Therefore, when there is a demand
for power, a LWR will be deployed before time step 51 while
a SFR will be deployed after time step 50.

The user has an option to constrain deployment of a fa-
cility until a sizable inventory of a specific commodity is
accumulated. The user can also define an initial facility list of
facilities that are present in the institution at the beginning of
the simulation.

Prediction Algorithms

Three interchangeable algorithm types govern demand
and supply predictions: non-optimizing, deterministic opti-
mizing, and stochastic optimizing.

Three methods were implemented for the non-optimizing
model: moving average (MA) autoregressive moving aver-
age (ARMA), autoregressive conditional heteroskedasticity
(ARCH). Four methods were implemented for the determinis-
tic optimizing model: Polynomial fit regression, simple expo-
nential smoothing, triple exponential smoothing (holt-winters),
and fast fourier transform (fft). One method was implemented
for stochastic optimizing model: stepwise seasonal.

The user can choose which prediction algorithm governs
each specific d3ploy facility. The effectiveness of a prediction
algorithm depends on the type of power demand in a scenario
and the type of commodity (demand driving commodity vs
non-driving commodity, demand driven deployment vs sup-
ply driven deployment etc.). For example, the most effective
method for predicting demand and supply for the power com-
modity in a scenario with a sinusoidal power demand is the
triple exponential smoothing method. Whereas, for the non-
driving commodities in the same scenario, the fast fourier
transform method is more effective than triple exponential
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Fig. 1: D3ploy logic flow at each time step in Cyclus.

smoothing.

Difference between Demand and Supply Driven Institu-
tions

Within d3ploy, there are two institutions: Demand-
DrivenDeploymentInst and SupplyDrivenDeployment.
Inst. The prior is used for the front-end of the fuel cycle and
the latter is used for the back-end. Front-end facilities are facil-
ities that exist before the reactor in a nuclear fuel cycle such as
a fuel fabrication facility etc. Back-end facilities are facilities
that exist after the reactor in a nuclear fuel cycle, such as a
reprocessing facility etc. The reason for this separation is to let
facilities have the choice to demand for supply or demand for
capacity. For example, for front end facilities, the reactor has
a demand for fuel, using DemandDrivenDeploymentInst,
it triggers the fuel fabrication facility to deploy facilities to

create supply to meet the demand. Whereas, for back end
facilities, the reactor generates spent fuel , there is a demand
for waste repository facility to accept the spent fuel, using
SupplyDrivenDeploymentInst, it triggers the deployment
of a waste repository to create a capacity for spent fuel to meet
the available supply.

Installed Capacity

The user can choose between deploying facilities based
on the difference between predicted demand and predicted sup-
ply or predicted demand and installed capacity. There are two
reasons for wanting to use installed capacity over predicted
supply. The first is for facilities that provide intermittent sup-
ply, such as a reactor facility that has a designated refueling
time. During time steps where a reactor is refueling, the user
might not want d3ploy to deploy more facilities to make up



TABLE I: Transition Scenario Parameters that are consisted for constant, linear increasing and sinusoidal power demand
simulations

Parameters Description
Facilities Present Source (Capacity: 3000kg),

Reactor (Capacity: 1000MW),
Sink (Capacity: 50000kg)

New Reactor Parameters Cycle time: 18, Refuel time: 1
Driving Commodity Power

TABLE II: Constant Power Demand Transition Scenario’s Parameters

Parameters Description
Overall Demand Equation 10000 MW

Power Commodity Prediction Method Fast Fourier Transform
Supply Buffer 3000 MW (3 reactor capacities)

Fuel Commodity Prediction Method Moving Average
Supply Buffer 0 kg

Spent Fuel Commodity Prediction Method Moving Average
Capacity Buffer 0 kg

for the lack of supply caused by this one time step gap in sup-
ply. The second is for situations where the input commodity
for a facility has run out in a simulation and the facility that
produces the input commodity is no longer commissionable.
Therefore, with the demand for the output commodity of that
facility, d3ploywould deploy that facility to meet the demand,
however due to the lack of the input commodity, even if there
are infinite numbers of that facility, it will not produce the
output commodity. For example, in a transition scenario to
fast reactors that require plutonium from LWR’s spent nuclear
fuel (SNF), if the fast reactor’s demand for plutonium exceeds
the inventory provided by LWRs before they were decommis-
sioned, it will result in the deployment of mixer facilities that
generate the fast reactor fuel despite the lack of plutonium
to generate the fuel. This is an example of a poorly set up
transition scenario.

Supply/Capacity Buffer

In DemandDrivenDeploymentInst, the user can choose
to provide a buffer for predicted supply. D3ploy will deploy
facilities to meet the predicted demand with the additional
buffer.

In SupplyDrivenDeploymentInst, the user can choose
to provide a buffer for predicted capacity. D3ploy will deploy
facilities to meet the predicted supply with the additional buffer.
The buffer can be defined as a percentage value or an absolute
value.

DEMONSTRATION OF D3PLOY CAPABILITIES

Constant, linearly increasing and sinusoidal power de-
mand simulations are shown to demonstrate d3ploy’s capa-
bilities. A balance between the various system parameters
must be met for each type of simulation to meet the goal of
minimizing undersupply and under capacity for the various

commodities. The input files and scripts to produce the plots
in this paper can be reproduced using [4].

These simulations are basic transition scenarios that only
includes three types of facilities: source, reactor and sink.
All of the simulations begin with a ten reactor facilities,
reactor1 to reactor10. These reactors have staggered cy-
cle lengths and lifetimes so that they do not all refuel and
decommission at the same time steps. D3ploy deploys reactor
facilities of new reactor type to meet unmet demand for
power that occurs when the ten initial reactor facilities begin
to decommission. All the simulations deploy facilities based
on the relationship between predicted demand and installed
capacity. This capability was discussed in the previous section.
Table I shows the simulation parameters that are consistent
across all the discussed scenarios.

These basic transition scenarios were set up to demon-
strate d3ploy’s capabilities for use in simulating transition
scenarios and also to inform decisions about parameter inputs
when setting up larger demand transition scenarios that include
many facilities.

Transition Scenario: Constant Demand

In this section, a constant power transition scenario is
shown. Table II shows the simulation parameters used in this
transition scenario.

Figures 2a, 2b and 2c demonstrate the capability of
d3ploy to deploy reactor and supporting facilities to meet the
user determined power demand and subsequently demanded
secondary commodities with minimal time steps with an un-
dersupply. Table III shows the number of time steps where
there is undersupply for each commodity in this scenario. In
figure 2a, there are no time steps where the supply of power
falls under demand. By using a combination of using the fast
fourier transform method for predicting demand and setting
the supply buffer to 3000MW (the capacity of 3 reactors), the



(a) Power demand and supply plot

(b) Fuel demand and supply plot

(c) Spent Fuel demand and supply plot

Fig. 2: Transition Scenario: Constant Power Demand of 10000MW



TABLE III: Undersupply results for each commodity in each scenario

Transition Scenario Commodity No. of time steps with under-
supply

Constant Power Fuel 1
Power 0
Spent Fuel 0

Linearly Increasing Power Fuel 1
Power 0
Spent Fuel 0

Sinusoidal Power Fuel 1
Power 1
Spent Fuel 0

TABLE IV: Linearly Increasing Power Demand Transition Scenario’s Parameters

Parameters Description
Overall Demand Equation Time<40: 10000 MW, Time>40:

250*t MW

Power Commodity Prediction Method Fast Fourier Transform
Supply Buffer 2000 MW (2 reactor capacities)

Fuel Commodity Prediction Method Moving Average
Supply Buffer 1000 kg

Spent Fuel Commodity Prediction Method Fast Fourier Transform
Capacity Buffer 0 kg

TABLE V: Sinusoidal Power Demand Transition Scenario’s Parameters

Parameters Description
Overall Demand Equation 1000sin( π∗t3 ) + 10000

Power Commodity Prediction Method Triple Exponential Smoothing
Supply Buffer 2000 MW (2 reactor capacities)

Fuel Commodity Prediction Method Moving Average
Supply Buffer 1000 kg

Spent Fuel Commodity Prediction Method Fast Fourier Transform
Capacity Buffer 0 kg

user is able to minimize the number of time steps where there
is an undersupply of every commodity. It is important to per-
form a small sensitivity analysis of the size of buffer to use for
each commodity to ensure that there is no undersupply based
on the nuances of the facility type: refueling in a reactor etc.

In figure 2b, a facility with a large throughput of fuel is
initially deployed to meet the large initial fuel demand for the
starting up of ten reactors. By having an initial facility with a
large throughput exist for the first few time steps in the simu-
lation, d3ploy is prevented from deploying a large amount of
supporting facilities that end up being redundant at the later
parts of the simulation. This is a reflection of reality where
reactor manufacturers will accumulate an appropriate amount
of fuel inventory before starting up reactors. There is one time
step where there is an undersupply after the decommissioning
of the large initial facility. This is unavoidable the prediction
methods in d3ploy are unable to predict this sudden drop in
demand.

Transition Scenario: Linearly Increasing Demand

In this section, a transition scenario where there is a lin-
early increasing power demand is shown. Table IV shows the
simulation parameters used in this transition scenario.

Figures 3a, 3b and 3c demonstrate the capability of
d3ploy to deploy reactor and supporting facilities to meet the
user determined power demand and subsequently demanded
secondary commodities for a linearly increasing power de-
mand. The fast fourier transform method for predicting power
demand is used for this scenario which is similar to what was
used for the constant power demand transition scenario. A
smaller supply buffer for power was used.

Transition Scenario: Sinusoidal Demand

In this section, a transition scenario with sinusoidal power
demand is shown. A sinusoidal power demand is the reflection
of power demand in the real world where power usage is



(a) Power demand and supply plot

(b) Fuel demand and supply plot

(c) Spent Fuel demand and supply plot

Fig. 3: Transition Scenario: Linearly Increasing Power Demand



(a) Power demand and supply plot

(b) Fuel demand and supply plot

(c) Spent Fuel demand and supply plot

Fig. 4: Transition Scenario: Sinusoidal Power Demand



higher in the winter and summer and is smaller in the spring
and fall. Table V shows the simulation parameters used in this
transition scenario.

Figures 4a, 4b and 4c demonstrate the capability of
d3ploy to deploy reactor and supporting facilities to meet the
user determined power demand and subsequently demanded
secondary commodities for a sinusoidal power demand.

For a sinusoidal power demand, the use of the triple ex-
ponential method for predicting demand is more effective
than the fast fourier transform method which was used for
the constant and linearly increasing power demand transition
scenarios. This is because the triple exponential smoothing
method excels in forecasting data points for repetitive seasonal
series of data.

CONCLUSION

This paper describes the capabilities of d3ploy, demon-
strates the use of d3ploy for an assortment of transition sce-
narios: constant power demand, linearly increasing power
demand and sinusoidal power demand. It also provides in-
sights on parameter inputs to ease the setting up of larger
transition scenarios that include many facilities. Future work
includes setting up similar power demand transition scenarios
for extended nuclear fuel cycles that incorporate reprocess-
ing facilities etc. A more realistic transition scenario could
be explored such as an increasing power demand that has a
sinusoidal pattern to represent seasons in a year for a growing
power demand trend.
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