
Demand Driven Deployment Capabilities in Cyclus, a
Fuel Cycle Simulator

Gwendolyn J. Cheea, Roberto E. Fairhurt Agostaa, Jin Whan Baeb, Robert R.
Flanaganc, Anthony Scopatzc, Kathryn D. Huffa,∗

aDept. of Nuclear, Plasma, and Radiological Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL 61801

bOak Ridge National Laboratory, Oak Ridge, TN, United States
cNuclear Engineering Program, University of South Carolina

Abstract

Keywords: nuclear fuel cycle, python, time series forecasting

1. Introduction

For many fuel cycle simulators, reactor facilities are automatically deployed

to meet a user-defined power demand. However, it is up to the user to define

a deployment scheme of supporting facilities to ensure that there is no gap in

the supply chain that results in idle reactor capacity. Some users choose to set5

support facilities to have an infinite capacity to avoid this issue, but this is an

inaccurate representation of reality. It is straightforward to manually determine

a deployment scheme for a once-through fuel cycle, however, it is difficult to

effectively implement for complex closed fuel cycle scenarios. To ease setting

up of realistic Nuclear Fuel Cycle (NFC) simulations, a Nuclear Fuel Cycle10

Simulator (NFCSim) should bring demand responsive deployment decisions into

the dynamics of the simulation logic [1]. Thus, a next generation NFCSim should

predictively and automatically deploy fuel cycle facilities to meet a user defined

power demand.

Cyclus is an agent-based nuclear fuel cycle simulation framework [2]. In15

Cyclus, each entity (i.e. Region, Institution, or Facility) in the fuel
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Fuel Cycle Open or Closed Fuel Type Reactor Type

EG01

(current)
Open Enriched-U Thermal critical reactors

EG23 Closed
Recycle of U/Pu

with natural-U fuel
Fast critical reactors

EG24 Closed
Recycle of U/TRU

with natural-U fuel
Fast critical reactors

EG29 Closed
Recycle of U/Pu

with natural-U fuel

Fast critical reactors and

thermal critical reactors

EG30 Closed
Recycle of U/TRU

with natural-U fuel

Fast critical reactors and

thermal critical reactors

Table 1: Descriptions of the current and other high performing nuclear fuel cycle evaluation

groups described in the evaluation and screening study [4].

cycle is an agent. Region agents represent geographical or political areas that

institution and facility agents can be grouped into. Institution agents control

the deployment and decommission of facility agents and represents legal operating

organizations such as a utility, government, etc. [2]. Facility agents represent20

nuclear fuel cycle facilities. Cycamore [3] provides facility agents to represent

process physics of various components in the nuclear fuel cycle (e.g. mine, fuel

enrichment facility, reactor).

1.1. Context of Work

An evaluation and screening study of a comprehensive set of nuclear Fuel25

Cycle Options (FCO) [4] was conducted to assess for performance improvements

compared to the existing once-through fuel cycle (EG01) in the United States

(US) across a wide range of criteria. It was found that fuel cycles that consistently

scored high overall performance involved continuous recycling of co-extracted

U/Pu or U/TRU in fast spectrum critical reactors. In the study, these fuel30

cycles were referred to as EG23, EG24, EG29 and EG30. Table 1 provides a

description of these fuel cycles.

The evaluation and screening study assumed that the nuclear energy system

was at an equilibrium to understand the end-state benefits of each Evaluation
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Group (EG). Based on the results from the study, the next step is to understand35

and evaluate the transition from the initial EG01 state to these promising

future end-states [5]. To successfully conduct analysis of the time-dependent

transition analyses, it is necessary to develop NFCSim tools to automate setting

up of transition scenarios. Therefore, Demand-Driven Cycamore Archetypes

project (NEUP-FY16-10512) was initiated to develop demand-driven deployment40

capabilities in Cyclus.

This capability is added as a Cyclus Institution agent that deploys

facilities to meet the front-end and back-end fuel cycle demands based on a

user-defined commodity demand. This demand-driven deployment capability is

called d3ploy.45

1.2. Novelty

To effectively predict supply and demand of commodities in d3ploy, we

looked to time series forecasting methods that are commonly used in other fields

for making future predictions based on past time series data. This is a novel

approach that has never been applied to NFCSims.50

1.3. Objectives

The main objectives of this paper are: (1) to describe the demand driven

deployment capabilities of Cyclus, (2) to describe the prediction methods

available in d3ploy, (3) to demonstrate the use of d3ploy in setting up EG01-23,

EG01-24, EG01-29, and EG01-30 transition scenarios with various power demand55

curves.

2. Methodology

In Cyclus, developers have the option to design agents using C++ or python.

The d3ploy Institution agent was implemented in Python to enable the use

of well developed time series forecasting Python packages.60

In a Cyclus NFC simulation, at every timestep, d3ploy predicts supply and

demand of each commodity for the next time step. If there is an undersupply
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Start of timestep (t).

Calculate

Dp(t + 1) and Sp(t +

1) for a commodity

U(t+1) = Sp(t+1)−Dp(t+1)

Deployment of facility No Deployment

Is this done for

all commodities?

Proceed to next timestep.

U(t + 1) < buffer U(t + 1) ≥ buffer

yes

no

Figure 1: d3ploy logic flow at every timestep in Cyclus [? ].

of any commodity based on the predicted values, d3ploy deploys facilities to

meet the predicted demand. Figure 1 shows the logic flow of d3ploy at every

timestep.65

d3ploy’s overall objective is to minimize undersupply of power. The sub-

objectives are : (1) to minimize the number of time steps of undersupply or

under capacity of any commodity, (2) to minimize excessive oversupply of all

commodities. This is a reflection of reality in which it is important to never

have an undersupply of power on the grid by ensuring power plants are never70

undersupplied of fuel, while not having excessive over supply resulting in a
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burden to store unused supplies. One of the key issues that NFCSims face is that

despite sufficient installed reactor capacity to meet the power demand, there is

insufficient supply of fabricated/reprocessed fuel at certain timesteps, resulting

in idle capacity.75

2.1. Structure

In d3ploy, two different institutions were implemented for front-end and

back-end fuel cycle facilities: DemandDrivenDeploymentInst and SupplyDriven

DeploymentInst respectively. This distinction was made because front-end fa-

cilities are deployed to meet demand for the commodity they produce. Whereas,80

back-end facility are deployed to meet supply for the commodity they provide

capacity for. For example, for front end facilities, a reactor facility demands

fuel and DemandDrivenDeploymentInst triggers deployment of fuel fabrica-

tion facilities to create supply, and thus, meeting demand for fuel to prevent

undersupply. For back end facilities, the reactor generates spent fuel and85

SupplyDrivenDeploymentInst triggers deployment of waste storage facilities

to create capacity meeting the supply of spent fuel to prevent under capacity.

2.2. Input Variables

Table 2 lists and gives examples of the input variables d3ploy accepts. Es-

sentially, the user must define the facilities controlled by d3ploy, their respective90

capacities, the driving commodity, its demand equation, deployment driving

method, and prediction method for supply and demand. The user also has the

optional option to define supply/capacity buffers for each commodity, facility

preferences, and facility constraints. In-depth descriptions of the deployment

driving method, prediction methods, and buffers are provided in the subsequent95

sections.

2.2.1. Deployment Driving Method

The user has the choice of deploying facilities based on the difference between

predicted supply and demand, or predicted demand and installed capacity. There
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Input Parameter Examples

Required

Demand driving commodity Power, Fuel, Plutonium, etc.

Demand equation P(t) = 10000, sin(t), 10000*t

Facilities it controls Fuel Fab, LWR reactor, SFR reactor,

Waste repository, etc.

Capacities of the facilities 3000 kg, 1000 MW, 50000 kg

Prediction method

Power: fast fourier transform

Fuel: moving average

Spent fuel: moving average

Deployment driven by Installed Capacity/Supply

Optional

Supply/Capacity Buffer type Absolute

Supply/Capacity Buffer size

Power: 3000 MW

Fuel: 0 kg

Spent fuel: 0 kg

Facility preferences
LWR reactor = 100-t

SFR reactor = t-100

Facility constraint SFR reactor constraint = 5000kg of

Pu

Table 2: d3ploy’s required and optional input parameters with examples.
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are two advantages of using installed capacity over predicted supply. First, to100

prevent over deployment of facilities that have an intermittent supply. For

example, reactor facilities have a periodic refueling time. A user might not

want d3ploy to deploy more reactor facilities to make up for the lack of power

supply caused by the gap in supply during refueling. Second, to prevent infinite

deployment of a facility that uses a commodity that is no longer available in the105

simulation. For example, in a transition scenario from Light Water Reactors

(LWRs) to Sodium-Cooled Fast Reactors (SFRs), the reprocessing plant that

fabricates SFR fuel might demand Pu after the inventory accumulated by LWRs

is used up and there are no more LWR facilities to generate Pu. This will result

in d3ploy deploying infinite reprocessing facilities to generate SFR fuel despite110

the lack of input Pu to generate it. This can be avoided by using d3ploy’s facility

constraint capability to constrain SFR deployment until a sizable inventory of

Pu is accumulated in the simulation.

2.2.2. Supply/Capacity Buffer

In DemandDrivenDeploymentInst, the user has the option to provide a supply115

buffer for each commodity so that d3ploy will deploy facilities to meet predicted

demand and the additional buffer value. In SupplyDrivenDeploymentInst, the

user has the option to provide a capacity buffer to specific commodities so that

d3ploy will deploy facilities to meet predicted supply and the additional buffer.

For example, the user could set the power commodity’s supply buffer to be 2000120

MW. If predicted demand is 10000 MW, d3ploy will deploy reactor facilities to

meet the predicted demand and supply buffer, resulting in a power supply of

12000 MW. The buffer can be defined as a percentage (equation 1) or absolute

value (equation 2).

Spwb = Sp ∗ (1 + d) (1)

Spwb = Sp + a (2)

where Spwb is predicted supply/capacity with buffer, Sp is the predicted sup-125

ply/capacity without buffer, d is the percentage value in decimal form, and a is

7



the absolute value of the buffer.

Using a combination of this buffer capability with the installed capacity

deployment driving method in a transition scenario simulation is effective in

minimizing undersupply of a commodity without having excessive over supply.130

This is demonstrated in section 3.1.

2.3. Preferences

The user has the option to provide each facility with a time dependent

preference equation that governs preference for that facility compared to other

facilities that provide the same commodity. In the example for facility preferences135

in table 2, the LWR reactor has a preference of 100 − t and the SFR reactor has

a preference of t− 100. Thus, the LWR is preferred before time step 100 and

SFR is preferred after.

The user also has the option to provide each facility with a commodity

constraint. In the example for facility constraint in table 2, the SFR has a140

commodity constraint of 5000kg of Pu. This constrains SFR deployment by the

size of the Pu inventory in the simulation. Once, the 5000kg Pu inventory is

first met, SFR reactors can henceforth be deployed.

One of the key issues faced in transition scenarios is the lack of Pu in a scenario

that results in idle advanced reactor capacity. Therefore, the facility preferences145

and constraint capabilities are useful and necessary for modeling transition

scenarios. An ideal transition year is selected using the facility preferences,

however the transition will only begin when there is sufficient Pu inventory (set

by facility constraint) to avoid Pu shortages.

Therefore, when d3ploy predicts an undersupply of a commodity, it deploys150

available facilities to meet the predicted demand. It will deploy the facility with

the highest preference first, unless it does not meet it’s constrained criteria, then

it will deploy the second most, and so on. If the facilities do not have preferences

or constraints, d3ploy will deploy the available facilities to minimize the number

of deployed facilities while minimizing oversupply of the commodity.155
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2.4. Prediction Methods

d3ploy records supply and demand values at every timestep for all com-

modities. This provides time series data for d3ploy’s time series forecasting

methods to predict future supply and demand for each commodity. Three main

types of methods are investigated: non-optimizing, deterministic-optimizing, and160

stochastic-optimizing time series forecasting methods. Non-optimizing meth-

ods are techniques that make use of simple moving average and autoregression

concepts that use historical data to infer future supply and demand values.

Deterministic-optimizing and stochastic-optimizing methods are techniques that

use an assortment of more complex time series forecasting concepts to predict165

future supply and demand values. Deterministic-optimizing methods give deter-

ministic solutions, while stochastic-optimizing methods give stochastic solutions.

The reason for implementing multiple methods is that for different user-

defined power demand curves, d3ploy input parameters , and types of supporting

facilities in the simulation, NFC transition scenario simulations will respond170

differently. Therefore, conducting a comparison of each method for each type

of simulation will determine which method is most effective for each type of

simulation. The prediction methods will be described in the following sections.

2.4.1. Non-Optimizing Methods

Non-optimizing methods include: Moving Average (MA), Autoregressive175

Moving Average (ARMA), Autoregressive Heteroskedasticity (ARCH). The MA

method calculates the average of a user-defined number of previous entries in a

commodity’s time series and returns it as the predicted value (equation 3).

Predicted V alue =
V1 + V2 + ...+ Vn

n
(3)

The ARMA method combines moving average and autoregressive models

(equation 4). The first term is a constant, second term is white noise, third180

term is the autoregressive model, and the fourth term is the moving average

model. The ARMA method is more accurate than the MA method because of

the inclusion of the autoregressive term.
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Xt = c+ εt +

p∑
i=1

ϕiXt−i +

q∑
i=1

θiεt−i (4)

The ARCH method modifies the original moving average term (described

in equation 4). This modification makes the ARCH method better than the185

ARMA method for volatile systems [6]. Both the ARMA and ARCH methods

are implemented in d3ploy using the StatsModels [7] Python package.

2.4.2. Deterministic-Optimizing Methods

Deterministic methods include: Fast Fourier Transform (FFT), polynomial fit

(poly), exponential smoothing, and triple exponential smoothing (holt-winters).190

The FFT method computes the discrete Fourier transform of the time series

to predict future demand and supply values (equation 5). This method is

implemented in d3ploy using the SciPy [8] Python package.

Xk =

N−1∑
n=0

xne
−i2πkn/N (5)

The polynomial fit method models the time series data with a nth degree

(user-defined) polynomial to determine future demand and supply values. This195

method is implemented in d3ploy using the NumPy [9] Python package. The

exponential smoothing and triple exponential smoothing methods use a weighted

average of time series data with weights decaying exponentially for older time

series values [10] to create a model to determine future demand and supply values.

The exponential smoothing method excels in modeling univariate time series data200

without trend or seasonality, whereas the triple exponential smoothing method

is favorable for modeling seasonal time series data [6]. Both these methods are

implemented in d3ploy using the StatsModels [7] Python package.

2.5. Stochastic-Optimizing Methods

There is one stochastic-optimizing method: step-wise seasonal method. The205

method is implemented in d3ploy by the auto Auto-Regressive Integrated Moving

Averages (ARIMA) method in the pmdarima [11] Python package. The ARIMA
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model is a generalization of the ARMA model to make the model fit the time

series data better. It replaces the time series values with the difference between

consecutive values.210

3. Results

To demonstrate d3ploy’s capability to effectively conduct transition scenario

analysis and meet the objectives described in section 1.3, this section will (1)

demonstrate d3ploy’s capability in simple transition scenarios, (2) compare

the prediction methods for different transition scenarios, and (3) demonstrate215

using d3ploy to set up successful EG01-EG23, EG01-EG24, EG01-EG29, and

EG01-EG30 transition scenarios. The input files and scripts to produce the

results and plots in this paper can be reproduced using [? ], and [12].

3.1. Demonstration of d3ploy’s capabilities

A simple linearly increasing power demand simulation is conducted to demon-220

strate d3ploy’s capabilities for simulating transition scenarios and to inform

decisions about input parameters when setting up larger transition scenarios with

many facilities. This simulation is a simple transition scenario that only include

three types of facilities: source, reactor, and sink. The simulation initially

has ten initial reactor facilities (reactor1 to reactor10). These reactors have225

staggered cycle lengths and lifetimes to prevent simultaneous refueling and set

up gradual decommissioning. d3ploy is set up to deploy new reactor facilities

to meet the loss of power supply introduced from the decommissioning of the

initial reactor facilities. The d3ploy input parameters for the simulation is

shown in Table 3.230

Figures 2a, 2b and 2c demonstrate d3ploy’s capability to deploy reactor and

supporting facilities to meet the linearly increasing power demand and subse-

quently demanded secondary commodities with minimal undersupply. Figure

2a demonstrates that the main objective of d3ploy was met since there are

no timesteps in which the supply of power falls under demand. By using a235
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Input Parameters Simple Transition Scenario: Linearly Increasing Power

Required

Demand driving commodity Power

Demand equation [MW] t < 40 = 1000, t ≥ 40 = 250t

Facilities it controls Source, Reactor, Sink

Prediction method FFT

Deployment driving method Installed Capacity

Optional
Buffer type Absolute

Buffer size Power: 2000MW, Fuel: 1000kg

Table 3: d3ploy’s input parameters for the simple transition scenarios.

combination of the FFT method for predicting demand and setting the supply

buffer to 2000MW (the capacity of 2 reactors), the user minimizes the number

of undersupplied timesteps for every commodity.

In figure 2b, a facility with a large fuel throughput is initially deployed to

meet the large initial fuel demand for the starting up of ten reactors. d3ploy is240

prevented from deploying many supporting facilities that end up being redundant

at the later parts of the simulation, by having an initial facility with a large

throughput exist for the first few timesteps in the simulation. This is a reflection

of reality in which reactor manufacturers will accumulate an appropriate amount

of fuel inventory before starting up reactors. There is one timestep where there245

is an undersupply after the decommissioning of the large initial facility. This is

unavoidable since the prediction methods in d3ploy are unable to predict this

sudden drop in demand.

3.2. Comparison of Prediction Methods

EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios250

are set up in Cyclus using d3ploy. To determine the most effective d3ploy

prediction methods, a comparison of each prediction method for each transition

scenario is conducted for constant power and linearly increasing power demand.

Similar to the simple transition scenario, these transition scenario simulations

begin with an initial fleet of LWRs and after 80 years, the simulation progressively255

decommissions the LWRs, and d3ploy deploys SFRs and mixed oxide (MOX)

LWRs to meet the unmet power demand. Figure 3 show the set up of facilities
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(a) The power demand is a user-defined equation and power is supplied by the reactors.

There are no time steps with undersupply of power.

(b) Fuel is demanded by reactors and supplied by source

facilities. There are is only one time step with undersup-

ply of fuel.

(c) Spent Fuel is supplied by reactors and the capacity is

provided by sink facilities. There are no time steps with

under capacity of sink space.

Figure 2: Transition Scenario: Linearly increasing power demand.
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and mass flows for EG1-23 and EG1-29 in Cyclus. In EG1-23 and EG1-29,

only plutonium is recycled from LWR spent fuel to produce Fast Reactor (FR)

fuel. EG1-24 and EG1-30 are similar to EG1-23 and EG1-29 respectively, with260

exception that all transuranic elements are recycled.

Figure 4 shows the time steps in which there is undersupply or under capacity

of each commodity for a constant power EG01-23 scenario for varying prediction

methods. The size of the points are normalized to the largest undersupply

value, therefore, the bigger the point, the larger the undersupply. Table 4 shows265

the number of time steps with power undersupply for constant power EG01-

EG23 and EG01-29, linearly increasing power EG01-24 and EG01-30 transition

scenarios. Figure 4 demonstrates that the poly and fft methods perform the

best, since they have the least number of points on the plot, indicating that they

have the fewest number of time steps with undersupply and under capacity of270

commodities. Table 4 shows that the poly method performs slightly better at

minimizing undersupply of power than fft. A similar analysis was done for a

constant power EG1-29 scenario, and it is seen in Table 4 that the poly also

performed best for minimizing undersupply of power.

Figure 5 shows the time steps in which there is undersupply or under capacity275

of each commodity for a linearly increasing power EG01-24 scenario for varying

prediction methods. Similarly to Figure 4, the size of the points are normalized

to the largest undersupply value. Figure 5 demonstrates that the fft method

performs the best at minimizing undersupply of all commodities. A similar

analysis was done for a constant power EG1-30 scenario, and it is seen in Table280

4 that the fft also performed best for minimizing undersupply of power.

From Figures 4, 5, and table 4, it is shown that the poly method performs

best for constant power transition scenarios and the fft method performs best for

linearly increasing power transition scenarios. Undersupply and under capacity of

commodities occur two main time periods: initial demand for the commodity and285

during the transition period. To further d3ploy’s main objective of minimizing

the power undersupply, sensitivity analysis of the power supply buffer for each

transition scenariois conducted with best performing prediction method to find
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Source

Enrichment

LWR

LWR Storage

LWR Reprocessing

LWR Sink

LWR Mixer

FR

FR Storage

FR Reprocessing

FR Sink

FR Mixer

natural-U

enriched-U

waste

U/Pu

waste

U/Pu

natural-U natural-U

(a) EG01-EG23.

Source

Enrichment

LWR

LWR Storage

LWR Reprocessing

LWR Sink

FR Mixer

FR

FR Storage

FR Reprocessing

FR Sink

MOX Mixer

MOX

MOX Storage

MOX Reprocessing

MOX Sink

natural-U

enriched-U

waste

FR Fuel

waste

MOX Fuel

waste

natural-U

U/Pu U/Pu

U/Pu

U/Pu

(b) EG01-EG29.

Figure 3: Diagrams with facilities and mass flow of the scenarios EG01-EG23 and EG01-EG24.
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(a) Time dependent undersupply of commodities in simulation

(b) Time dependent under capacity of commodities in simulation

Figure 4: Time dependent undersupply and under capacity of commodities for different

prediction methods for the EG01-23 Transition Scenario with Constant Power Demand. The

size of each point is based on the size of the undersupply.
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(a) Time dependent undersupply of commodities in simulation

(b) Time dependent under capacity of commodities in simulation

Figure 5: Time dependent undersupply and under capacity of commodities for different

prediction methods for the EG01-24 Transition Scenario with Linearly Increasing Power

Demand. The size of each point is based on the size of the undersupply.
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Power Undersupplied Time Steps

Algorithm EG01-EG23

Constant

Power

EG01-EG24

Linearly

Increasing

Power

EG01-EG29

Constant

Power

EG01-EG30

Linearly

Increasing

Power

MA 26 36 15 24

ARMA 26 36 15 24

ARCH 26 36 15 21

POLY 6 65 4 9

EXP SMOOTHING 27 37 16 25

HOLT-WINTERS 27 37 16 25

FFT 8 20 5 9

SW SEASONAL 36 107 14 51

Table 4: Undersupply and oversupply of power with the different algorithms used to drive

EG01-EG23,24,29,30.

a buffer size that will minimize power undersupply.

3.3. Sensitivity Analysis290

Sensitivity analysis of the power buffer size was conducted for EG01-EG23,

EG01-24, EG01-29, and EG01-30 transition scenarios. It was found that varying

the power buffer size does not impact the number of undersupply time steps for

EG01-EG23 and EG01-29 constant power demand transition scenario with poly

prediction method. There are 6 and 4 time steps (table 4) in which there is power295

undersupply for EG01-EG23 and EG01-29 transition scenarios respectively. As

seen from figure 4, these undersupply time steps occur at the beginning of the

simulation and for one time step when the transition begins. This is expected

since without time series data at the beginning of the simulation, d3ploy takes

a few time steps to collect time series data about power demand to predict and300

start deploying reactor and supporting fuel cycle facilities. When the transition

begins, power is under supplied for one time step, with this new time series data,

d3ploy deploys facilities to ensure that power demand is met for the rest of the

transition period. Therefore, the power undersupply is minimized for constant

18



power EG01-EG23 and EG01-EG29 transition scenarios with a 0MW power305

supply buffer.

Power buffer size is varied for the EG01-EG24 and EG1-30 linearly increasing

power demand transition scenarios. Figures 6a, 6c and Table 5 show that with an

increasing buffer size, the number of power undersupply time steps decreases. For

EG01-24, it plateaus at 6000MW, and for EG01-30, the cumulative undersupply310

is smallest for a buffer size of 8000MW. As seen from Figures 6b and 6d, these

undersupply time steps occur at the beginning of the simulation and for one

time step when the transition begins. This is expected since without time series

data at the beginning of the simulation, d3ploy takes a few time steps to collect

time series data about power demand to predict and start deploying reactor and315

supporting fuel cycle facilities. Therefore, the power undersupply is minimized

for linearly increasing power EG01-EG24 and EG01-EG30 transition scenarios

with a 6000MW and 8000MW power supply buffer respectively.

Buffer [MW] EG01-24 EG01-30

0 Undersupplied [#] 20 9

Cumulative [GW ] 315917 152517

2000 Undersupplied [#] 9 6

Cumulative [GW ] 306520 147166

4000 Undersupplied [#] 8 6

Cumulative [GW ] 303438 143166

6000 Undersupplied [#] 7 5

Cumulative [GW ] 303438 139083

8000 Undersupplied [#] 7 5

Cumulative [GW ] 303438 135083

Table 5: Dependency of the undersupply of Power on the buffer size for EG01-EG24 and

EG01-EG30 transition scenarios with linearly increasing power demand using the fft prediction

method.

3.4. Best Performance Models

Table 6 shows d3ploy input parameters for EG01-EG23, EG01-EG24, EG01-320

EG29, and EG01-EG30 transition scenarios that minimize undersupply of power

19



(a) EG01-24: Power buffer size vs. cumulative undersupply

(b) EG01-24: Time-dependent undersupply of power for varying power

buffer sizes

(c) EG01-30: Power buffer size vs. cumulative undersupply

(d) EG01-30: Time-dependent undersupply of power for varying power

buffer sizes

Figure 6: Sensitivity Analysis of Power buffer size on cumulative undersupply of Power for

EG01-EG24 and EG01-EG30 transition scenarios with linearly increasing power demand using

the fft prediction method.
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Input Parameter
Simulation Description

EG01-23 EG01-24 EG01-29 EG01-30

Required

Demand driving commodity Power

Demand equation [MW] 60000 60000 + 250t/12 60000 60000 + 250t/12

Prediction method poly fft poly fft

Deployment Driving Method Installed Capacity

Optional
Buffer type Absolute

Power Buffer size [MW] 0 6000 0 8000

Table 6: d3ploy’s input parameters for EG01-EG23, EG01-EG24, EG01-EG29, and EG01-

EG30 transition scenarios that minimizes undersupply of power and minimizes the undersupply

and under capacity of the other facilities.

and minimize the undersupply and under capacity of the other commodities.

The need for buffers for commodities is a reflection of reality in which ideally

a supply cushion exists to ensure that there is available supply in the case of

unexpected undersupply.325

Figure 7 and 8 show time dependent deployment of reactor and supporting

facilities for the EG01-23 constant power demand and EG01-30 linearly increasing

power demand transition scenario respectively. d3ploy automatically deploys

reactor and supporting facilities to set up a supply chain to meet power demand

during a transition from LWRs to SFRs for EG01-23, and from LWRs to MOX330

LWRs and SFRs for EG01-30. EG01-24 and EG01-29 facility deployment plots

are very similar to EG01-23 and EG01-30 respectively, therefore they are not

shown.
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(a) EG01-23: Reactor Deployment

(b) EG01-23: Supporting Facility Deployment

Figure 7: Time dependent deployment of reactor and supporting facilities in the EG01-

23 constant power demand transition scenario. d3ploy automatically deploys reactor and

supporting facilities to set up a supply chain to meet constant power demand of 60000 MW

during a transition from LWRs to SFRs.
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(a) EG01-30: Reactor Deployment

(b) EG01-30: Supporting Facility Deployment

Figure 8: Time dependent deployment of reactor and supporting facilities in the EG01-30

linearly increasing power demand transition scenario. d3ploy automatically deploys reactor and

supporting facilities to set up a supply chain to meet constant power demand of 60000+250t/12

MW during a transition from LWRs to MOX LWRs and SFRs.
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4. Conclusion

In this paper, we demonstrate that by carefully selecting d3ploy parameters,335

we are able to effectively automate setting up of constant and linearly increasing

power demand transition scenarios for EG01-23, EG01-24, EG01-29, and EG01-30

with minimal power undersupply. Using d3ploy to set up transition scenarios is

more efficient than the previous efforts that required a user to manually calculate

and use trial and error to set up the deployment scheme for the supporting fuel340

cycle facilities. Transition scenario simulations set up this way are sensitive

to changes in the input parameters resulting in an arduous setting up process,

since a slight change in one of the input parameters would result in the need

to recalculate the deployment scheme to ensure that there is no undersupply of

power. Therefore, by automating this process, the user can vary input parameters345

in the simulation and d3ploy will automatically adjust the deployment scheme

to meet the new constraints.

5. Future Work

To enable NFCSims to produce insightful and flexible results to inform policy

decisions, it is necessary to be able to quantify and include all the subtleties of350

each segment of the NFC through system analysis and sensitivity studies [13]. A

transition scenario is simulated to predict the future, however when implemented

in the real world, it will deviate from the optimal scenario. Previously it was

difficult to conduct this analysis with Cyclus as the user would have to manually

calculate the deployment scheme for every change in input parameter. Therefore,355

using the d3ploy capability sensitivity analysis studies could be conducted to

determine h ow variation in different input parameters will impact the progression

and final state of the transition scenario.
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