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Introduction

Previous Work
Previous work towards studying repository loading have used:
• spent nuclear fuel (SNF) with an average burnup
composition [1, 5]

• a lumped capacitance thermal model for calculating
temperature in a Cyclus repository model [2]

Motivation
The goal of this work is to improve on the repository models and
use U.S. historical SNF inventory data in simulations to more
accurately study the loading of a waste repository.
These goals will be achieved by:
• using UNF-ST&DARDS Unified Database (UDB) [6] that has
historic assembly-specific data (e.g, isotopic
composition, heat) in Cyclus simulations

• implementing a more accurate thermal model within a
Cyclus repository model

Objectives

• Create a Cyclus spent fuel conditioning model that
packages spent fuel bundles into packages which have
user-defined properties.

• Create a Cyclus medium-fidelity repository model that
gives accurate time and spatial dependent temperature
values and loads the repository based on a user-selected
loading strategy.

Cyclus

Cyclus is an agent-based extensible framework for modeling flow
of material through user-defined nuclear fuel cycles [4]. In Cy-
clus, each facility in the fuel cycle is modeled individually and
the facilities interact with one another as independent agents.

Figure: Cyclus API allows for modular build of simulations [4]

Spent Fuel Conditioning Model

The spent fuel conditioning model accepts spent fuel bundles and
puts them into a cylindrical waste package.
In the spent fuel conditioning model, the user can define variables:
For each layer,
• radius
• thermal conductivity
• thermal diffusivity
For each package,
• Number of spent fuel bundles
• Radius and height

Waste Repository Model

The waste repository model accepts waste packages and emplaces
them into available positions within the waste repository based
on a thermal criteria. The thermal criteria is a temperature limit
at the interface between the waste package surface and the host
geology, that is set based on the repository’s host geology.

Table: Temperature limit at waste package surface, thermal conductivity and
thermal diffusivity for each host geology [7]

Rock Type Tlimit [◦C] k [ WmK ] α [m2

s ]
Granite 100 2.5 1.13
Clay 100 1.75 6.45
Salt 200 4.2 2.07

In the waste repository model, the user can define the variables:
• Capacity
• Distance between waste packages
• Distance between drifts
• Repository host geology
• Loading Strategy

Thermal Model
After the addition of new waste packages at each time step, the
waste repository model recalculates the temperature at each loca-
tion in the repository. If the addition of this new package causes
its temperature to exceed the thermal limit, it will be placed back
into the buffer. A thermal model that relies on a transient ‘outside’
model and quasi-steady-state ‘inside’ model is used to accurately
determine the temperature in the repository [7].

Transient ‘Outside’ Model
The ‘outside’ model assumes a homogenous medium with the En-
gineered Barrier System (EBS) replaced by the geologic medium.
Figure 1 shows the conceptual layout of the central waste package
and the adjacent point and line sources.

Figure: ‘Outside’ Model: Conceptual layout of the central waste package, its
adjacent point sources and adjacent line sources [7]

Temperature solutions for the central waste package, adjacent
point and line sources are superimposed to calculate the temper-
ature at specific points in the repository. The equations for calcu-
lating temperature of each contributing component are included
below [7, 1, 3].
The central drift consists of one finite line source which represents
the central waste package.
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The central drift also consists of point sources that represent neigh-
boring waste packages in the central drift.
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The neighboring drifts are represented by infinite line sources.
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Waste Repository Model

Quasi-Steady-State ‘Inside’ Model
The ‘inside’ model is considered to be at a quasi-steady-state con-
dition because EBS has a relatively low thermal mass compared
to the infinite geologic medium [7]. The steady state calculation
is performed at each time step with the heat source and interface
temperature as boundary conditions. Figure 1 illustrates an EBS
layout.

Figure: Layers in an Engineering Barrier System [7]

Future Work

• Run Cyclus simulations with U.S. historical SNF
inventory data, the spent fuel conditioning and repository
models to study how waste package acceptance strategies
impact repository loading
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